1
|
Bales AM, Lock AL. Effects of raw and roasted high oleic soybeans on milk production of high-producing dairy cows. J Dairy Sci 2024:S0022-0302(24)01153-6. [PMID: 39343198 DOI: 10.3168/jds.2024-25092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Processing method of soybeans has the potential to influence dairy cow production performance, therefore we determined the effect feeding raw or roasted, ground high oleic acid soybeans (HOSB) on production responses of high-producing dairy cows. Thirty-six multiparous Holstein cows (45.6 ± 6.22 kg/d of milk; 110 ± 61 DIM) were randomly assigned to treatment sequences in a 4 × 2 Truncated Latin square design with 35-d periods. Treatments were: 1) control diet containing soybean meal and soybean hulls (CON), 2) 16% roasted and ground HOSB (RST), 3) 16% raw and ground HOSB (RAW-D), and 4) 16% raw and ground HOSB + additional rumen by-pass protein (RAW-U). High oleic acid soybeans replaced conventional soybean meal and hulls in the control diet and rumen by-pass protein replaced soybean meal in RAW-U to maintain diet nutrient composition (%DM) of ∼28.0% NDF, 21.3% forage NDF, 27.3% starch, and 17.8% CP. Fatty acid content of CON, RST, RAW-D, and RAW-U was 1.60, 4.30, 4.36, and 4.34%DM, respectively. Pre-planned contrasts included the overall effect of HOSB inclusion {CON vs. HOSOY [1/3 (RST + RAW-D + RAW-U)]}, the effect of soybean processing {RST vs. RAW [1/2 (RAW-D + RAW-U)]}, and the effect of increasing RUP content within the raw HOSB treatments (RAW-D vs RAW-U). For most variables tested, there were significant interactions between treatment and week, as HOSOY increased production variables compared with CON and RST increased production responses compared with RAW, with only the magnitude of difference varying between weeks. Overall, HOSOY increased DMI and yields of milk, 3.5% FCM, ECM, and milk fat, but did not affect milk protein yield. RST did not impact DMI but increased yields of milk, 3.5% FCM, ECM, milk fat, and milk protein. Compared with RAW-D, RAW-U increased yields of milk and milk protein and tended to increase ECM. Overall, HOSB inclusion of 16% DM increased production responses in high-producing dairy cows, but roasted HOSB had a greater impact than raw HOSB, and the addition of rumen-bypass protein positively affected milk protein response.
Collapse
Affiliation(s)
- A M Bales
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
2
|
Bales AM, Lock AL. Effects of increasing dietary inclusion of high oleic acid soybeans on milk production of high-producing dairy cows. J Dairy Sci 2024:S0022-0302(24)00864-6. [PMID: 38825117 DOI: 10.3168/jds.2024-24781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Recent research has highlighted the importance of dietary fatty acid profile of fatty acid supplements on production responses of high-producing dairy cows. Conventional soybeans contain ∼15% oleic acid and ∼50% linoleic acid whereas high oleic acid soybeans (HOSB) contain ∼70% oleic acid and ∼7% linoleic acid. We determined the effect of increasing dietary inclusion of roasted and ground HOSB on production responses of high-producing dairy cows. Twenty-four multiparous Holstein cows (50.7 ± 4.45 kg/d of milk; 122 ± 57 DIM) were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were increasing doses of HOSB at 0, 8, 16, and 24% DM. The HOSB replaced conventional soybean meal and hulls to maintain similar diet nutrient composition (% DM) of 27.4 - 29.4% (NDF), 20.6% forage NDF, 27.5% starch, and 15.9 - 16.5% CP. Total fatty acid content of treatments was 1.65, 3.11, 4.52, and 5.97% DM, respectively. Pre-planned polynomial orthogonal contrasts included the linear, quadratic, and cubic effects of increasing HOSB. Increasing dietary inclusion of HOSB linearly decreased DMI and milk urea nitrogen and increased yields of milk, 3.5% fat corrected milk, energy corrected milk, and milk fat, and quadratically increased milk protein. The increased response to milk fat was due to an increase in preformed milk fatty acids. Due to the increase in milk component yields and decrease in DMI, there was an increase in feed efficiency. Increasing HOSB inclusion linearly decreased plasma BUN concentration and tended to decrease plasma insulin. Increasing HOSB had no effect on BW change or BCS change. In summary, increasing dietary inclusion of HOSB up to 24% DM increased production responses of high-producing dairy cows and did not affect body reserves.
