1
|
Schmidtmann C, Schönherz A, Guldbrandtsen B, Marjanovic J, Calus M, Hinrichs D, Thaller G. Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genet Sel Evol 2021; 53:23. [PMID: 33676402 PMCID: PMC7936461 DOI: 10.1186/s12711-021-00613-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Local cattle breeds need special attention, as they are valuable reservoirs of genetic diversity. Appropriate breeding decisions and adequate genomic management of numerically smaller populations are required for their conservation. At this point, the analysis of dense genome-wide marker arrays provides encompassing insights into the genomic constitution of livestock populations. We have analyzed the genetic characterization of ten cattle breeds originating from Germany, The Netherlands and Denmark belonging to the group of red dairy breeds in Northern Europe. The results are intended to provide initial evidence on whether joint genomic breeding strategies of these populations will be successful. Results Traditional Danish Red and Groningen White-Headed were the most genetically differentiated breeds and their populations showed the highest levels of inbreeding. In contrast, close genetic relationships and shared ancestry were observed for the populations of German Red and White Dual-Purpose, Dutch Meuse-Rhine-Yssel, and Dutch Deep Red breeds, reflecting their common histories. A considerable amount of gene flow from Red Holstein to German Angler and to German Red and White Dual-Purpose was revealed, which is consistent with frequent crossbreeding to improve productivity of these local breeds. In Red Holstein, marked genomic signatures of selection were reported on chromosome 18, suggesting directed selection for important breeding goal traits. Furthermore, tests for signatures of selection between Red Holstein, Red and White Dual-Purpose, and Meuse-Rhine-Yssel uncovered signals for all investigated pairs of populations. The corresponding genomic regions, which were putatively under different selection pressures, harboured various genes which are associated with traits such as milk and beef production, mastitis and female fertility. Conclusions This study provides comprehensive knowledge on the genetic constitution and genomic connectedness of divergent red cattle populations in Northern Europe. The results will help to design and optimize breeding strategies. A joint genomic evaluation including some of the breeds studied here seems feasible.
Collapse
Affiliation(s)
- Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany.
| | - Anna Schönherz
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.,Department of Animal Science, Aarhus University, 8830, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.,Department of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115, Bonn, Germany
| | - Jovana Marjanovic
- Animal Breeding and Genomics, Wageningen University and Research, 6700AH, Wageningen, The Netherlands
| | - Mario Calus
- Animal Breeding and Genomics, Wageningen University and Research, 6700AH, Wageningen, The Netherlands
| | - Dirk Hinrichs
- Department of Animal Breeding, University of Kassel, 37213, Witzenhausen, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
2
|
Kohl S, Wellmann R, Herold P. Implementation of advanced Optimum Contribution Selection in small-scale breeding schemes: prospects and challenges in Vorderwald cattle. Animal 2020; 14:452-463. [PMID: 31597583 PMCID: PMC7026723 DOI: 10.1017/s1751731119002295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 12/03/2022] Open
Abstract
Vorderwald cattle are a regional cattle breed from the Black Forest in south western Germany. In recent decades, commercial breeds have been introgressed to upgrade the breed in performance traits. On one hand, native genetic diversity of the breed should be conserved. On the other hand, moderate rates of genetic gain are needed to satisfy breeders to keep the breed. These goals are antagonistic, since the native proportion of the gene pool is negatively correlated to performance traits and the carriers of introgressed alleles are less related to the population. Thus, a standard Optimum Contribution Selection (OCS) approach would lead to reinforced selection on migrant contributions (MC). Our objective was the development of strategies for practical implementation of an OCS approach to manage the MC and native genetic diversity of regional breeds. Additionally, we examined the organisational efforts and the financial impacts on the breeding scheme of Vorderwald cattle. We chose the advanced Optimum Contribution Selection (aOCS) to manage the breed in stochastic simulations based on real pedigree data. In addition to standard OCS approaches, aOCS facilitates the management of the MC and the rate of inbreeding at native alleles. We examined two aOCS strategies. Both strategies maximised genetic gain, while strategy (I) conserved the MC in the breeding population and strategy (II) reduced the MC at a predefined annual rate. These two approaches were combined with one of three flows of replacement of sires (FoR strategies). Additionally, we compared breeding costs to clarify about the financial impact of implementing aOCS in a young sire breeding scheme. According to our results, conserving the MC in the population led to significantly (P < 0.01) higher genetic gain (1.16 ± 0.13 points/year) than reducing the MC (0.88 ± 0.10 points/year). In simulation scenarios that conserved the MC, the final value of MC was 57.6% ± 0.004, while being constraint to 58.2%. However, reducing the MC is only partially feasible based on pedigree data. Additionally, this study proves that the classical rate of inbreeding can be managed by constraining only the rate of inbreeding at native alleles within the aOCS approach. The financial comparison of the different breeding schemes proved the feasibility of implementing aOCS in Vorderwald cattle. Implementing the modelled breeding scheme would reduce costs by 1.1% compared with the actual scheme. Reduced costs were underpinned by additional genetic gain in superior simulation scenarios compared to expected genetic gain in reality (+4.85%).
