1
|
D’Amico V, Cavaliere M, Ivone M, Lacassia C, Celano G, Vacca M, la Forgia FM, Fontana S, De Angelis M, Denora N, Lopedota AA. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics 2025; 17:185. [PMID: 40006552 PMCID: PMC11859715 DOI: 10.3390/pharmaceutics17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Probiotics provide significant health benefits, but their viability is often compromised during production, storage, and passage through the gastrointestinal tract. These challenges hinder their effective incorporation into functional applications, particularly in dairy functional foods, in which factors such as acidity, oxygen exposure, and storage conditions negatively impact cell survival. The focus was on functional dairy foods, particularly on pasta filata cheeses. Indeed, the use of probiotics in pasta filata cheeses presents significant challenges due to the specific manufacturing processes, which encompass the application of high temperatures and other harsh conditions. These factors can adversely affect the viability and availability of probiotic microorganisms. However, microencapsulation has emerged as a promising solution, offering a protective barrier that enhances probiotic stability, improves survival rates, and facilitates targeted release in the gastrointestinal environment. This review examines the pivotal role of microencapsulation in stabilising probiotics for functional applications, emphasising its relevance in high-value food systems. Functional applications, including foods designed to offer essential nutritional benefits and promote host health, play a crucial role in disease prevention and immune system support, reducing the risk of infections and other physiological impairments. Key microencapsulation technologies are analysed, focusing on their benefits, limitations, and challenges related to scalability and industrial implementation. Additionally, this review discusses strategies to optimise formulations, ensure the sensory quality of final products, and explore future opportunities for expanding innovative applications that align with growing consumer demand for health-promoting solutions.
Collapse
Affiliation(s)
- Vita D’Amico
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Mariasimona Cavaliere
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Marianna Ivone
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Chiara Lacassia
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Flavia Maria la Forgia
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 47, Piano S. Giovanni Street, 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Sergio Fontana
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 47, Piano S. Giovanni Street, 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Angela Assunta Lopedota
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| |
Collapse
|
2
|
AL-Fawares O, Alshweiat A, Abuawad A. Development of Chitosan-Polyacrylic Acid Complex Systems for Enhanced Oral Delivery of Lactobacillus Gasseri and Bifidobacterium Bifidum Probiotics. Drug Des Devel Ther 2025; 19:585-598. [PMID: 39886298 PMCID: PMC11780176 DOI: 10.2147/dddt.s478925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/05/2025] [Indexed: 02/01/2025] Open
Abstract
Introduction The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery. Methods In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA). The CS-PAA systems were analysed on basis of morphology, size, and zeta potential. The loaded CS-PAA systems were evaluated for their morphology, particle size, zetapotential, vaiability in both simulated gastroic and intestinal fluids, and stability at 4°C storage temparature. Moreover, the antibiofilm activity of the probiotics-loaded systems were evaluated againt Campylobacter jejuni, Pseudomonas aeruginosa and Escherichia coli. Results Probiotic strains were successfully incorporated into the porous structures of the CS-PAA systems, either individually or in combination. The Loaded L, B, and L+B showed higher particle size than the unloaded particles and excellent viability in simulated gastric and intestinal fluids, where the free probiotic species were undetected. Additionally the loaded probiotic exhibited an anti-biofilm effect at 0.5 mg/mL concentration level. Conclusion The CS-PAA complexes demonstrate a promising mechanism for the effective delivery of incorporated probiotics. The probiotics exhibited high viability and maintain stability under physiological conditions, and showed a remarkable anti-biofilm activity. These characteristics suggest that CS-PAA could serve as an alternative system for probiotics, enhancing gut microbiota health and offering a robust protection against microbial pathogens.
Collapse
Affiliation(s)
- O’la AL-Fawares
- Department of Applied Biological Sciences, Faculty of Science, Al-Balqa Applied University, Al-salt, 19117, Jordan
| | - Areen Alshweiat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Alaa Abuawad
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, 11937, Jordan
| |
Collapse
|
3
|
Mumtaz A, Ali A, Batool R, Mughal AF, Ahmad N, Batool Z, Abbas S, Khalid N, Ahmed I. Probing the microbial diversity and probiotic candidates from Pakistani foods: isolation, characterization, and functional profiling. 3 Biotech 2024; 14:60. [PMID: 38318162 PMCID: PMC10838259 DOI: 10.1007/s13205-023-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
UNLABELLED Probiotics represent beneficial living microorganisms that confer physiological, nutritional, and functional advantages to human health, holding significant potential for development of functional foods. This research aimed to isolate, identify, and characterize potential probiotic bacterial strains sourced from fermented and non-fermented foods from Pakistan. A total of 341 bacterial strains were isolated from diverse food samples (81) collected from various regions of Pakistan. Strains were identified using 16S rRNA gene sequencing and phylogenetic analysis. The identified strains belonged to genera Bacillus, Staphylococcus, Microbacterium, Shigella, Micrococcus, Enterococcus, Sporosarcina, Paenibacillus, Limosilactobacillus, Kosakonia, Dietzia, Leclercia, Lacticaseibacillus, Levilactobacillus, Kluyvera, Providencia, Enterobacter, Neisseria, Streptococcus, Acinetobacter, Corynebacterium, Pantoea, Mammaliicoccus, Pseudomonas, Burkholderia, and Alkalihalobacillus. Selected strains were chosen for probiotic assessment, employing existing literature as a guideline. Among these selections, six strains exhibited hemolytic activity, and seven strains displayed resistance to multiple antibiotics, prompting their exclusion from subsequent evaluations. The remaining strains demonstrated auto-aggregation capacities spanning 3.39-79.7%, and displayed coaggregation capabilities with reported food-borne pathogens. Furthermore, nine strains exhibited antimicrobial properties against food-borne pathogens. The assessment encompassed diverse characteristics such as cell surface hydrophobicity, survival rates under varying conditions, cholesterol reduction ability, casein digestion capability, and antioxidant activity. Phylogenomic analysis, digital-DNA DNA hybridization (digi-DDH), and average nucleotide identity (ANI) calculations unveiled novel species potentially belonging to the genera Sporosarcina and Dietzia. Based on these findings, we advocate for the consideration of Staphylococcus cohnii subsp. cohnii NCCP-2414, Lacticaseibacillus rhamnosus NCCP-2569 and Levilactobacillus brevis NCCP-2574 as prime probiotic candidates with the potential for integration into formulation of functional foods. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03903-6.