Collapse
Affiliation(s)
- A M Bales
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
3
|
Bales AM, Dos Santos Neto JM, Lock AL. Effect of increasing dietary inclusion of whole cottonseed on nutrient digestibility and milk production of high-producing dairy cows. J Dairy Sci 2024:S0022-0302(24)00865-8. [PMID: 38825140 DOI: 10.3168/jds.2024-24787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 06/04/2024]
Abstract
We determined the effects increasing dietary inclusion of whole cottonseed (WCS) on nutrient digestibility and milk production responses of high-producing dairy cows. Twenty-four multiparous Holstein cows (mean ± SD; 52.7 ± 2.63 kg/d of milk; 104 ± 23 DIM) were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were increasing doses of WCS at 0, 8, 16, and 24% DM, with WCS replacing soybean meal and hulls to maintain similar diet nutrient composition (%DM) of NDF (32%), forage NDF (21%), starch (27%), and CP (17%). Total fatty acid (FA) content of each treatment was 1.70, 2.96, 4.20, and 5.40%DM, respectively. Three preplanned contrasts were used to test the linear, quadratic, and cubic effects of increasing dietary WCS. Increasing dietary WCS from 0 to 24% DM quadratically influenced intakes of DM and NDF, with the highest value being for the 8% WCS, and intakes of 16- and 18-carbon, and total FA, with maximum values obtained up to 24% WCS. Increasing dietary WCS affected digestibility of DM (cubic) and NDF (quadratic), with the lowest values being for the 8% WCS. Increasing WCS increased 16-carbon digestibility (quadratic) but decreased digestibility of 18-carbon and total FA (both quadratic), with highest and lowest values for the 24% WCS, respectively. Increasing dietary WCS quadratically increased absorbed 16- and 18-carbon, and total FA, with maximum values obtained for 24% WCS. Increasing dietary WCS quadratically increased yields of milk, milk fat, milk protein, milk lactose, 3.5% fat corrected milk, and energy corrected milk, and linearly increased body weight gain. The source of milk FA was affected by dietary WCS, with a quadratic decrease in the yield of de novo and mixed milk FA and a quadratic increase in preformed milk FA. Increasing dietary WCS linearly increased trans-10 C18:1 milk FA content. As dietary WCS increased, plasma insulin linearly decreased, and plasma gossypol levels linearly increased. Despite the decrease in total FA digestibility, increasing dietary WCS from 0 to 24% DM increased FA absorption. Increasing dietary inclusion of WCS up to 16% DM increased milk production responses and DM intake. Under the current dietary conditions, high-producing dairy cows benefited best from a diet containing 8-16% DM inclusion of WCS.
Collapse
Affiliation(s)
- A M Bales
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - J M Dos Santos Neto
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
4
|
Sears A, Hentz F, de Souza J, Wenner B, Ward RE, Batistel F. Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and microbial composition. J Dairy Sci 2024; 107:902-916. [PMID: 37776997 DOI: 10.3168/jds.2023-23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/10/2023] [Indexed: 10/02/2023]
Abstract
The concept that fat supplementation impairs total-tract fiber digestibility in ruminants has been widely accepted over the past decades. Nevertheless, the recent interest in the dietary fatty acid profile to dairy cows enlightened the possible beneficial effect of specific fatty acids (e.g., palmitic, stearic, and oleic acids) on total-tract fiber digestibility. Because palmitic, stearic, and oleic acids are the main fatty acids present in ruminal bacterial cells, we hypothesize that the dietary supply of these fatty acids will favor their incorporation into the bacterial cell membranes, which will support the growth and enrichment of fiber-digesting bacteria in the rumen. Our objective in this experiment was to investigate how dietary supply of palmitic, stearic, and oleic acid affect fiber digestion, bacterial membrane fatty acid profile, microbial growth, and composition of the rumen bacterial community. Diets were randomly assigned to 8 single-flow continuous culture fermenters arranged in a replicated 4 × 4 Latin square with four 11-d experimental periods. Treatments were (1) a control basal diet without supplemental fatty acids (CON); (2) the control diet plus palmitic acid (PA); (3) the control diet plus stearic acid (SA); and (4) the control diet plus oleic acid (OA). All fatty acid treatments were included in the diet at 1.5% of the diet (dry matter [DM] basis). The basal diet contained 50% orchardgrass hay and 50% concentrate (DM basis) and was supplied at a rate of 60 g of DM/d in 2 equal daily offers (0800 and 1600 h). Data were analyzed using a mixed model considering treatments as fixed effect and period and fermenter as random effects. Our results indicate that PA increased in vitro fiber digestibility by 6 percentage units compared with