Collapse
Affiliation(s)
- S. Kohl
- University of Hohenheim, Animal Genetics and Breeding (460g), Garbenstr. 17, Stuttgart 70599, Baden-Württemberg, Germany
| | - R. Wellmann
- University of Hohenheim, Animal Genetics and Breeding (460g), Garbenstr. 17, Stuttgart 70599, Baden-Württemberg, Germany
| | - P. Herold
- State Agency for Spatial Information and Rural Development Baden-Württemberg, Breeding Value Estimation Team, Stuttgarter Str. 161, Kornwestheim 70806, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Runs of Homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds. PLoS One 2019; 14:e0225847. [PMID: 31800604 PMCID: PMC6892555 DOI: 10.1371/journal.pone.0225847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022] Open
Abstract
Angler (RVA) and Red-and-White dual-purpose (RDN) cattle were in the past decades crossed with influential Red Holstein (RH) sires. However, genome-wide diversity studies in these breeds are lacking. The objective of the present study was to elucidate the genome-wide diversity and population structure of the three German cattle breeds. Using 40,851 single nucleotide polymorphism markers scored in 337 individuals, runs of homozygosity (ROH) were analysed in each breed. Clustering and a high-resolution network visualisation analyses were performed on an extended dataset that included 11 additional (outgroup) breeds. Genetic diversity levels were high with observed heterozygosity above 0.35 in all three breeds. Only RVA had a recent past effective population size (Ne) estimate above 100 at 5 generations ago. ROH length distribution followed a similar pattern across breeds and the majority of ROH were found in the length class of >5 to 10 Mb. Estimates of average inbreeding calculated from ROH (FROH) were 0.021 (RVA), 0.045 (RDN) and 0.053 (RH). Moderate to high positive correlations were found between FROH and pedigree inbreeding (FPED) and between FROH and inbreeding derived from the excess of homozygosity (FHOM), while the intercept of the regression of FROH on FPED was above zero. The population structure analysis showed strong evidence of admixture between RVA and RH. Introgression of RDN with RH genes was minimally detected and for the first time, the study uncovered Norwegian Red Cattle ancestry in RVA. Highly heterogeneous genetic background was found for RVA and RH and as expected, the breeds of the extended dataset effectively differentiated mostly based on geographical origin, validating our findings. The results of this study confirm the impact of RH sires on RVA and RDN populations. Furthermore, a close monitoring is suggested to curb further reduction of Ne in the breeds.
