1
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
2
|
Fernandes Almeida R, Gouveia Gomes MH, Kurozawa LE. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice. Food Res Int 2024; 180:114090. [PMID: 38395563 DOI: 10.1016/j.foodres.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
There is a growing demand for the food industry to find appealing matrices that display a clean and sustainable label capable of replacing animal proteins in the encapsulation market for natural pigments. Therefore, this study evaluated the impact of enzymatic hydrolysis by Flavourzyme protease on the encapsulation properties of rice bran proteins, aiming to protect anthocyanins in grape juice microparticles. To achieve this, rice bran protein hydrolysates (RPH) with low (5%, LRPH), medium (10%, MRPH), and high (15%, HRPH) degrees of hydrolysis (DH) were used combined with maltodextrin as carrier agents for the microencapsulation of grape juice by spray drying. The feed solutions contained 1 g of carrier agents (CA)/g of soluble solids from the juice (SS) and protein: a 15% CA ratio. Non-hydrolyzed rice protein was used as a carrier agent to obtain a control sample to evaluate the effect of enzymatic hydrolysis on the microencapsulation of grape juice. Protein modification increased the surface activity of the protein and its ability to migrate to the surface of the microparticles, forming a protective film, as observed by X-ray photoelectron spectroscopy. Using HRPH as a carrier agent combined with maltodextrin improved the internal and total anthocyanin retention, antioxidant capacity measured by DPPH and ABTS+ assays, and powder recovery compared to the control sample, and increased DH reduced particle size and powder stickiness. These particles were more homogeneous, rough, and without cracks. The microencapsulation efficiency was above 70%. All powders exhibited low values of hygroscopicity and degree of caking. Therefore, enzymatic hydrolysis proves to be a promising alternative for improving rice bran protein's encapsulating properties since using RPH as an encapsulating agent conferred greater protection of anthocyanins in microparticles. Moreover, the HRPH sample exhibited the most favorable outcomes overall, indicating its potential for prospective utilization in the market, supported by its elevated Tg.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
3
|
Du Q, Wu Y, Zeng X, Tu M, Wu Z, Liu J, Pan D, Ding Y. Competitive binding of maltodextrin and pectin at the interface of whey protein hydrolyzate-based fish oil emulsion under high temperature sterilization: Effects on storage stability and in vitro digestion. Food Res Int 2023; 164:112368. [PMID: 36737955 DOI: 10.1016/j.foodres.2022.112368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Whey protein hydrolysate (WPH), maltodextrin (MD), low methoxy pectin (LMP) and high methoxy pectin (HMP) were used to study the interface binding under high temperature sterilization conditions (121 °C, 15 min). The effect of competitive binding of MD and pectin with interface protein on the storage stability and gastrointestinal fate of fish oil emulsion was studied. The low-molecular-weight MD and the interface protein undergo a wide range of covalent binding through the Maillard reaction, while a small amount of high-molecular-weight pectin can form a protective shell with the interface protein through electrostatic interaction to inhibit the covalent reaction of MD, which was called competitive binding. However, due to the bridging and depletion flocculation of pectin, the emulsification stability of fish oil emulsion reduced. After 13 days of storage, compared with the particle size of the WPH fish oil emulsion (459.18 nm), the fish oil emulsion added with LMP and HMP reached 693.58 nm and 838.54 nm, respectively. In vitro digestion proved that WPH fish oil emulsion flocculated rapidly in the stomach (1.76 μm), while WPH-MD and WPH-MD-pectin fish oil emulsions flocculated slightly (less than800 nm). WPH-MD-pectin delayed digestion in the gastrointestinal tract, and HMP exhibited a better slow-release effect. This study provides reference for the design of multi-component functional drinks and other bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Yang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
4
|
Perez-Palacios T, Ruiz-Carrascal J, Solomando JC, de-la-Haba F, Pajuelo A, Antequera T. Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment. Foods 2022; 11:3291. [PMID: 37431039 PMCID: PMC9601459 DOI: 10.3390/foods11203291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
Due to the beneficial health effects of omega-3 fatty acids and antioxidants and their limited stability in response to environmental and processing factors, there is an increasing interest in microencapsulating them to improve their stability. However, despite recent developments in the field, no specific review focusing on these topics has been published in the last few years. This work aimed to review the most recent developments in the microencapsulation of fish oil and natural antioxidant compounds. The impact of the wall material and the procedures on the quality of the microencapsulates were preferably evaluated, while their addition to foods has only been studied in a few works. The homogenization technique, the wall-material ratio and the microencapsulation technique were also extensively studied. Microcapsules were mainly analyzed for size, microencapsulation efficiency, morphology and moisture, while in vitro digestion, flowing properties, yield percentage and Fourier transform infrared spectroscopy (FTIR) were used more sparingly. Findings highlighted the importance of optimizing the most influential variables of the microencapsulation procedure. Further studies should focus on extending the range of analytical techniques upon which the optimization of microcapsules is based and on addressing the consequences of the addition of microcapsules to food products.