Collapse
Affiliation(s)
- Amer Mumtaz
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Ahmad Ali
- National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Rehana Batool
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Amina F. Mughal
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Nazir Ahmad
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Zainab Batool
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000 Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911 United Arab Emirates
| | - Iftikhar Ahmed
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| |
Collapse
|
4
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
5
|
Ścibisz I, Ziarno M. Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies. Foods 2023; 12:3858. [PMID: 37893752 PMCID: PMC10606227 DOI: 10.3390/foods12203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The addition of yogurt to fruit smoothies enhances their nutritional value by introducing components not naturally found in fruit products. However, the addition of fermented products can affect the stability of fruit bioactive components in fruits, such as anthocyanins. This study aimed to evaluate the effect of varying yogurt additions (0, 10, 20, and 30%) on the stability of anthocyanins during a 4-week refrigerated storage period. The smoothies were obtained from purees of strawberry, raspberry, and blueberry, combined with apple juice and apple puree. In addition, to elucidate the causes of the observed changes in the smoothies, model studies were conducted using purified anthocyanin extracts obtained from the analyzed fruits. We assessed the effects of pH, hydrogen peroxide concentration, and the addition of cell-free extracts from Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus on changes in anthocyanin content during storage. We found that adding yogurt led to a decrease in anthocyanin stability during the 4-week cold storage period. Specifically, a 30% yogurt addition decreased anthocyanin stability in all tested beverages, while a 20% yogurt addition impacted the strawberry and raspberry smoothies. The degree to which yogurt affected anthocyanin stability was dependent on the source of the raw material. The most notable impact was observed in strawberry smoothies and the least in blueberry smoothies. The variability could be attributed to differences in anthocyanin profiles among the fruits, the chemical composition of the beverages, and the observed difference in the survival rates of lactic acid bacteria. Model studies showed that during the storage of anthocyanin extracts, the addition of hydrogen peroxide and cell-free extract had a significant effect, whereas pH within the examined range (3.0-4.5) did not affect anthocyanin stability.
Collapse
Affiliation(s)
- Iwona Ścibisz
- Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS˗SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland
| | - Małgorzata Ziarno
- Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS˗SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland;
| |
Collapse
|
6
|
Wang H, Huang X, Tan H, Chen X, Chen C, Nie S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chem 2022; 393:133407. [PMID: 35696956 DOI: 10.1016/j.foodchem.2022.133407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are considered as probiotics due to their role in promoting intestinal health, including regulating intestinal flora, controlling glycolipid metabolism, anti-colitis effects. Dietary fiber is considered as prebiotic favoring gut health. It also can be used as carbon source to support the growth and colonization of probiotics like bifidobacteria. However, because of genetic diversity, different bifidobacterial species differ in their ability to utilize dietary fiber. Meanwhile, dietary fiber with different structural properties has different effects on the bifidobacteria proliferation. The interaction between dietary fiber and bifidobacteria will consequently lead to a synergistic or antagonistic function in promoting intestinal health, therefore affecting the application of combined use of dietary fiber and bifidobacteria. In this case, we summarize the biological function of bifidobacteria, and their interaction with different dietary fiber in promoting gut health, and finally provide several strategies about their combined use.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaomin Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
7
|
Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022; 10:1020020. [PMID: 36185433 PMCID: PMC9520470 DOI: 10.3389/fbioe.2022.1020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Guo
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Weiliang Hou
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| |
Collapse
|
9
|
Kowalska E, Ziarno M, Ekielski A, Żelaziński T. Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules 2022; 27:3321. [PMID: 35630798 PMCID: PMC9142984 DOI: 10.3390/molecules27103321] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Probiotics and probiotic therapy have been rapidly developing in recent years due to an increasing number of people suffering from digestive system disorders and diseases related to intestinal dysbiosis. Owing to their activity in the intestines, including the production of short-chain fatty acids, probiotic strains of lactic acid bacteria can have a significant therapeutic effect. The activity of probiotic strains is likely reduced by their loss of viability during gastrointestinal transit. To overcome this drawback, researchers have proposed the process of microencapsulation, which increases the resistance of bacterial cells to external conditions. Various types of coatings have been used for microencapsulation, but the most popular ones are carbohydrate and protein microcapsules. Microencapsulating probiotics with vegetable proteins is an innovative approach that can increase the health value of the final product. This review describes the different types of envelope materials that have been used so far for encapsulating bacterial biomass and improving the survival of bacterial cells. The use of a microenvelope has initiated the controlled release of bacterial cells and an increase in their activity in the large intestine, which is the target site of probiotic strains.
