1
|
Quality analysis of ultra-fine whole pulp of bamboo shoots (Chimonobambusa quadrangularis) fermented by Lactobacillus plantarum and Limosilactobacillus reuteri. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
3
|
Amiri S, Abotalebi Kohneshahri SR, Nabizadeh F. The effect of unit operation and adjunct probiotic culture on physicochemical, biochemical, and textural properties of Dutch Edam cheese. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Phenotypic Diversity of Lactobacillus casei Group Isolates as a Selection Criterion for Use as Secondary Adjunct Starters. Microorganisms 2020; 8:microorganisms8010128. [PMID: 31963444 PMCID: PMC7022476 DOI: 10.3390/microorganisms8010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autochthonous lactic acid bacteria (LAB) play a key role in the development of cheese flavor. As the pasteurization treatment on raw milk causes the elimination of LAB, secondary starter cultures are used in cheese manufacture to obtain cheeses with improved and standardized flavors. In this work, strains of the L. casei group isolated from traditional Italian cheeses were screened for their phenotypic features of technological interest for use as secondary starters. Their milk acidifying performance and the production of volatile compounds when grown in milk were evaluated. Simultaneously, the acetoin metabolic pathway presence was screened in the strains and assessed for its transcriptional activation. The results showed that the analyzed strains, despite belonging to taxonomically-related species, vary greatly according to the measured phenotypes. Four strains among the fourteen screened could be potentially used as adjunct cultures for cheese-making processes. The strain that showed the highest production of acetoin upregulated the aspartate pathway. An increased knowledge of volatile compounds’ production and acidifying properties of LAB strains isolated from traditional dairy products might guide the selection of strains for industrial applications.
Collapse
|
5
|
Jo Y, Benoist DM, Ameerally A, Drake MA. Sensory and chemical properties of Gouda cheese. J Dairy Sci 2017; 101:1967-1989. [PMID: 29274971 DOI: 10.3168/jds.2017-13637] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
Abstract
Gouda cheese is a washed-curd cheese that is traditionally produced from bovine milk and brined before ripening for 1 to 20 mo. In response to domestic and international demand, US production of Gouda cheese has more than doubled in recent years. An understanding of the chemical and sensory properties of Gouda cheese can help manufacturers create desirable products. The objective of this study was to determine the chemical and sensory properties of Gouda cheeses. Commercial Gouda cheeses (n = 36; 3 mo to 5 yr; domestic and international) were obtained in duplicate lots. Volatile compounds were extracted by solid-phase microextraction and analyzed by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Composition analyses included pH, proximate analysis, salt content, organic acid analysis by HPLC, and color. Flavor and texture properties were determined by descriptive sensory analysis. Focus groups were conducted to document US consumer perception followed by consumer acceptance testing (n = 149) with selected cheeses. Ninety aroma-active compounds in Gouda cheeses were detected by solid-phase microextraction/gas chromatography-olfactometry. Key aroma-active volatile compounds included diacetyl, 2- and 3-methylbutanal, 2-methylpropanal, methional, ethyl butyrate, acetic acid, butyric acid, homofuraneol, δ-decalactone, and 2-isobutyl-3-methoxypyrazine. Aged cheeses had higher organic acid concentrations, higher fat and salt contents, and lower moisture content than younger cheeses. Younger cheeses were characterized by milky, whey, sour aromatic, and diacetyl flavors, whereas aged cheeses were characterized by fruity, caramel, malty/nutty, and brothy flavors. International cheeses were differentiated by the presence of low intensities of cowy/barny and grassy flavors. Younger cheeses were characterized by higher intensities of smoothness and mouth coating, whereas aged cheeses were characterized by higher intensities of fracture and firmness. American consumers used Gouda cheese in numerous applications and stated that packaging appeal, quality, and age were more important than country of origin or nutrition when purchasing Gouda cheeses. Young and medium US cheeses ≤6 mo were most liked by US consumers. Three distinct consumer segments were identified with distinct preferences for cheese flavor and texture. Findings from this study establish key differences in Gouda cheese regarding age and origin and identify US consumer desires for this cheese category.