the CON, while SA had no effect and OA decreased fiber digestibility by 8 percentage units. Oleic acid decreased protein expression of the enzymes acetyl-CoA carboxylase compared with CON and PA, while fatty acid synthase was reduced by PA, SA, and OA. We observed that PA, but not SA or OA, altered the bacterial community composition by enhancing bacterial groups responsible for fiber digestion. Although the dietary fatty acids did not affect the total lipid content and the phospholipid fraction in the bacterial cell, PA increased the flow of anteiso C13:0 and anteiso C15:0 in the phospholipidic membrane compared to the other treatments. In addition, OA increased the flow of C18:1 cis-9 and decreased C18:2 cis-9,cis-12 in the bacterial phospholipidic membranes compared to the other treatments. Palmitic acid tended to increase bacterial growth compared to other treatments, whereas SA and OA did not affect bacterial growth compared with CON. To our knowledge, this is the first research providing evidence that palmitic acid supports ruminal fiber digestion through shifts in bacterial fatty acid metabolism that result in changes in growth and abundance of fiber-degrading bacteria in the microbial community.
Collapse
Affiliation(s)
- Austin Sears
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 53706
| | - Fernanda Hentz
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | | | - Benjamin Wenner
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Robert E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 43210
| | - Fernanda Batistel
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
5
|
Dos Santos Neto JM, Prom CM, Lock AL. Abomasal infusion of oleic acid and exogenous emulsifier alter fatty acid digestibility and production responses of lactating dairy cows. J Dairy Sci 2023; 106:7591-7601. [PMID: 37268574 DOI: 10.3168/jds.2022-23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023]
Abstract
We evaluated the effects of abomasal infusion of cis-9 C18:1 (oleic acid) and an exogenous emulsifier (polysorbate-C18:1) on fatty acid (FA) digestibility and production responses of dairy cows. Eight rumen-cannulated multiparous cows (96 ± 23 d in milk) were assigned to a 2 × 2 factorial arrangement of treatments in 4 × 4 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water carrier only (CON), 45 g/d oleic acid (OA), 20 g/d polysorbate-C18:1 (T80), or both 45 g/d OA and 20 g/d T80 (OA+T80). The OA treatments were dissolved in ethanol and the T80 treatments in water. To deliver the daily dose for each treatment, the infusate solution was divided into 4 equal infusions per day, occurring every 6 h. Cows were fed the same diet, which contained (% of dry matter [DM]) 30.3% neutral detergent fiber (NDF), 16.3% crude protein, 30% starch, and 3.2% FA (including 1.8% DM from a FA supplement containing 34.4% C16:0 and 47.7% C18:0). Infusion of T80 increased NDF digestibility compared with all other treatments (3.57 percentage units), whereas OA+T80 decreased NDF digestibility compared with CON (3.30 percentage units). Compared with CON, OA (4.90 percentage units) and T80 (3.40 percentage units) increased total FA digestibility, whereas OA+T80 had no effect on total FA digestibility. We did not observe differences between OA and T80 for total FA digestibility. Infusion of OA (3.90 percentage units) and T80 (2.80 percentage units) increased 16-carbon FA digestibility compared with CON. Digestibility of 16-carbon FA did not differ between OA and T80 or between CON and OA+T80. Compared with CON, OA increased (5.60 percentage units) and T80 tended to increase 18-carbon FA digestibility. Digestibility of 18-carbon FA did not differ between OA and T80 or between CON and OA+T80. Compared with CON, all treatments increased or tended to increase the absorption of total and 18-carbon FA. Infusion of OA and T80 increased the yields of milk fat (both increased 0.10 kg/d), 3.5% fat-corrected milk (1.90 and 2.50 kg/d), and energy-corrected milk (1.80 and 2.60 kg/d) compared with CON. We did not observe differences between OA and T80 or between CON and OA+T80 for yields of milk fat, 3.5% fat-corrected milk, or energy-corrected milk. Infusing OA tended to increase plasma insulin concentration compared with CON. Compared with the other treatments, OA+T80 decreased the yield of de novo milk FA (31.3 g/d). Compared with CON, OA tended to increase the yield of de novo milk FA. Compared with OA+T80, CON and OA tended to increase the yield of mixed milk FA, whereas T80 increased it (83 g/d). Compared with CON, all emulsifier treatments increased the yield of preformed milk FA (52.7 g/d). In conclusion, abomasally infusing either 45 g of OA or 20 g of T80 improved digestibility and similarly favored the production parameters of dairy cows. In contrast, providing both (45 g of OA + 20 g of T80) had no additional benefits and moderated the positive responses observed in the individual treatments with OA and T80.