Collapse
Affiliation(s)
- Ewa Kowalska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Małgorzata Ziarno
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| | - Tomasz Żelaziński
- Department of Production Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.); (T.Ż.)
| |
Collapse
|
10
|
Parafati L, Palmeri R, Pitino I, Restuccia C. Killer yeasts isolated from olive brines: Technological and probiotic aptitudes. Food Microbiol 2022; 103:103950. [DOI: 10.1016/j.fm.2021.103950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
|
11
|
|
12
|
Abbas MS, Saeed F, Afzaal M, Jianfeng L, Hussain M, Ikram A, Jabeen A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Lu Jianfeng
- School of Biotechnology and Food Engineering Hefei University of Technology China
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ayesha Jabeen
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
13
|
Arslaner A, Salik MA. Probiotic ice cream with
Malus floribunda
fruit sauce: Quality properties, mineral and volatile composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering Bayburt University 69000 Bayburt Turkey
| | - Mehmet Ali Salik
- Department of Food Engineering, Faculty of Agriculture Atatürk University 25240 Erzurum Turkey
| |
Collapse
|
14
|
Arepally D, Reddy RS, Goswami TK, Coorey R. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
16
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
17
|
Yoghurt Production Potential of Lactic Acid Bacteria Isolated from Leguminous Seeds and Effects of Encapsulated Lactic Acid Bacteria on Bacterial Viability and Physicochemical and Sensory Properties of Yoghurt. J CHEM-NY 2022. [DOI: 10.1155/2022/2683126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aims to determine the yoghurt production potential of lactic acid bacteria isolated from legumes seeds (lentils, beans, cowpea, and broad beans) and examine the effects of alginate capsules of selected starter cultures with high yoghurt production potential on the physicochemical properties, sensory properties of yoghurt, and bacterial viability during storage time at 4°C. The exopolysaccharide (EPS), proteolytic activity, and acidification properties of eight different isolates were determined, and sixteen different yoghurt combinations prepared. The samples showed similar physicochemical (pH, titratable acidity, dry matter, and whey separation), bacterial count, and sensory results in comparison with the commercial yoghurt used as a control sample. The acidity and pH of the yoghurt samples were significantly affected by the storage time. Total solids of yoghurt samples generally tend to decrease and syneresis of yoghurt samples also differed for each starter culture combination during the storage time. The total count of lactic acid bacteria during the storage time was higher than 107 CFU/g. The sensory analysis results of bacterial combinations are significantly different (
). Results indicated that isolated starter cultures have potential as commercial starters to improve the quality of yoghurt. Selected starter cultures with yoghurt production potential were encapsulated. Lactic acid bacteria with encapsulation efficiency of 86,3 ± 0,2 and 82,26 ± 0,79 were selected for yoghurt production. The physicochemical properties of the yoghurt with free and encapsulated starter culture were significantly different during the storage time. The reduction (∼0,5 log cfu/g) in the numbers of free and encapsulated starter cultures is over during the storage time (
). The acceptability of yoghurt containing encapsulated bacteria was lower than the yoghurt containing free bacteria by the panelists. Consequently, it was determined that alginate capsules increased bacterial viability, but the sensory properties of yoghurt were affected adversely. The LAB isolated form legumes can be introduced to the national microbial collection.
Collapse
|
18
|
Shori AB. Application of Bifidobacterium spp in beverages and dairy food products: an overview of survival during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Huang RM, Feng K, Li SF, Zong MH, Wu H, Han SY. Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Microencapsulation of Bioactive Ingredients for Their Delivery into Fermented Milk Products: A Review. Molecules 2021; 26:molecules26154601. [PMID: 34361753 PMCID: PMC8347884 DOI: 10.3390/molecules26154601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity and consumption of fermented milk products are growing. On the other hand, consumers are interested in health-promoting and functional foods. Fermented milk products are an excellent matrix for the incorporation of bioactive ingredients, making them functional foods. To overcome the instability or low solubility of many bioactive ingredients under various environmental conditions, the encapsulation approach was developed. This review analyzes the fortification of three fermented milk products, i.e., yogurt, cheese, and kefir with bioactive ingredients. The encapsulation methods and techniques alongside the encapsulant materials for carotenoids, phenolic compounds, omega-3, probiotics, and other micronutrients are discussed. The effect of encapsulation on the properties of bioactive ingredients themselves and on textural and sensory properties of fermented milk products is also presented.
Collapse
|
21
|
Zhang Z, Gu M, You X, Sela DA, Xiao H, McClements DJ. Encapsulation of bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106634] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Isolation and identification of fungi found in contaminated fermented milk and antifungal activity of vanillin. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buffalo-milk-based dairy products provide various health benefits to humans since buffalo milk serves as a rich source of protein, fat, lactose, calcium, iron, phosphorus, vitamin A and natural antioxidants. Dairy products such as Meekiri, Dadih, Dadi and Lassie, which are derived from Artisanal fermentation of buffalo milk, have been consumed for many years. Probiotic potentials of indigenous microflora in fermented buffalo milk have been well documented. Incorporation of certain probiotics into the buffalo-milk-based dairy products conferred vital health benefits to the consumers, although is not a common practice. However, several challenges are associated with incorporating probiotics into buffalo-milk-based dairy products. The viability of probiotic bacteria can be reduced due to processing and environmental stress during storage. Further, incompatibility of probiotics with traditional starter cultures and high acidity of fermented dairy products may lead to poor viability of probiotics. The weak acidifying performance of probiotics may affect the organoleptic quality of fermented dairy products. Besides these challenges, several innovative technologies such as the use of microencapsulated probiotics, ultrasonication, the inclusion of prebiotics, use of appropriate packaging and optimal storage conditions have been reported, promising stability and viability of probiotics in buffalo-milk-based fermented dairy products.
