1
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Chen X, Yang S, Guo Z, Li B, Wang Z, Jiang L. Human milk oligosaccharides and milk fat globule membrane reduce allergic reactions in mice through the modulation of gut microbiota and metabolic functions. Food Funct 2024; 15:11252-11265. [PMID: 39470601 DOI: 10.1039/d4fo03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Human milk oligosaccharides (HMOs) and the milk fat globule membrane (MFGM) represent novel treatments for cow's milk allergy (CMA). They exhibit the beneficial attribute of diminishing nutrient damage when compared to conventional enzymatic digestion of milk proteins. However, the effects and mechanisms underlying the synergistic interaction between HMOs and the MFGM in allergy treatment remain unclear. Consequently, this study was undertaken to assess the protective properties of HMOs and the MFGM against CMA and to elucidate their potential mechanisms in a mouse model of β-lactoglobulin (BLG)-induced allergy. The findings demonstrated that HMOs and the MFGM could significantly reduce the allergy score and splenic index, and they diminished the levels of inflammatory mediators (total immunoglobulin E (IgE), specific IgE, histamine, and mMCP-1), while concurrently bolstering tight junctions (ZO-1, claudin-1, and occludin), and reducing intestinal permeability. Notably, HMOs and the MFGM exhibited optimal synergy. In addition, HMOs and the MFGM synergistically mitigated the immune response to Th2 overactivity in allergy by the promotion of Th1 and Treg cell responses, thereby suppressing the levels of inflammatory cytokines IL-4 and IL-5. Analysis of the gut microbiota and its metabolic activities revealed that HMOs and the MFGM increased the abundance of Lactobacillus and Butyricicoccus, leading to higher production of butyrate. Furthermore, these beneficial bacteria and the resultant butyrate also contributed to the suppression of allergy-associated bacterial populations such as Desulfovibrio and Rikenellaceae. In summary, HMOs and the MFGM acted in synergy to modulate inflammatory responses and ameliorate barrier damage, contributing to the mitigation of CMA, a process potentially linked to gut microbiota dynamics and the resultant butyrate metabolism. This effect may be related to the gut microbiota and its metabolic production of butyrate.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengjun Yang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhengtao Guo
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zhongjiang Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Xu Y, Zhang F, Mu G, Zhu X. Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: A review. Compr Rev Food Sci Food Saf 2024; 23:e13257. [PMID: 38284611 DOI: 10.1111/1541-4337.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| | - Feifei Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, P. R. China
| | - Guangqing Mu
- Dalian Key Laboratory of Functional Probiotics, Dalian, Liaoning, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| |
Collapse
|
4
|
Meng Y, Zhu H, Han L, Xu Z, Zou Y, Ma K, Li T. Non-covalent binding of whey protein isolate after ultrasound pretreatment to epigallocatechin gallate: Effects on immune response and gut microbiota in BALB/c mice. Int J Biol Macromol 2023; 245:125253. [PMID: 37302626 DOI: 10.1016/j.ijbiomac.2023.125253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Cow's milk is one of the "big eight" most common allergenic foods, and β-lactoglobulin and α-Lactalbumin in whey protein are two major allergens of cow's milk protein. An effective strategy for reducing the allergenicity of whey protein is needed. In the present study, protein-EGCG complexes were obtained through non-covalent interactions between untreated or sonicated whey protein isolate (WPI) and epigallocatechin gallate (EGCG), and the allergenicity of complexes was assessed in vivo. The results showed that SWPI-EGCG complex possesses low allergenicity in BALB/c mice. As compared with untreated WPI, SWPI-EGCG complex had less effect on the body weight and organ indexes. Moreover, SWPI-EGCG complex could alleviate the WPI induced allergic reactions and intestinal damage of mice by decreasing the secretion of IgE, IgG, histamine, mMCP-1, modulating the balance of Th1/Th2 and Treg/Th17 response, and increasing the diversity of intestinal flora and the relative abundances of probiotic bacteria. These findings indicate that the interaction of sonicated WPI with EGCG could reduce the allergenicity of WPI, which could provide a new strategy for reducing food allergenicity.
Collapse
Affiliation(s)
- Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Huiyu Zhu
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Yu Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Kun Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China.
| |
Collapse
|
5
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
6
|
Zou H, Wang H, Zhang Z, Lin H, Li Z. Immune regulation by fermented milk products: the role of the proteolytic system of lactic acid bacteria in the release of immunomodulatory peptides. Crit Rev Food Sci Nutr 2023; 64:10498-10516. [PMID: 37341703 DOI: 10.1080/10408398.2023.2225200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Food allergies have emerged as a pressing health concern in recent years, largely due to food resources and environmental changes. Dairy products fermented by lactic acid bacteria play an essential role in mitigating allergic diseases. Lactic acid bacteria have been found to possess a distinctive proteolytic system comprising a cell envelope protease (CEP), transporter system, and intracellular peptidase. Studying the impact of different Lactobacillus proteolytic systems on the destruction of milk allergen epitopes and their potential to alleviate allergy symptoms by releasing peptides containing immune regulatory properties is a valuable and auspicious research approach. This paper summarizes the proteolytic systems of different species of lactic acid bacteria, especially the correlation between CEPs and the epitopes from milk allergens. Furthermore, the mechanism of immunomodulatory peptide release was also concluded. Finally, further research on the proteolytic system of lactic acid bacteria will provide additional clinical evidence for the possible treatment and/or prevention of allergic diseases with specific fermented milk/dairy products in the future.
Collapse
Affiliation(s)
- Hao Zou
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| |
Collapse
|
7
|
Baars T, van Esch B, van Ooijen L, Zhang Z, Dekker P, Boeren S, Diks M, Garssen J, Hettinga K, Kort R. Raw milk kefir: microbiota, bioactive peptides, and immune modulation. Food Funct 2023; 14:1648-1661. [PMID: 36691758 DOI: 10.1039/d2fo03248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study aims to characterize the microbiota and peptidomic composition of raw milk kefir, and to address the potential anti-allergic effects of raw milk kefir using validated research models for food allergy. Raw milk kefir was produced after incubation with a defined freeze-dried starter culture. Kefir was sampled during fermentation at seven time intervals. For comparison, kefir was also prepared from heat-treated milk. Peptide compositions were determined for the raw and heated milk, and kefir end products made from these milks. In a murine food allergy model, the two kefir end products were investigated for their allergy modulating effects. In both kefirs, we identified amplicon sequence variants identical to those in the starter culture, matching the bacteria Lactococcus lactis, Streptococcus thermophilus, Leuconostoc and the yeast Debaryomyces. In raw milk kefir, additional sequence variants of Lactococcus lactis and the yeasts Pichia and Galactomyces could be identified, which were absent in heated milk kefir. Analysis of peptide compositions in both kefirs indicated that the number and intensity of peptides drastically increased after fermentation. Heating of the milk negatively affected the diversity of the peptide composition in kefir. Only raw milk kefir suppressed the acute allergic skin response to the food allergen ovalbumin in sensitised mice. These effects coincided with differences in the T-cell compartment, with lower percentages of activated Th1 cells and IFNg production after treatment with kefir made from heated milk. The results of this study indicate specific properties of raw milk kefir that may contribute to its additional health benefits.
Collapse
Affiliation(s)
- Ton Baars
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Betty van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Luuk van Ooijen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands. .,Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Zuomin Zhang
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Mara Diks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Kasper Hettinga
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|