Collapse
Affiliation(s)
- J M Dos Santos Neto
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - C M Prom
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
6
|
Dos Santos Neto JM, Prom CM, Lock AL. Comparison of rumen and abomasal infusions of an exogenous emulsifier on fatty acid digestibility of lactating dairy cows. J Dairy Sci 2023; 106:6789-6797. [PMID: 37500432 DOI: 10.3168/jds.2022-23143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/18/2023] [Indexed: 07/29/2023]
Abstract
We evaluated the effects of infusing an exogenous emulsifier (polysorbates-C18:1) either into the rumen or abomasum on fatty acid (FA) digestibility and production responses of lactating dairy cows. Nine ruminally cannulated multiparous Holstein cows (170 ± 13.6 d in milk) were assigned to a treatment sequence in replicated 3 × 3 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water carrier only into the rumen and abomasum (control, CON), 30 g/d polysorbate-C18:1 (T80) infused into the rumen (RUM), or 30 g/d T80 infused into the abomasum (ABO). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained [% diet dry matter (DM)] 32.2% neutral detergent fiber (NDF), 16.1% crude protein, 26.5% starch, and 3.41% FA (including 1.96% FA from a saturated FA supplement containing 28.0% C16:0 and 54.6% C18:0). Two orthogonal contrasts were evaluated: (1) the overall effect of T80 {CON vs. average of the T80 infusions [1/2 (ABO + RUM)]}, and (2) the effect of ABO versus RUM infusion. Compared with CON, infusing T80 increased the digestibilities of NDF (2.85 percentage units), total (4.35 percentage units), 16-carbon (3.25 percentage units), and 18-carbon FA (4.60 percentage units), and tended to increase DM digestibility and total and 18-carbon FA absorption. Compared with RUM, ABO decreased the intakes of total (28 g/d), 16-carbon (7 g/d), and 18-carbon FA (19 g/d); tended to increase the digestibility of total and 18-carbon FA; and had no effect on the absorption of total, 16-carbon, or 18-carbon FA. Production responses did not change among our treatments. In conclusion, infusing 30 g/d polysorbates-C18:1 increased NDF and total, 16-carbon, and 18-carbon FA digestibility. Compared with RUM, ABO tended to increase the digestibilities of total and 18-carbon FA; however, this may be related to the fact that ABO reduced the intakes of total, 16-carbon, and 18-carbon FA, not necessarily due to better emulsifying action per se. In summary, ABO and RUM both improved FA absorption.