Collapse
|
25
|
Bevilacqua A, Campaniello D, Speranza B, Racioppo A, Altieri C, Sinigaglia M, Corbo MR. Microencapsulation of Saccharomyces cerevisiae into Alginate Beads: A Focus on Functional Properties of Released Cells. Foods 2020; 9:E1051. [PMID: 32759736 PMCID: PMC7466292 DOI: 10.3390/foods9081051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Five yeast strains (four wild Saccharomyces cerevisiae strains and a collection strain-S. cerevisiae var. boulardii) were encapsulated in alginate beads. Encapsulation yield was at least 60% (100% for some strains) and yeasts survived in beads for 30 days at 4 °C, although the viability was strongly affected during storage at 25 °C (3 log reduction after 7 days). The kinetic of cell release was studied under static and dynamic conditions, but the results suggest that, after 48 h, beads contained a high number of yeasts. Thus, their use is advisable as re-usable carriers of starter cultures or as a vehicle of probiotics into the gut. Finally, some functional properties (biofilm formation, hydrophobicity, auto-aggregation, survival during the transit into the gut) were evaluated on yeasts released by beads to assess if microencapsulation could negatively affect these traits. The results showed that yeasts' entrapment in beads did not affect probiotic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (A.B.); (D.C.); (B.S.); (A.R.); (C.A.); (M.S.)
| |
Collapse
|
26
|
Derriche I, Nogacka AM, Salazar N, Ruas-Madiedo P, Gueimonde M, Bensalah F, de Los Reyes-Gavilán CG. Effect of inulin-type fructans and galactooligosaccharides on cultures of Lactobacillus strains isolated in Algeria from camel's milk and human colostrum. FOOD SCI TECHNOL INT 2020; 27:223-233. [PMID: 32727210 DOI: 10.1177/1082013220944661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacteria from the genus Lactobacillus are responsible for spontaneous food fermentations. Some species, such as Lactobacillus casei and Lactobacillus brevis, have the "Qualified Presumption of Safety" status recognized by the European Food Safety Authority. Several of their strains are used as probiotics in foods and sometimes are included in synbiotic combinations together with prebiotics. New microbial strains isolated from different sources represent an opportunity to use them for the production of traditional food products. The capacity of three selected strains (one isolated from Camel's milk and identified by partial 16 S rRNA gene sequencing as L. brevis, and two isolated from human colostrum and identified as L. paracasei/L. casei and L. brevis, respectively) was assessed in vitro for the ability to survive in gastrointestinal conditions (low pH and high bile salts concentrations). We also tested the capacity of growth and the production of organic acids and volatile compounds by high-performance liquid chromatography and gas chromatography, respectively, when these bacteria were incubated anaerobically in the presence of inulin, fructooligosaccharides, or galactooligosaccharides as the main carbon sources. The strains were able to survive in simulated gastrointestinal conditions and to grow in inulin, fructooligosaccharides, and galactooligosaccharides. However, they displayed different profiles of organic acids and volatile compounds, mainly depending on the microbial species and the prebiotic used. The influence that the combined use of strains and different prebiotics could exert on the organic acids and volatiles formed in food and in the gut should be assessed for each synbiotic combination and food product.
Collapse
Affiliation(s)
- Ibtissem Derriche
- Department of Biology, Laboratory of Microbial Genetics, Ahmed Ben Bella ORAN 1 University, Oran, Algeria
| | - Alicja M Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish Research Council (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Asturias, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish Research Council (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish Research Council (IPLA-CSIC), Asturias, Spain
| | - M Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish Research Council (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Asturias, Spain
| | - Farid Bensalah
- Department of Biology, Laboratory of Microbial Genetics, Ahmed Ben Bella ORAN 1 University, Oran, Algeria
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish Research Council (IPLA-CSIC), Asturias, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Asturias, Spain
| |
Collapse
|
27
|
Abstract
Probiotics are viable microorganisms widely used for their claimed beneficial effects on
the host health. A wide number of researchers proved that the intake of probiotic bacteria has numerous
health benefits which created a big market of probiotic foods worldwide. The biggest challenge
in the development of these products is to maintain the viability of bacterial cells during the storage
of the product as well as throughout the gastrointestinal tract transit after consumption, so that the
claimed health benefits can be delivered to the consumer. Different approaches have been proposed
for increasing the resistance of these sensitive microorganisms, including the selection of resistant
strains, incorporation of micronutrients, and most recently the use of microencapsulation techniques.
