1
|
Lanctôt S, Blouin R, Thibault C, Lacasse P. Effect of milk stasis on mammary gland involution and the microRNA profile. J Dairy Sci 2024; 107:7435-7445. [PMID: 38788842 DOI: 10.3168/jds.2023-24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 05/26/2024]
Abstract
The presence of an autocrine factor in milk that can trigger mammary gland involution was proposed more than 50 yr ago. To provide evidence for the existence of one or more autocrine factors, 10 multiparous cows in late lactation were quarter-milked for 7 d. Following this baseline period, the right front quarter of each cow was left unmilked, and the other quarters were milked for 7 d. Before the last milking of that period, milk (mammary secretions) was collected aseptically from both front quarters. After that milking, 250 mL of the collected samples were infused in the cows' respective rear quarters. No quarters were milked for the following 7 d (milk stasis period), and quarter milking was then resumed in all quarters for the last 7 d of the experiment (remilking period). Quarter milk samples were collected during the baseline period, before the milk stasis period, and during the remilking period. These samples were used for measuring milk components and the concentration of involution markers (SCC, BSA, and lactoferrin). Samples of mammary secretions were collected manually from the quarters during the milk stasis period for involution marker determination. We extracted RNA from samples collected from front quarters before the last milking before the milk stasis period for microRNA (miRNA) determination. As anticipated, the longer milk stasis period implemented for the right front quarter resulted in a more advanced involution than in the left front quarter, based on the concentration of involution markers in the mammary secretions, lower milk production recovery, and changes in milk composition during the remilking period. All 3 involution marker concentrations in the mammary secretions increased in both rear quarters, but were greater in the right quarter secretions than in the left quarter secretions. Resuming milking reinitiated milk production in all quarters, but milk production recovery in the right rear quarters was less robust than that in the left rear quarters (54.3 ± 1.4% vs. 61.6 ± 1.4%, respectively). Milk from the quarters infused with mammary secretions (right rear) had a lower lactose content, but a higher milk protein content and higher SCC than the quarters infused with milk. We detected a total of 359 miRNAs, 76 of which were differentially expressed in milk and mammary secretions. Expression of bta-miR-221 and bta-miR-223 was upregulated in mammary secretions 34- and 40-fold, respectively. The results of the present experiment support the contention that milk stasis leads to the accumulation of one or more factors that trigger involution. The results also indicate that milk stasis leads to changes in the miRNA profile of the milk, but whether such changes are a cause or a consequence of the involution process remains to be established.
Collapse
Affiliation(s)
- S Lanctôt
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - R Blouin
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - C Thibault
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - P Lacasse
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
2
|
Chen J, Huang G, Wei B, Yue S, Chang X, Han S, Dong X, Zhao Y, Zhang X, Zhao Z, Dong G, Sun Y. Effects of rumen-protected 5-hydroxytryptophan on circulating serotonin concentration, behaviour, and mammary gland involution in goats. Animal 2024; 18:101254. [PMID: 39106553 DOI: 10.1016/j.animal.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
The risk of acquiring new intramammary infections is high at the end of lactation, especially for the high milk-producing dairy animals. Resistance to bacterial infection increases following the completion of mammary gland involution after milking cessation. The serotonin precursor 5-hydroxytryptophan (5-HTP) could accelerate involution by increasing circulating serotonin levels, but ruminal microbes may degrade 5-HTP if orally administered to adult ruminants. It is unclear whether rumen-protected 5-HTP could effectively mediate circulating serotonin (5-hydroxytryptamine, 5-HT) and therefore accelerate mammary gland involution in ruminants. Goats were used as a model in the current study to investigate the effects of rumen-protected 5-HTP on behaviour, 5-HT metabolism, and mammary involution in ruminants. In the first experiment, 16 female Dazu black goats were assigned to one of four groups in a randomised block design. The treatments included a basal diet plus 0, 4, 20, or 100 mg/kg BW of rumen-protected 5-HTP. Serum was collected at 0, 3, 6, 12, and 24 h after offering the rumen-protected 5-HTP in the morning feed, and the behaviours were monitored. In the second experiment, 12 female Dazu black goats (Somatic cell count < 250 000) were randomly assigned to the control (basal diet) or rumen-protected 5-HTP group (basal diet plus 20 mg/kg BW). Milk or mammary secretions were manually collected aseptically on d -1, 1, 2, 3, 4, and 5 around weaning. The results depicted that rumen-protected 5-HTP supplementation elevated circulating 5-HTP and 5-hydroxyindole acetic acid concentrations, while 20 mg/kg BW of rumen-protected 5-HTP supplementation lowered the goats' locomotive activity. A high concentration of rumen-protected 5-HTP (100 mg/kg BW) increased serum alkaline phosphatase and gamma-glutamyl transpeptidase concentrations. Moreover, oral supplementation with 20 mg/kg BW of rumen-protected 5-HTP accelerated mammary gland involution and reduced feed intake in goats after weaning. These results demonstrate that oral supplementation with rumen-protected 5-HTP influences 5-HT metabolism and accelerates mammary gland involution after milking cessation in ruminants.
