1
|
Aboragah AA, Wichasit N, Alharthi AA, Alhidary IA, Loor JJ. Alterations in one‑carbon metabolism and protein synthesis signals due to methionine supplementation and lipopolysaccharide challenge in Holstein fetal liver explants. Res Vet Sci 2024; 178:105386. [PMID: 39191197 DOI: 10.1016/j.rvsc.2024.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One‑carbon metabolism (OCM) fueled by methionine (Met), choline, and folic acid is key for embryo development and fetal growth. We investigated effects of lipopolysaccharide (LPS) to induce inflammation in fetal liver tissue with or without Met on components of OCM and protein synthesis activity. Fetal liver harvested at slaughter from six multiparous pregnant Holstein dairy cows (37 ± 6 kg milk/d, 100 ± 3 d gestation) were incubated (0.2 ± 0.02 g) for 4 h at 37 °C with each of the following: ideal profile of amino acids (control; Lysine:Met 2.9:1), control plus LPS (1 μg/mL), increased Met supply (Met, Lys:Met 2.5:1), and Met+LPS. Data were analyzed as a 2 × 2 factorial (PROC MIXED, SAS 9.4). Ratios of mechanistic target of rapamycin (p-mTOR:mTOR) and eukaryotic elongation factor 2 (p-eEF2:eEF2) protein were lowest (P < 0.0 5) with LPS and highest with Met. Tissue amino acid concentrations were lowest (P < 0.0 5) with Met regardless of LPS suggesting enhanced use via mTOR. The marked increase (P = 0.02) in phosphorylation of S6 ribosomal protein (p-RPS6) with LPS suggested a pro-inflammatory response that was partly alleviated with Met+LPS. No effect (P = 0.4 5) on methionine adenosyl transferase 1 A (MAT1A) protein abundance was detected. Activity of betaine-homocysteine S-methyltransferase (BHMT) was greatest with Met, but Met+LPS dampened this effect (P = 0.0 5). Overall, fetal liver responds to inflammatory challenges and Met supply. The latter can stimulate protein synthesis via mTOR and alter some OCM reactions while having a modest anti-inflammatory effect.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Nithat Wichasit
- Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulrahman A Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
2
|
Fan Y, Ma L, Fang X, Du S, Mauck J, Loor JJ, Sun X, Jia H, Xu C, Xu Q. Role of hypoxia-inducible-factor-1α (HIF-1α) in ferroptosis of adipose tissue during ketosis. J Dairy Sci 2024:S0022-0302(24)01034-8. [PMID: 39067746 DOI: 10.3168/jds.2024-24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Postpartum cows experience lipolysis in adipose tissue due to negative energy balance (NEB), and accumulation of free fatty acids (FFA) leads to metabolic stress in adipose tissue. Ferroptosis is a type of cell death triggered by excessive buildup of iron-dependent lipid peroxides, which is involved in the occurrence and development of various metabolic diseases in nonruminants. However, it is still unclear whether ferroptosis occurs in the adipose tissue of ketotic cows and the regulatory mechanisms behind ferroptosis. Despite multiple studies demonstrating the significant involvement of hypoxia-inducible-factor-1α (HIF-1α) in regulating cellular dysfunction, its specific function in adipose tissue of ketotic dairy cows remains uncertain, particularly its regulation of oxidative stress and ferroptosis. The study aimed to explore the impact of HIF-1α on oxidative stress and ferroptosis in bovine subcutaneous adipose tissue and isolated adipocytes. The adipose tissue of clinical ketosis cows (n = 15) with a serum BHB concentration of 3.13 mM (interquartile range = 0.14) and healthy cows (n = 15) with a serum BHB concentration of and 0.58 mM (interquartile range = 0.13) was collected. The results showed that the concentrations of lipid peroxidation malondialdehyde (MDA), reactive oxygen species (ROS), Fe2+ and total iron were increased in adipose tissue of cows with ketosis, while the contents of glutathione (GSH) were reduced. Furthermore, the protein levels of HIF-1α, heme oxygenase 1 (HMOX1), catalase (CAT), superoxide dismutase 1 (SOD1), acyl-CoA synthetase 4 (ACSL4), and nuclear factor erythroid-derived 2-like 2 (NFE2L2) exhibited higher abundance in adipose tissue obtained from cows with ketosis, whereas the protein abundance of solute carrier family 7 member 11 (SLC7A11), glutamate cysteine ligase catalytic subunit (GCLC), kelch-like ECH-associated protein 1 (KEAP1), glutamate cysteine ligase regulatory subunit (GCLM) and glutathione peroxidase 4 (GPX4) were lower. To simulate the ferroptosis state of adipose tissue in ketotic cows, primary bovine adipocytes were isolated from the adipose tissue of healthy cows and cultured with erastin to construct ferroptosis model. Adipocytes were cultured with either an adenovirus