Microencapsulation has resulted in enhancing the viability of these microorganisms which allows its
wide use in the food industry. In this review, the most common techniques used for microencapsulation
of probiotics will be presented, as well as the most usual microcapsule shell materials.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syrian Arab Republic
| |
Collapse
|
28
|
Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr 2020; 61:1515-1536. [DOI: 10.1080/10408398.2020.1761773] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Georgia Frakolaki
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| | - Virginia Giannou
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| | - Dimitrios Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Polytechnioupoli Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, National Technical University of Athens School of Chemical Engineering, Athens, Greece
| |
Collapse
|
29
|
Nguyen TH, Kim Y, Kim JS, Jeong Y, Park HM, Kim JW, Kim JE, Kim H, Paek NS, Kang CH. Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0406-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Ismail SA, El-Sayed HS, Fayed B. Production of prebiotic chitooligosaccharide and its nano/microencapsulation for the production of functional yoghurt. Carbohydr Polym 2020; 234:115941. [DOI: 10.1016/j.carbpol.2020.115941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
|
31
|
Zhao Y, Liu S, Feng Y, Bilal M. Development and Optimization of Attapulgite Clay Based Microencapsulation for Lactic Acid Bacteria by Response Surface Methodology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2019-0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLactic acid bacteria (LAB), screened and purified from the fermented yogurt, were microencapsulated in sodium alginate (SA) and attapulgite composite microcapsules by external gelation to increase their viability and stability. Surface characterization by scanning electron microscope clearly evidenced a high number of the LAB embedded in SA/attapulgite composite microcapsules than SA counterparts due to a more cohesive structure, and biocompatible microenvironment. SA/attapulgite and CaCl2/attapulgite composites analysis revealed a better embedding effect of attapulgite blend with SA solvent compared with attapulgite mixed with CaCl2. Influence of three major factors including SA, calcium chloride, and attapulgite concentration on LAB embedding rate were optimized by “single factor strategy” as well as response surface methodology (RSM). Optimal conditions of these factors obtained by RSM were SA (1.03 %), Attapulgite (0.28 %), and CaCl2 concentration (1.17 %). The related embedding rate was predicted as 87.1369 %, and the actual measured value was 91.24 % by experiments using the optimal conditions. In conclusion, the results revealed that LAB microencapsulation in the SA and attapulgite composite might display noteworthy protection against the gastrointestinal environment.
Collapse
Affiliation(s)
- Yuping Zhao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Shuai Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Yunqi Feng
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Muhammad Bilal
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| |
Collapse
|
32
|
Li M, Jin Y, Wang Y, Meng L, Zhang N, Sun Y, Hao J, Fu Q, Sun Q. Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. J Dairy Sci 2019; 102:4832-4843. [PMID: 30981490 DOI: 10.3168/jds.2018-15597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
Yogurt is a popular product worldwide partly because of the health-promoting effects of the probiotics that it contains. Probiotics with high survivability constitute a promising direction for fortified yogurt products. This study aimed to prepare Bifidobacterium breve-loaded yogurt with the bacteria surviving transit to the lower part of small intestine or colon. Bifidobacterium breve beads were prepared through an ion-crosslinking method using low methoxyl pectin as the encapsulating material. Features such as encapsulation efficiency and stability during storage and passage through the simulated gastrointestinal tract were studied in vitro. A commercial starter was used for yogurt fermentation, and B. breve with or without encapsulation was added as a probiotic supplement with the starter or 3 to 4 h after fermentation. The effects of B. breve beads on yogurt characteristics were evaluated after different fermentation processes: BC, milk fermented with marketed yogurt starter; UBFF, unencapsulated B. breve added to fresh milk and then fermented; EBFF, encapsulated B. breve added to fresh milk and then fermented; UBAF, unencapsulated B. breve added after fermentation with the starter; and EBAF, encapsulated B. breve beads added 3 to 4 h after fermentation with the starter. Evaluation was based on texture, electronic nose, and electronic tongue analyses. The particle size analysis of B. breve beads showed that they were uniform, mostly spherical, 1 to 1.5 mm in diameter with encapsulating efficiency higher than 99%. Following treatment with the simulated gastrointestinal tract conditions, the number of B. breve decreased by 1.76 and 4.82 log cfu/g for B. breve beads and unencapsulated B. breve, respectively. The EBAF group showed the lowest viscosity (2,235.67 cP) at d 0, and the lower postfermentation degree was reflected by the slow increase in yogurt viscosity. All groups kept a relatively stable pH during storage. The cohesiveness values of the EBAF and UBAF groups were significantly higher than those of the other groups. The trends in texture changes within the BC, UBFF, and EBFF groups were similar, and the UBAF and EBAF groups showed similar trends. In conclusion, B. breve beads showed good stability in vitro and improved yogurt characteristics by increasing the survival rate of the encapsulated cells. Good compatibility of low methoxyl pectin beads with yogurt was also observed.