Collapse
Affiliation(s)
- Trinidad Perez-Palacios
- Meat and Meat Product University Institute (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Jung H, Jung D, Lee J, Ki W, Lee JM, Kim EM, Nam MS, Kim KK. Bioactive peptides in the pancreatin-hydrolysates of whey protein support cell proliferation and scavenge reactive oxygen species. Anim Cells Syst (Seoul) 2022; 26:232-242. [PMID: 36275446 PMCID: PMC9586699 DOI: 10.1080/19768354.2022.2130425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Whey protein (WP) in milk shows physiologically active functions such as cholesterol control and immune system strengthening. In this study, we performed hydrolysis and peptide polarity fractionation to enhance the efficacy and diversity of its physiological activities, using the digesting enzyme, pancreatin. Our results indicate that hydrolysis significantly increased the cell proliferation of the WP fractions, with the lower-polarity fractions showing greater efficacy in this regard. Our results indicate that hydrolysis significantly increases cell proliferation of the WP fractions. Additionally, we confirmed differences in the antioxidant activity of the WP fractions as a function of polarity was confirmed via scavenging 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay in vitro. WP itself did not show anti-inflammatory efficacy. However, all the hydrolyzed fractions downregulated the mRNA expression levels of inflammatory cytokines in all treated cell lines and, based on a senescence-associated (SA)-β-galactosidase assay, the fraction with the lowest polarity (F6) inhibited cellular senescence to the greatest extent. Furthermore, we identified the peptide sequences with various physiological activities from whey protein hydrolysates through mass spectrometry. Taken together, our results indicate that the fractionation of WP via hydrolysis generates novel functions including promoting cellular cell proliferation, anti-inflammatory effects, and enhancing antioxidant and anti-cellular senescence.
Collapse
Affiliation(s)
- Haesoo Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Damin Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Woojin Ki
- Division of Animal Resource Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Min Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Myoung Soo Nam
- Division of Animal Resource Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Characterization and controlled release of pequi oil microcapsules for yogurt application. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Fadini AL, Alvim ID, Carazzato CA, Paganotti KBDF, Miguel AMRDO, Rodrigues RAF. Microparticles loaded with fish oil: stability studies, food application and sensory evaluation. J Microencapsul 2021; 38:365-380. [PMID: 34278940 DOI: 10.1080/02652048.2021.1948622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
AIM Evaluate the stability of microparticles loaded with fish oil produced by spray drying, spray chilling and by the combination of these techniques (double-shell) and use the microparticles for food application. METHODS Samples were stored for 180 days at 6 °C and 24 °C (75% RH). Performed investigations included encapsulation efficiency, moisture content, aw, size (laser scattering), colour (L*, a*, b*), polyunsaturated fatty acids (PUFAs) (GC), thermal behaviour (DSC) and crystalline structure (XRD). RESULTS Double-shell microparticles containing 26 wt% core material, 22.74 ± 0.02 µm (D0.5) and 2.05 ± 0.03 span index, 1.262 ± 0.026 wt% moisture content and 0.240 ± 0.001 of aw had PUFAs retention higher than 90 wt% during storage at 6 °C without changes in crystalline structure (β'-type crystals) and melting temperature (54 °C). The sensory evaluation suggested low fish oil release in oral phase digestion. CONCLUSIONS Double-shell microparticles were effective to protect and deliver PUFAs.
Collapse
Affiliation(s)
- Ana Lúcia Fadini
- Cereal Chocotec, Institute of Food Technology, Campinas, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodney Alexandre Ferreira Rodrigues
- Phytochemistry Division, CPQBA, University of Campinas, Paulínia, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|