Collapse
Affiliation(s)
- Y Jo
- Southeast Dairy Foods Research Center, Food, Bioprocessing, and Nutrition Sciences Department, North Carolina State University, Raleigh 27695
| | - D M Benoist
- Southeast Dairy Foods Research Center, Food, Bioprocessing, and Nutrition Sciences Department, North Carolina State University, Raleigh 27695
| | - A Ameerally
- Southeast Dairy Foods Research Center, Food, Bioprocessing, and Nutrition Sciences Department, North Carolina State University, Raleigh 27695
| | - M A Drake
- Southeast Dairy Foods Research Center, Food, Bioprocessing, and Nutrition Sciences Department, North Carolina State University, Raleigh 27695.
| |
Collapse
|
6
|
Industrial-scale application of Lactobacillus reuteri coupled with glycerol as a biopreservation system for inhibiting Clostridium tyrobutyricum in semi-hard ewe milk cheese. Food Microbiol 2017; 66:104-109. [DOI: 10.1016/j.fm.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
7
|
Bielecka MM, Cichosz G. The influence of an adjunct culture of Lactobacillus paracasei LPC-37 on the physicochemical properties of Dutch-type cheese during ripening. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Langa S, Landete JM, Martín-Cabrejas I, Rodríguez E, Arqués JL, Medina M. In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Reis JA, Paula AT, Casarotti SN, Penna ALB. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9051-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol 2010; 27:691-7. [DOI: 10.1016/j.fm.2010.05.023] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/21/2022]
|
12
|
Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiol 2009; 26:240-5. [PMID: 19269563 DOI: 10.1016/j.fm.2009.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 01/12/2009] [Indexed: 11/20/2022]
Abstract
A partial picture of the typical microflora of PDO Parmigiano Reggiano cheese was achieved by studying the cultivability of lactic acid bacteria associated with its manufacturing and ripening. A comprehensive sampling design allowed for the analysis of the cheese microflora during its production over 20 months of ripening. An innovative cheese agar medium (CAM) was prepared after testing 18 formulations all based on grated Parmigiano Reggiano ripened cheese. During cheese manufacturing and ripening, different samples were sampled and their microflora was recovered using CAM in comparison with other traditional media. Colonies which formed units from the different agar media tested were picked and isolated; the phylogenetic positions of 154 isolated strains were studied at level of species by 16S-rRNA gene sequencing. CAM seems to be able to recover the minority population coming from milk and whey starter, hardly estimable, during the first hours of production, on traditional media.
Collapse
|
13
|
Kocaoglu-Vurma NA, Harper WJ, Drake MA, Courtney PD. Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured with adjunct Lactobacillus strains using a low cooking temperature. J Dairy Sci 2008; 91:2947-59. [PMID: 18650271 DOI: 10.3168/jds.2007-0592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct Lactobacillus spp. affected the flavor profile and concentration of some flavor compounds in Swiss cheeses produced with the kosher make procedure. Use of adjunct Lactobacillus cultures provides Swiss cheese makers using a low cooking temperature with a means to control the dominant Lactobacillus strain during ripening, reduce citrate concentration, and modify cheese flavor.
Collapse
Affiliation(s)
- N A Kocaoglu-Vurma
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
14
|
Evaluation of reuterin production in urogenital probiotic Lactobacillus reuteri RC-14. Appl Environ Microbiol 2008; 74:4645-9. [PMID: 18539802 DOI: 10.1128/aem.00139-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Classified as a distinct species in 1980, Lactobacillus reuteri strains have been used in probiotic formulations for intestinal and urogenital applications. In the former, the primary mechanism of action of L. reuteri SD2112 (ATCC 55730) has been purported to be its ability to produce the antibiotic 3-hydroxypropionaldehyde (3-HPA), also known as reuterin. In the vagina, it has been postulated that probiotic Lactobacillus reuteri RC-14 does not require reuterin production but mediates a restoration of the normal microbiota via hydrogen peroxide, biosurfactant, lactic acid production, and immune modulation. The aim of the present study was to determine whether strain RC-14 produced reuterin. Using PCR and DNA dot blot analyses, numerous Lactobacillus species, including RC-14, were screened for the presence of the gene encoding the large subunit of glycerol dehydratase (gldC), the enzyme responsible for reuterin production. In addition, lactobacilli were grown in glycerol-based media and both high-performance liquid chromatography and a colorimetric assay were used to test for the presence of reuterin. L. reuteri RC-14 was determined to be negative for gldC sequences, as well as for the production of reuterin when cultured in the presence of glycerol. These findings support that the probiotic effects of L. reuteri RC-14, repeatedly demonstrated during numerous studies of the intestine and vagina, are independent of reuterin production.
Collapse
|
15
|
Ávila M, Calzada J, Garde S, Nuñez M. Lipolysis of semi-hard cheese made with a lacticin 481-producingLactococcus lactisstrain and aLactobacillus helveticusstrain. ACTA ACUST UNITED AC 2008. [DOI: 10.1051/lait:2007035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|