Collapse
Affiliation(s)
- Mengyang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yunxiang Jin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yawei Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, No. 138 TongDa Street Daoli District, Harbin 150076, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, No. 138 TongDa Street Daoli District, Harbin 150076, China
| | - Jingfei Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qi Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
33
|
Effects of probiotic therapy on serum inflammatory markers: A systematic review and meta-analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
34
|
Pradeep Prasanna PH, Charalampopoulos D. Encapsulation in an alginate-goats’ milk-inulin matrix improves survival of probioticBifidobacteriumin simulated gastrointestinal conditions and goats’ milk yoghurt. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12568] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- P H Pradeep Prasanna
- Department of Food and Nutritional Sciences; University of Reading; Whiteknights Reading RG6 6AP UK
- Department of Animal and Food Sciences; Faculty of Agriculture; Rajarata University of Sri Lanka; Puliyankulama Anuradhapura 50000 Sri Lanka
| | | |
Collapse
|
35
|
Fang Z, Jiang R, Zhang L, Wu Y, Zhao X, Zhao L, Li J, Zou S, Zhang M, Du F. In situ fabrication of radiopaque microcapsules for oral delivery and real-time gastrointestinal tracking of Bifidobacterium. Int J Nanomedicine 2018; 13:4093-4105. [PMID: 30034235 PMCID: PMC6047607 DOI: 10.2147/ijn.s145837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Although oral administration of Bifidobacterium is a promising approach for diseases, lack of resistance to harsh conditions and real-time tracking in gastrointestinal system in vivo are still major challenges in basic research and clinical applications. MATERIALS AND METHODS In this study, we fabricated a chitosan-coated alginate microcapsule loaded with in situ synthesized barium sulfate (CA/BaSO4 microcapsule) for oral Bifidobacterium delivery and real-time X-ray computed tomography (CT) imaging. CA/BaSO4 microcapsules containing the Bifidobacterium were prepared in situ by one-step electrostatic spraying method, and then coated with chitosan. RESULTS The results indicated that CA/BaSO4 microcapsules with an average diameter of approximately 200 μm possessed favorable mechanical stability and X-ray attenuation capacity. Encapsulation of Bifidobacteria in the CA/BaSO4 microcapsules exhibited superior resistance to cryopreservation and gastric acid environment in vitro. After oral administration in mice, these CA/BaSO4 microcapsules could be real-time visualized by CT imaging and readily reached the intestine to release Bifidobacteria. CONCLUSION The radiopaque CA/BaSO4 microcapsules provide a novel platform for efficient protection, non-invasive real-time monitoring and intestinal-targeted Bifidobacterium delivery.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University,
| | - Rong Jiang
- School of Medicine, Jiangsu University, ;
| | - Lirong Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University
| | - Yunchao Wu
- School of Medicine, Jiangsu University, ;
| | | | - Lulu Zhao
- School of Medicine, Jiangsu University, ;
| | - Jiangang Li
- Tianyi Health Sciences Institute (Zhenjiang) Co., Ltd. Zhenjiang, People's Republic of China
| | - Shengqiang Zou
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University,
| | | | - Fengyi Du
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University,
- School of Medicine, Jiangsu University, ;
| |
Collapse
|
36
|
Guimarães A, Abrunhosa L, Pastrana LM, Cerqueira MA. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr Rev Food Sci Food Saf 2018; 17:594-614. [PMID: 33350124 DOI: 10.1111/1541-4337.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/23/2023]
Abstract
Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers' gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.
Collapse
Affiliation(s)
- Ana Guimarães
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
37
|
Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1347668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Soma Chakraborty
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Quezon City, Manila, Philippines
| |
Collapse
|
38
|
Kaewiad K, Kaewnopparat N, Faroongsarng D, Wungsintaweekul J, Kaewnopparat S. Statistical optimization of bambara groundnut protein isolate-alginate matrix systems on survival of encapsulated Lactobacillus rhamnosus GG. AIMS Microbiol 2017; 3:713-732. [PMID: 31294184 PMCID: PMC6604962 DOI: 10.3934/microbiol.2017.4.713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Encapsulation may protect viable probiotic cells. This study aims at the evaluation of a bambara groundnut protein isolate (BGPI)-alginate matrix designed for encapsulating a probiotic Lactobacillus rhamnosus GG. The response surface methodology was employed to gain the optimal concentrations of BGPI and alginate on encapsulation efficiency and survival of encapsulated cells. The capsules were prepared at the optimal combination by the traditional extrusion method composed of 8.66% w/v BGPI and 1.85% w/v alginate. The encapsulation efficiency was 97.24%, whereas the survival rates in an acidic condition and after the freeze-drying process were 95.56% and 95.20%, respectively-higher than those using either BGPI or alginate as the encapsulating agent individually. The designed capsules increased the probiotic L. rhamnosus GG survival relative to free cells in a simulated gastric fluid by 5.00 log cfu/ml after 3 h and in a simulated intestinal fluid by 8.06 log cfu/ml after 4 h. The shelf-life studies of the capsules over 6 months at 4 °C and 30 °C indicated that the remaining number of viable cells in a BGPI-alginate capsule was significantly higher than that of free cells in both temperatures. It was demonstrated that the BGPI-alginate capsule could be utilized as a new probiotic carrier for enhanced gastrointestinal transit and storage applied in food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Kanyanat Kaewiad
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Nattha Kaewnopparat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Damrongsak Faroongsarng
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Juraithip Wungsintaweekul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sanae Kaewnopparat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
39
|
Chris Felshia S, Aswin Karthick N, Thilagam R, Chandralekha A, Raghavarao KSMS, Gnanamani A. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: A comparative study of degradation kinetics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:373-383. [PMID: 28407600 DOI: 10.1016/j.jenvman.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/10/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The present study exemplifies phenol degradation efficacy of the free and encapsulated bacterial isolate, explored the degradation kinetics and storage stability in detail. In brief, isolation, identification and phenol degradation potential of the bacterial made from wastewater treated sludge samples. The organism identified as B. licheniformis demonstrates phenol degradation at a concentration more than 1500 ppm. Optimization of environmental parameters reduces the time taken for degradation considerably. The organism has further been encapsulated using whey protein and the efficacy of encapsulated species suggested that encapsulation protects the cells from high concentration of phenol and at the same time expedite the degradation of the chosen pollutant at appreciable level. The encapsulated species effectively degrade 3000 ppm concentration of phenol within 96 h of incubation. Both pH and temperature stability observed in the encapsulated species suggests the effectiveness of the encapsulation. The encapsulated cells displayed storage stability for a four week period at 4 C and reusability up to three exposures. Degradation effected through intracellular catechol 2,3 dioxygenase. In conclusion, encapsulation of B. licheniformis (i) protects the cells from direct exposure to toxic pollutants; (ii) facilitates the field scale application and (iii) eliminate the practical difficulties in handling wet biomass in field application and assures the best possible way of remediating the phenol contaminated soil.