overexpressing HIF-1α or small interfering RNA targeting HIF-for 48 h, followed by exposure to erastin (1 μM) for 24 h. Treatment with erastin led to higher protein abundance of CAT, SOD1, NFE2L2 and HMOX1, while it inhibited the protein expression levels of GCLC, SLC7A11, GCLM, GPX4 and KEAP1. Furthermore, erastin treatment elevated the levels of ROS, MDA, Fe2+, total iron and reduced the content of GSH. The overexpression of HIF-1α reversed the erastin-induced decreases in the protein abundance of GPX4 and SLC7A11, as well as the levels of MDA, ROS, Fe2+ and total iron, while significantly increasing protein abundance and content of CAT, SOD1, NFE2L2, HMOX1, GCLC, GCLM, GPX4, SLC7A11 and GSH. Conversely, the silencing of HIF-1α further exacerbated the erastin-induced levels of MDA, ROS, Fe2+ and total iron, while inhibiting the upregulation of SOD1, CAT, NFE2L2 and HMOX1. Collectively, these findings suggest that activation of HIF-1α may function as an adaptive mechanism to mitigate ferroptosis and alleviate oxidative stress in adipose tissue.
Collapse
Affiliation(s)
- Yunhui Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinxin Fang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Shuyu Du
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - John Mauck
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Xudong Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Hongdou Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Qiushi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
3
|
Ma N, Liang Y, Cardoso FF, Parys C, Cardoso FC, Shen X, Loor JJ. Insulin signaling and antioxidant proteins in adipose tissue explants from dairy cows challenged with hydrogen peroxide are altered by supplementation of arginine or arginine plus methionine. J Anim Sci 2022; 100:6523279. [PMID: 35137127 PMCID: PMC8956129 DOI: 10.1093/jas/skac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
Arginine (Arg) and methionine (Met) can elicit anti-inflammatory and antioxidant effects in animals. Unlike Met, however, it is unknown if the supply of Arg can impact key aspects of adipose tissue (AT) function in dairy cows. Since Met and Arg metabolism are linked through the synthesis of polyamines, it is also possible that they have a complementary effect on aspects of AT function during a stress challenge. In this experiment, subcutaneous AT was harvested from four lactating multiparous Holstein cows (~27.0 kg milk per day, body condition score 3.38 ± 0.23) and used for incubations (4 h) with the following: control medium with an "ideal" profile of essential amino acids (IPAA; CTR; Lys:Met 2.9:1), IPAA plus 100 μM H2O2 (HP), H2O2 plus greater Arg supply (HPARG; Lys:Arg 1:1), or H2O2 plus greater Arg and methionine (Met) supply (HPARGMET; Lys:Met 2.5:1 and Lys:Arg 1:1). Western blotting was used to measure abundance of 18 protein targets associated with insulin and AA signaling, nutrient transport, inflammation, and antioxidant response. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess effects on genes associated with Arg metabolism. Among the protein targets measured, although abundance of phosphorylated (p) AKT serine/threonine kinase (P = 0.05) and p-mechanistic target of rapamycin (P = 0.04) were lowest in HP explants, this effect was attenuated in HPARG and especially HPARGMET compared with CTR. Compared with HP, incubation with HPARG led to upregulation of the AA transporter solute carrier family 1 member 3 (L-glutamate transporter; P = 0.03), the reactive oxygen species detoxification-related enzyme glutathione S-transferase mu 1 (GSTM1; P = 0.03), and fatty acid synthase (P = 0.05). Those effects were accompanied by greater abundance of solute carrier family 2 member 4 (insulin-induced glucose transporter) in explants incubated with HPARG and also HPARGMET (P = 0.04). In addition, compared with other treatments, the peak response in abundance of the intracellular energy sensor 5'-prime-AMP-activated protein kinase was detected with HPARGMET (P = 0.003). There was no effect of Arg or Arg plus Met on the mRNA abundance of genes associated with Arg metabolism (ARG1, NOS2, AMD1, SMS, and SRM). Overall, supplementation of Arg alone or with Met partially alleviated the negative effects induced by H2O2. More systematic studies need to be conducted to explore the function of Arg supply with or without Met on AT function.
Collapse
Affiliation(s)
- Nana Ma
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Fabiana F Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Claudia Parys
- Evonik Operations GmbH, Nutrition & Care, 63457 Hanau, Germany
| | - Felipe C Cardoso
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|