Collapse
Affiliation(s)
- J M Dos Santos Neto
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - C M Prom
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
7
|
Afarani OR, Zali A, Dehghan-Banadaki M, Kahyani A, Esfahani MA, Ahmadi F. Altering palmitic acid and stearic acid ratios in the diet of early-lactation Holsteins under heat stress: Feed intake, digestibility, feeding behavior, milk yield and composition, and plasma metabolites. J Dairy Sci 2023; 106:6171-6184. [PMID: 37500434 DOI: 10.3168/jds.2022-22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/17/2023] [Indexed: 07/29/2023]
Abstract
The objective of this study was to evaluate the effects of varying the ratio of dietary palmitic (C16:0; PA) and stearic (C18:0; SA) acids on nutrient digestibility, production, and blood metabolites of early-lactation Holsteins under mild-to-moderate heat stress. Eight multiparous Holsteins (body weight = 589 ± 45 kg; days in milk = 51 ± 8 d; milk production = 38.5 ± 2.4 kg/d; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design (21-d periods inclusive of 7-d data collection). The PA (88.9%)- and SA (88.5%)-enriched fat supplements, either individually or in combination, were added to diets at 2% of dry matter (DM) to formulate the following treatments: (1) 100PA:0SA (100% PA + 0% SA), (2) 66PA:34SA (66% PA + 34% SA), (3) 34PA:66SA (34% PA + 66% SA), and (4) 0PA:100SA (0% PA + 100% SA). Diets offered, in the form of total mixed rations, were formulated to be isonitrogenous (crude protein = 17.2% of DM) and isocaloric (net energy for lactation = 1.69 Mcal/kg DM), with a forage-to-concentrate ratio of 40:60. Ambient temperature-humidity index averaged 72.9 throughout the experiment, suggesting that cows were under mild-to-moderate heat stress. No differences in DM intake across treatments were detected (mean 23.5 ± 0.64 kg/d). Increasing the dietary proportion of SA resulted in a linear decrease in total-tract digestibility of total fatty acids, but organic matter, DM, neutral detergent fiber, and crude protein digestibilities were not different across treatments. Decreasing dietary PA-to-SA had no effect on the time spent eating (340 min/d), rumination (460 min/d), and chewing (808 min/d). As dietary PA-to-SA decreased, milk fat concentration and yield decreased linearly, resulting in a linear decrease of 3.5% fat-corrected milk production and milk fat-to-protein ratio. Feed efficiency expressed as kg 3.5% fat-corrected milk/kg DM intake decreased linearly with decreasing the proportion of PA-to-SA in the diet. Treatments had no effect on milk protein and lactose content. A linear increase in de novo and preformed fatty acids was identified as the ratio of PA to SA decreased, while PA and SA concentrations of milk fat decreased and increased linearly, respectively. A linear reduction in blood nonesterified fatty acids and glucose was detected as the ratio of PA to SA decreased. Insulin concentration increased linearly from 10.3 in 100PA:0SA to 13.1 µIU/mL in 0PA:100SA, whereas blood β-hydroxybutyric acid was not different across treatments. In conclusion, the heat-stressed Holsteins in early-lactation phase fed diets richer in PA versus SA produced greater fat-corrected milk and were more efficient in converting feed to fat-corrected milk.
Collapse
Affiliation(s)
- O Ramezani Afarani
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Zali
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran.
| | - M Dehghan-Banadaki
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Kahyani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Asemi Esfahani
- Department of Animal Science, Khuzestan Ramin Agriculture and Natural Resources, Molasani, Ahvaz 63417-73637, Iran
| | - F Ahmadi
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea
| |
Collapse
|
8
|
Abou-Rjeileh U, Dos Santos Neto JM, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, Contreras GA. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J Dairy Sci 2023; 106:4306-4323. [PMID: 37105874 DOI: 10.3168/jds.2022-22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm2) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows.
Collapse
Affiliation(s)
- Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - José M Dos Santos Neto
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Nial O'Boyle
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - David Salcedo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
9
|
Piantoni P, VandeHaar MJ. Symposium review: The impact of absorbed nutrients on energy partitioning throughout lactation. J Dairy Sci 2023; 106:2167-2180. [PMID: 36567245 DOI: 10.3168/jds.2022-22500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
Most nutrition models and some nutritionists view ration formulation as accounting transactions to match nutrient supplies with nutrient requirements. However, diet and stage of lactation interact to alter the partitioning of nutrients toward milk and body reserves, which, in turn, alters requirements. Fermentation and digestion of diet components determine feeding behavior and the temporal pattern and profile of absorbed nutrients. The pattern and profile, in turn, alter hormonal signals, tissue responsiveness to hormones, and mammary metabolism to affect milk synthesis and energy partitioning differently depending on the physiological state of the cow. In the fresh period (first 2 to 3 wk postpartum), plasma insulin concentration and insulin sensitivity of tissues are low, so absorbed nutrients and body reserves are partitioned toward milk synthesis. As lactation progresses, insulin secretion and sensitivity increase, favoring deposition instead of mobilization of body reserves. High-starch diets increase ruminal propionate production, the flow of gluconeogenic precursors to the liver, and blood insulin concentrations. During early lactation, the glucose produced will preferentially be used by the mammary gland for milk production. As lactation progresses and milk yield decreases, glucose will increasingly stimulate repletion of body reserves. Diets with less starch and more digestible fiber increase ruminal production of acetate relative to propionate and, because acetate is less insulinogenic than propionate, these diets can minimize body weight gain. High dietary starch concentration and fermentability can also induce milk fat depression by increasing the production of biohydrogenation intermediates that inhibit milk fat synthesis and thus favor energy partitioning away from the mammary gland. Supplemental fatty acids also impact energy partitioning by affecting insulin concentration and insulin sensitivity of tissues. Depending on profile, physiological state, and interactions with other nutrients, supplemental fatty acids might increase milk yield at the expense of body reserves or partition energy to body reserves at the expense of milk yield. Supplemental protein or AA also can increase milk production but there is little evidence that dietary protein directly alters whole-body partitioning. Understanding the biology of these interactions can help nutritionists better formulate diets for cows at various stages of lactation.