Collapse
Affiliation(s)
- S Chris Felshia
- CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | | | - R Thilagam
- CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | - A Chandralekha
- CSIR-Central Food Technological Research Institute, Mysore, India
| | | | - A Gnanamani
- CSIR-Central Leather Research Institute, Adyar, Chennai, India.
| |
Collapse
|
40
|
Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA. Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 2017; 58:1864-1877. [DOI: 10.1080/10408398.2017.1289148] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Philippe E. Ramos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, Braga Portugal
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
41
|
Sensory, microbiological and physicochemical screening of probiotic cultures for the development of non-fermented probiotic milk. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Abstract
The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.
Collapse
Affiliation(s)
- Loveleen Kaur Sarao
- a Department of Microbiology , College of Basic Sciences and Humanities, Punjab Agricultural University , Ludhiana , Punjab , India
| | - M Arora
- a Department of Microbiology , College of Basic Sciences and Humanities, Punjab Agricultural University , Ludhiana , Punjab , India
| |
Collapse
|
43
|
Gul O. Microencapsulation of Lactobacillus casei
Shirota by spray drying using different combinations of wall materials and application for probiotic dairy dessert. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Osman Gul
- Program of Food Technology, Yeşilyurt Demir-Celik Vocational School; Ondokuz Mayis University; Samsun Turkey
| |
Collapse
|
44
|
Gün Ö, Işsikli ND. The Effects of Fat and Non Fat Dry Matter Concentration and Storage Time on the Physical Properties and Acidity of Yoghurts Made with Probiotic Cultures. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206073083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of fat and non fat dry matter (NFDM) concentration and storage time on the physical properties and acidity of yoghurts made using commercial probiotic cultures (ABY and ABT-1) were investigated by using response surface methodology. All yoghurts made with ABY and ABT-1 cultures exhibited shear thinning behaviour. The power low model was used to describe the shear thinning behaviour of yoghurt samples. The flow behaviour index ( n) and the consistency coefficient ( m) were determined. NFDM levels in milk strongly affected syneresis, apparent viscosity at a constant speed of 100rpm, flow behaviour index and the consistency coefficient. Titratable acidity and pH were mainly affected by the storage time. Under all conditions examined, yoghurt made with ABT-1 culture had higher apparent viscosity, consistency coefficient and pH value than those of the yoghurt made using ABY culture.
Collapse
Affiliation(s)
- Ö. Gün
- Department of Food Engineering, University of Mersin, 33342 Çiftlikköy, Mersin, Turkey
| | - N. D. Işsikli
- Department of Food Engineering, University of Mersin, 33342 Çiftlikköy, Mersin, Turkey
| |
Collapse
|
45
|
Özer D, Akin S, Özer B. Effect of Inulin and Lactulose on Survival of Lactobacillus AcidophilusLA-5 and Bifidobacterium Bifidum BB-02 in Acidophilus-Bifidus Yoghurt. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013205051275] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of supplementation of lactulose and inulin as prebiotics on the growth of L. acidophilusLA-5 and B. bifidumBB-02 in Acidophilus-Bifidus (AB) yoghurt and some quality parameters of the resulting products were studied. Yoghurts produced from milks with added inulin at levels of 0.5% and 1.0%, or with lactulose at levels of 0.25% and 2.5% were compared with classical yoghurt and AB yoghurt (without added prebiotics). The results showed that inulin and lactulose did not affect the growth of yoghurt starter bacteria, but stimulated the growth of B. bifidumBB-02 to a great extent. Lactulose was found to be more effective on the growth of both probiotic strains than inulin. Inulin did not stimulate the growth of L. acidophilusLA-5. The cell counts of B. bifidumBB-02 and L. acidophilusLA-5 were dependent upon concentrations of lactulose and inulin used. No significant (p< 0.05) difference between the samples were observed with regard to the pH and lactic acid values. However, lactulose or inulin added samples had lower acetaldehyde and tyrosine contents than the untreated samples.
Collapse
Affiliation(s)
| | - S. Akin
- Harran University Faculty of Agriculture, Department of Agricultural Economics, 63040, S anliurfa, Turkey
| | - B. Özer
- Harran University Faculty of Agriculture, Department of Food Engineering, 63040 Sannliurfa, Turkey
| |
Collapse
|
46
|
Zhang X, Sun G, Xiao X, Liu Y, Zheng X. Application of microbial TTIs as smart label for food quality: Response mechanism, application and research trends. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery. Front Microbiol 2016; 7:494. [PMID: 27148184 PMCID: PMC4835488 DOI: 10.3389/fmicb.2016.00494] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 01/09/2023] Open
Abstract
Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.