Collapse
|
4
|
Zhang Y, Wang L, Bian Y, Wang Z, Xu Q, Chang G, Chen G. Marginal diversity analysis of conservation of Chinese domestic duck breeds. Sci Rep 2019; 9:13141. [PMID: 31511604 PMCID: PMC6739371 DOI: 10.1038/s41598-019-49652-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to systematically evaluate the genetic diversity of Chinese domestic duck breeds and ensure the most effective allocation and usage of conservation funds. We first performed an analysis of DNA genetic distance in 21 duck breeds by measuring short tandem repeats. Then, we calculated the extinction probability, contribution rate, and marginal diversity for each breed. The results showed that the extinction rate of the Zhongshan duck, Guangxi duck, and Ji'an duck were the highest at 0.67, 0.59, and 0.59, respectively, and that of the Linwu duck, Jinding duck, and Gaoyou duck were the lowest at 0.15, 0.18, and 0.19, respectively. The current diversity of populations was 7.72 and the expected diversity in five hundred years is 5.14 ± 1.15. The marginal diversity of the Chinese Muscovy duck was the largest (-2.20), accounting for 42.61% of the expected diversity, followed by the Guangxi duck (-0.49, 9.44%), whereas the Jinding duck was the smallest (-0.12; 2.32%). The protection potency of the Chinese Muscovy duck was the largest (0.61), followed by Guangxi duck (0.29), whereas the Jinding duck was the smallest (0.02). This study provides a reference for determining the conservation priority of Chinese domestic duck breeds or genetic resources.
Collapse
Affiliation(s)
- Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Laidi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Youqing Bian
- Jiangsu Sci-tech Demonstration Garden of Modern Animal Husbandy, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Zhaoshan Wang
- Jiangsu Eco Food Company Limited, Suqian, 223600, Jiangsu, People's Republic of China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Long-Term Impact of Optimum Contribution Selection Strategies on Local Livestock Breeds with Historical Introgression Using the Example of German Angler Cattle. G3-GENES GENOMES GENETICS 2017; 7:4009-4018. [PMID: 29089375 PMCID: PMC5714497 DOI: 10.1534/g3.117.300272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The long-term performance of different selection strategies was evaluated via simulation using the example of a local cattle breed, German Angler cattle. Different optimum contribution selection (OCS) approaches to maximize genetic gain were compared to a reference scenario without selection and truncation selection. The kinships and migrant contribution (MC) were estimated from genomic data. Truncation selection achieved the highest genetic gain but decreased diversity considerably at native alleles. It also caused the highest increase in MCs. Traditional OCS, which only constrains kinship, achieved almost the same genetic gain but also caused a small increase of MC and remarkably reduced the diversity of native alleles. When MC was required not to increase and the increase of kinship at native alleles was restricted, the MC levels and the diversity at native alleles were well managed, and the genetic gain was only slightly reduced. However, genetic progress was substantially lower in the scenario that aimed to recover the original genetic background. Truncation selection and traditional OCS selection both reduce the genetic originality of breeds with historical introgression. The inclusion of MC and kinship at native alleles as additional constraints in OCS showed great potential for conservation. Recovery of the original genetic background is possible but requires many generations of selection and reduces the genetic progress in performance traits. Hence, constraining MCs at their current values can be recommended to avoid further reduction of genetic originality.
Collapse
|
6
|
Wang Y, Bennewitz J, Wellmann R. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration. Genet Sel Evol 2017; 49:45. [PMID: 28499352 PMCID: PMC5427594 DOI: 10.1186/s12711-017-0320-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. Results In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. Conclusions For local breeds with historical introgressions, current breeding programs should focus on increasing genetic gain and controlling inbreeding, as well as maintaining the genetic originality of the breeds and the diversity of native alleles via the inclusion of MC and kinship at native alleles in the OCS process. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
7
|
A unified approach to characterize and conserve adaptive and neutral genetic diversity in subdivided populations. Genet Res (Camb) 2014; 96:e16. [PMID: 25578300 DOI: 10.1017/s0016672314000196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
As extinction of local domestic breeds and of isolated subpopulations of wild species continues, and the resources available for conservation programs are limited, prioritizing subpopulations for conservation is of high importance to halt the erosion of genetic diversity observed in endangered species. Current approaches usually only take neutral genetic diversity into account. However, adaptation of subpopulations to different environments also contributes to the diversity found in the species. This paper introduces two notions of adaptive variation. The adaptive diversity in a trait is the excess of variance found in genotypic values relative to the variance that would have been expected in the absence of selection. The adaptivity coverage of a set of subpopulations quantifies how well the subpopulations could adapt to a large range of environments within a limited time span. Additionally, genome-based notions of neutral diversities were obtained that correspond to well known pedigree-based definitions. The values of subpopulations for conservation of adaptivity coverage were compared with their conservation values for adaptive diversity and neutral diversities using simulated data. Conservation values for adaptive diversity and neutral diversities were only slightly correlated, but the values for conservation of adaptivity coverage showed a reasonable correlation with both kinds if the time span was chosen appropriately. Hence, maintaining adaptivity coverage is a promising approach to prioritize subpopulations for conservation decisions.