Collapse
Affiliation(s)
- P Piantoni
- Cargill Animal Nutrition and Health Innovation Campus, Elk River, MN 55330.
| | - M J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
10
|
dos Santos Neto J, Silva J, Meschiatti M, de Souza J, Negrão J, Lock A, Santos F. Increasing levels of calcium salts of palm fatty acids affect production responses during the immediate postpartum and carryover periods in dairy cows. J Dairy Sci 2022; 105:9652-9665. [DOI: 10.3168/jds.2022-22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
11
|
Cant J, Reyes G, Seymour D. Review: Influence of postabsorptive metabolism on essential amino acid partitioning in lactating dairy cows. Animal 2022; 16 Suppl 3:100573. [DOI: 10.1016/j.animal.2022.100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
|
12
|
Prom CM, Dos Santos Neto JM, Lock AL. Abomasal infusion of different exogenous emulsifiers alters fatty acid digestibility and milk fat yield of lactating dairy cows. J Dairy Sci 2022; 105:3102-3112. [PMID: 35094850 DOI: 10.3168/jds.2021-21315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
We evaluated the effects of abomasal infusion of emulsifiers on fatty acid (FA) digestibility and milk production of lactating dairy cows. All emulsifiers examined were polysorbates, nonionic surfactants, consisting of a polyethoxylated sorbitan esterified with FA. The polysorbates tested in this study consisted of the same polyethoxylated sorbitan base but differed by the FA esterified to it. Eight rumen-cannulated multiparous cows (89 ± 13 d in milk) were assigned to a treatment sequence in 4 × 4 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water only (CON) or 30 g/d of different emulsifiers as follows: polysorbate-C16:0 (T40), polysorbate-C18:0+C16:0 (T60), and polysorbate-C18:1 (T80). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained (% diet dry matter) 32.1% neutral detergent fiber, 15.7% crude protein, 25.8% starch, and 3.32% FA (including 1.92% FA from a saturated FA supplement containing 34.2% C16:0 and 47.7% C18:0). The T80 treatment increased total FA digestibility compared with CON (5.40 percentage units) and T60 (3.90 percentage units) and tended to increase it compared with T40. Also, T40 tended to increase and T80 increased (4.80 percentage units) 16-carbon FA digestibility compared with CON. The T80 treatment increased 18-carbon FA digestibility compared with the other treatments. The T40 treatment tended to increase and T80 increased total FA absorption compared with CON (53 g/d) and T60 (52 g/d). Both T40 and T80 increased the absorption of 16-carbon FA compared with CON and T60. The T60 treatment did not differ from CON for any digestibility variable. Both T40 and T80 increased the yields of milk fat, 3.5% fat-corrected milk, and de novo, mixed, and preformed milk FA compared with CON. In conclusion, not all emulsifiers increased FA digestibility. Compared with CON, T80 increased the digestibility and absorption of total, 16-, and 18-carbon FA. The T40 treatment tended to increase and T80 increased total FA absorption and the yields of milk fat and 3.5% FCM compared with CON. Milk fat yield was increased by increases in de novo, mixed, and preformed milk FA. In our short-term infusion study, results suggest that the predominant FA present in the polysorbate affects its ability to improve FA digestibility. Overall, FA digestibility and absorption were improved the most when cows received the T80 treatment.
Collapse
Affiliation(s)
- Crystal M Prom
- Department of Animal Science, Michigan State University, East Lansing 48824
| | | | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|