Collapse
Affiliation(s)
- Timothy W. Yeung
- Department of Food Science, University of MassachusettsAmherst, MA, USA
| | - Elif F. Üçok
- Department of Food Science, University of MassachusettsAmherst, MA, USA
| | - Kendra A. Tiani
- Department of Food Science, University of MassachusettsAmherst, MA, USA
- Commonwealth Honors College, University of MassachusettsAmherst, MA, USA
| | - David J. McClements
- Department of Food Science, University of MassachusettsAmherst, MA, USA
- Center for Bioactive Delivery, Institute of Applied Life Science, University of MassachusettsAmherst, MA, USA
| | - David A. Sela
- Department of Food Science, University of MassachusettsAmherst, MA, USA
- Center for Bioactive Delivery, Institute of Applied Life Science, University of MassachusettsAmherst, MA, USA
- Center for Microbiome Research, University of Massachusetts Medical SchoolWorcester, MA, USA
| |
Collapse
|
48
|
Krunić TŽ, Bulatović MLJ, Obradović NS, Vukašinović-Sekulić MS, Rakin MB. Effect of immobilisation materials on viability and fermentation activity of dairy starter culture in whey-based substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1723-1729. [PMID: 26033314 DOI: 10.1002/jsfa.7278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The main objectives of the paper were to study influence of immobilisation of dairy starter culture 'Lactoferm ABY 6' on fermentation and probiotic potential of fermented whey-based substrate. RESULTS Fermentation with free cells takes 1.5 h less than fermentation with encapsulated cells, but samples with encapsulated cells have better characteristics after 28 days of storage. Chitosan coating provides additional protection of cells in bile salt solution (95.86% of viable cells compared to the initial number) and simulated gastric juice (37.8% for pH 2.5) compared to the alginate beads (94.54% in bile salt solution and 36.18% in simulated gastric juice for pH 2.5). Free cells had a drastic reduction in the number of viable cells (83.0% in bile salt solution and no viable cells in simulated gastric juice for pH 2.5). CONCLUSION Samples with alginate beads and chitosan-coated alginate beads have significantly (P < 0.05) higher viable cell count than samples with free cells, during 4 h monitoring survival at pH 2.5, pH 3.0 and 0.3% bovine bile solution. These beads can be used to improve survival of probiotic cells in fermented whey-based beverage during storage and consummation, which improves the quality of the product.
Collapse
Affiliation(s)
- Tanja Ž Krunić
- Innovation Center Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Karnegijeva 4, Serbia
| | - Maja L J Bulatović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Karnegijeva 4, Serbia
| | - Nataša S Obradović
- Innovation Center Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Karnegijeva 4, Serbia
| | | | - Marica B Rakin
- Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Karnegijeva 4, Serbia
| |
Collapse
|
49
|
β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. Int J Biol Macromol 2015; 82:217-22. [PMID: 26562556 DOI: 10.1016/j.ijbiomac.2015.11.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
Three strains of probiotics Lactobacillus casei, Lactobacillus brevis, and Lactobacillus plantarum were encapsulated in β-glucan matrix using emulsion technique. Further the encapsulated cells were studied for their tolerance in simulated gastrointestinal conditions and its storage stability. The average encapsulation efficiency of β-glucan-probiotic beads was found to be 74.01%. The surface morphology of β-glucan containing bacteria was studied using SEM. The noteworthy absorptions in the FT-IR spectra between 1300-900 cm(-1) and 2918-2925 cm(-1) corresponds to the presence of bacteria into the glucan matrix. Also, the thermal stability of β-glucan was evaluated using Differential Scanning Calorimeter. The efficiency of β-glucan in protecting the surviability of probiotic cells under simulated gastrointestinal conditions was studied. Results revealed significant (p<0.05) improvement to tolerance when the encapsulated cells were subjected to stresses like low pH, heat treatment, simulated intestinal conditions and storage.
Collapse
|
50
|
Amakiri AC, Kalombo L, Thantsha MS. Lyophilised Vegetal BM 297 ATO-Inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: design and characterisation. J Microencapsul 2015; 32:820-7. [PMID: 26458011 DOI: 10.3109/02652048.2015.1094534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed at the manufacturing and characterisation of Vegetal BM 297 ATO-inulin-Bifidobacterium longum LMG 13197 microparticles prepared by freeze drying. Emulsions containing 1%, 1.5%, 2%, 3.5% or 5% w/v inulin were prepared, with or without centrifugation before freeze drying. Morphological properties, particle size distribution, encapsulation efficiency of the microparticles and their ability to preserve viability of the enclosed B. longum LMG 13197 cells were evaluated. The microparticles produced from both formulations without a centrifugation step were irregular, porous with concavities and contained high number of bacterial cells. Formulations with or without inulin had average particle sizes of 33.4-81.0 μm with encapsulation efficiencies of 82% and 88%, respectively. Vegetal-inulin microparticles have the morphology and size that will enable their even distribution in final food products, and hence, they have the potential for use as a functional food additive because they are likely to deliver sufficient numbers of viable bacteria.
Collapse
Affiliation(s)
- A C Amakiri
- a Department of Microbiology and Plant Pathology , University of Pretoria , Pretoria , South Africa and
| | - L Kalombo
- b Department of Materials Science and Manufacturing , Centre of Polymers and Composites, Council for Scientific and Industrial Research (CSIR) , Brummeria , Pretoria , South Africa
| | - M S Thantsha
- a Department of Microbiology and Plant Pathology , University of Pretoria , Pretoria , South Africa and
| |
Collapse
|