1
|
Piazza M, Schiavon S, Saha S, Berton M, Bittante G, Gallo L. Body and milk production traits as indicators of energy requirements and efficiency of purebred Holstein and 3-breed rotational crossbred cows from Viking Red, Montbéliarde, and Holstein sires. J Dairy Sci 2023:S0022-0302(23)00218-7. [PMID: 37164865 DOI: 10.3168/jds.2022-22830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 05/12/2023]
Abstract
This study aimed to compare rotational 3-breed crossbred cows of Viking Red, Montbéliarde, and Holstein breeds with purebred Holstein cows for a range of body measurements, as well as different metrics of the cows' productivity and production efficiency. The study involved 791 cows (440 crossbreds and 351 purebreds), that were managed across 2 herds. Within each herd, crossbreds and purebreds were reared and milked together, fed the same diets, and managed as one group. The heart girth, height at withers, and body length were measured, and body condition score (BCS) was determined on all the cows on a single test day. The body weight (BW) of 225 cows were used to develop an equation to predict BW from body size traits, parity, and days in milk, which was then used to estimate the BW of all the cows. Equations from the literature were used to estimate body protein and lipid contents using the predicted BW and BCS. Evidence suggests that maintenance energy requirements may be closely related to body protein mass, and Holstein and crossbred cows may be different in body composition. Therefore, we computed the requirements of net energy for maintenance (NEM) on the basis either of the metabolic weight (NEM-MW: 0.418 MJ/kg of metabolic BW) or of the estimated body protein mass according to a coefficient (NEM-PM: 0.631 MJ/kg body protein mass) computed on the subset comprising the purebred Holstein. On the same day when body measurements were collected, individual test-day milk yield and fat and protein contents were retrieved once from the official Italian milk recording system, and milk was sampled to determine fresh cheese yield. Measures of NEM were used to scale the production traits. Statistical analyses of all variables included the fixed effects of herd, days in milk, parity, and genetic group (purebred Holstein and crossbred), and the herd × genetic group interaction. External validation of the equation predicting BW yielded a correlation coefficient of 0.94 and an average bias of -4.95 ± 36.81 kg. The crossbreds had similar predicted BW and NEM-MW compared with the Holsteins. However, NEM-PM of crossbreds was 3.8% lower than that of the Holsteins, due to their 11% greater BCS and different estimated body composition. The crossbred cows yielded 4.8% less milk and 3.4% less milk energy than the purebred Holsteins. However, the differences between genetic groups were no longer significant when the production traits were scaled on NEM-PM, suggesting that the crossbreds and purebreds have the same productive ability and efficiency per unit of body protein mass. In conclusion, measures of productivity and efficiency that combine the cows' production capability with traits related to body composition and the energy cost of production seem to be more effective criteria for comparing crossbred and purebred Holstein cows than just milk, fat, and protein yields.
Collapse
Affiliation(s)
- Martina Piazza
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy 35020
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy 35020.
| | - Sudeb Saha
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh 3100; Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan 980-8572
| | - Marco Berton
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy 35020
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy 35020
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy 35020
| |
Collapse
|
2
|
Evers SH, Delaby L, Pierce KM, McCarthy B, Coffey EL, Horan B. An evaluation of detailed animal characteristics influencing the lactation production efficiency of spring-calving, pasture-based dairy cattle. J Dairy Sci 2023; 106:1097-1109. [PMID: 36526459 DOI: 10.3168/jds.2022-21815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Selection for feed efficiency, the ratio of output (e.g., milk yield) to feed intake, has traditionally been limited on commercial dairy farms by the necessity for detailed individual animal intake and performance data within large animal populations. The objective of the experiment was to evaluate the effects of individual animal characteristics (animal breed, genetic potential, milk production, body weight (BW), daily total dry matter intake (TDMI), and energy balance) on a cost-effective production efficiency parameter calculated as the annual fat and protein (milk solids) production per unit of mid-lactation BW (MSperBWlact). A total of 1,788 individual animal intake records measured at various stages of lactation (early, mid, and late lactation) from 207 Holstein-Friesian and 200 Jersey × Holstein-Friesian cows were used. The derived efficiency traits included daily kilograms of milk solids produced per 100 kg of BW (dMSperBWint) and daily kilograms of milk solids produced per kilogram of TDMI (dMSperTDMI). The TDMI per 100 kg of BW was also calculated (TDMI/BWint) at each stage of lactation. Animals were subsequently either ranked as the top 25% (Heff) or bottom 25% (Leff) based on their lactation production efficiency (MSperBWlact). Dairy cow breed significantly affected animal characteristics over the entire lactation and during specific periods of intake measurements. Jersey crossbred animals produced more milk, based on a lower TDMI, and achieved an increased intake per kilogram of BW. Similarly, Heff produced more milk over longer lactations, weighed less, were older, and achieved a higher TDMI compared with the Leff animals. Both Jersey × Holstein-Friesian and Heff cows achieved superior production efficiency due to lower maintenance energy requirements, and consequentially increased milk solids production per kilogram of BW and per kilogram of TDMI at all stages of lactation. Indeed, within breed, Heff animals weighed 20 kg less and produced 15% more milk solids over the total lactation than Leff. In addition, Heff achieved increased daily milk solids yield (+0.16 kg) and milk solids yield per kilogram of TDMI (+ 0.23 kg/kg DM) during intake measurement periods. Moreover, the strong and consistently positive correlations between MSperBWlact and detailed production efficiency traits (dMSperBWint, dMSperTDMI) reported here demonstrate that MSperBWlact is a robust measure that can be applied within commercial grazing dairy systems to increase the selection intensity for highly efficient animals.
Collapse
Affiliation(s)
- S H Evers
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61C996 Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - L Delaby
- INRAE, l'Institut Agro, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, F-35590 Saint-Gilles, France
| | - K M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - B McCarthy
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61C996 Ireland
| | - E L Coffey
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61C996 Ireland
| | - B Horan
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61C996 Ireland
| |
Collapse
|