Collapse
Affiliation(s)
- J Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - B Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - S Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - X Chang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - S Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - X Dong
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Y Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - X Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Z Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Y Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China.
| |
Collapse
|
3
|
Field SL, Galvan EA, Hernandez LL, Laporta J. Exploring the contribution of mammary-derived serotonin on liver and pancreas metabolism during lactation. PLoS One 2024; 19:e0304910. [PMID: 38837989 DOI: 10.1371/journal.pone.0304910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During lactation, the murine mammary gland is responsible for a significant increase in circulating serotonin. However, the role of mammary-derived serotonin in energy homeostasis during lactation is unclear. To investigate this, we utilized C57/BL6J mice with a lactation and mammary-specific deletion of the gene coding for the rate-limiting enzyme in serotonin synthesis (TPH1, Wap-Cre x TPH1FL/FL) to understand the metabolic contributions of mammary-derived serotonin during lactation. Circulating serotonin was reduced by approximately 50% throughout lactation in Wap-Cre x TPH1FL/FL mice compared to wild-type mice (TPH1FL/FL), with mammary gland and liver serotonin content reduced on L21. The Wap-Cre x TPH1FL/FL mice had less serotonin and insulin immunostaining in the pancreatic islets on L21, resulting in reduced circulating insulin but no changes in glucose. The mammary glands of Wap-Cre x TPH1FL/FL mice had larger mammary alveolar areas, with fewer and smaller intra-lobular adipocytes, and increased expression of milk protein genes (e.g., WAP, CSN2, LALBA) compared to TPH1FL/FL mice. No changes in feed intake, body composition, or estimated milk yield were observed between groups. Taken together, mammary-derived serotonin appears to contribute to the pancreas-mammary cross-talk during lactation with potential implications in the regulation of insulin homeostasis.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Everardo Anta Galvan
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
4
|
Pszczolkowski VL, Connelly MK, Hoppman A, Benn AD, Laporta J, Hernandez LL, Arriola Apelo SI. Intravenous infusion of 5-hydroxytryptophan to mid-lactation Holstein cows transiently affects milk production and circulating amino acid concentrations. J Dairy Sci 2024; 107:3306-3318. [PMID: 38101740 DOI: 10.3168/jds.2023-23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - August Hoppman
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Amara D Benn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
5
|
Sun J, Suzuki N, Nii T, Isobe N. Effect of different inflammation states on the antimicrobial components in milk of goat udders after milking cessation. Anim Sci J 2024; 95:e13926. [PMID: 38348633 DOI: 10.1111/asj.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
The aim of this study was to examine the effects of milking cessation under different inflammatory conditions on the changes in antimicrobial components in milk and the process of mammary gland involution. Twenty udder halves were divided into two groups: those with (LPS) and without (control) lipopolysaccharide infusion, followed by cessation of milking for 8 weeks. Milk samples were collected weekly. Udder tissue was collected 4 weeks after milking cessation to measure the area of the lobule and connective tissue. After milking cessation, the somatic cell count (SCC) in the control group increased, whereas that in the LPS group did not. Lactoferrin (LF) and cathelicidin (Cath)-2 concentrations increased in both groups, whereas only LF was significantly lower in the LPS group than in the control group at week 4. The Cath-7 and S100A8 concentrations were significantly lower in the LPS group than in the control group. The lobule area was higher, and the connective tissue area was lower in the LPS group than in the control group. These results indicate that inflammation at milking cessation decreased the concentrations of some antimicrobial components and interfered with mammary gland involution. Therefore, animals with mastitis should recover prior to the onset of the dry period.
Collapse
Affiliation(s)
- Jinkun Sun
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Lu J, Huang G, Chang X, Wei B, Sun Y, Yang Z, Zhao Y, Zhao Z, Dong G, Chen J. Effects of Serotonin on Cell Viability, Permeability of Bovine Mammary Gland Epithelial Cells and Their Transcriptome Analysis. Int J Mol Sci 2023; 24:11388. [PMID: 37511146 PMCID: PMC10379418 DOI: 10.3390/ijms241411388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Serotonin (5-HT) has been reported to play an important role in mammary gland involution that is defined as the process through which the gland returns to a nonlactating state. However, the overall picture of the regulatory mechanisms of 5-HT and the effects of serotonylation on mammary gland involution still need to be further investigated. The current study aimed to investigate the effects of 5-HT on global gene expression profiles of bovine mammary epithelial cells (MAC-T) and to preliminarily examine whether the serotonylation involved in the mammary gland involution by using Monodansylcadaverine (MDC), a competitive inhibitor of transglutaminase 2. Results showed that a high concentration of 5-HT decreased viability and transepithelial electrical resistance (TEER) in MAC-T cells. Transcriptome analysis indicated that 2477 genes were differentially expressed in MAC-T cells treated with 200 μg/mL of 5-HT compared with the control group, and the Notch, p53, and PI3K-Akt signaling pathways were enriched. MDC influenced 5-HT-induced MAC-T cell death, fatty acid synthesis, and the formation and disruption of tight junctions. Overall, a high concentration of 5-HT is able to accelerate mammary gland involution, which may be regulated through the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved in bovine mammary gland involution.
Collapse
Affiliation(s)
- Jie Lu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Guohao Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Xuan Chang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Bingni Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Zhengguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|