Collapse
|
8
|
Hartwig S, Wellmann R, Hamann H, Bennewitz J. The contribution of migrant breeds to the genetic gain of beef traits of German Vorderwald and Hinterwald cattle. J Anim Breed Genet 2014; 131:496-503. [PMID: 24965852 DOI: 10.1111/jbg.12099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
Abstract
During the past decades, migrant contributions have accumulated in many local breeds. Cross-breeding was carried out to mitigate the risk of inbreeding depression and to improve the performance of local breeds. However, breeding activities for local breeds were not as intensive and target oriented as for popular high-yielding breeds. Therefore, even if performance improved, the gap between the performance of local and popular breeds increased for many traits. Furthermore, the genetic originality of local breeds declined due to the increasing contributions of migrant breeds. This study examined the importance of migrant breed influences for the realization of breeding progress of beef traits of German Vorderwald and Hinterwald cattle. The results show that there is a high amount of migrant contributions and their effects on performance are substantial for most traits. The effect of the French cattle breed Montbéliard (p-value 0.014) on daily gain of Vorderwald bulls at test station was positive. The effects of Vorderwald ancestors (p-value for daily gain 0.007 and p-value for net gain 0.004) were positive for both traits under consideration in the population of Hinterwald cattle. Additionally, the effect of remaining breeds (p-value 0.030) on net gain of Hinterwald cattle in the field was also positive. The estimated effect of Fleckvieh ancestors on net gain of Hinterwald cattle was even larger but not significant. Breeding values adjusted for the effects of the migrant breeds showed little genetic trend.
Collapse
Affiliation(s)
- S Hartwig
- Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Stuttgart, Germany
| | | | | | | |
Collapse
|
9
|
Wellmann R, Hartwig S, Bennewitz J. Optimum contribution selection for conserved populations with historic migration. Genet Sel Evol 2012; 44:34. [PMID: 23153196 PMCID: PMC3807754 DOI: 10.1186/1297-9686-44-34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/17/2012] [Indexed: 11/11/2022] Open
Abstract
Background In recent decades, local varieties of domesticated animal species have been frequently crossed with economically superior breeds which has resulted in considerable genetic contributions from migrants. Optimum contribution selection by maximizing gene diversity while constraining breeding values of the offspring or vice versa could eventually lead to the extinction of local breeds with historic migration because maximization of gene diversity or breeding values would be achieved by maximization of migrant contributions. Therefore, other objective functions are needed for these breeds. Results Different objective functions and side constraints were compared with respect to their ability to reduce migrant contributions, to increase the genome equivalents originating from native founders, and to conserve gene diversity. Additionally, a new method for monitoring the development of effective size for breeds with incomplete pedigree records was applied. Approaches were compared for Vorderwald cattle, Hinterwald cattle, and Limpurg cattle. Migrant contributions could be substantially decreased for these three breeds, but the potential to increase the native genome equivalents is limited. Conclusions The most promising approach was constraining migrant contributions while maximizing the conditional probability that two alleles randomly chosen from the offspring population are not identical by descent, given that both descend from native founders.
Collapse
Affiliation(s)
- Robin Wellmann
- Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, D-70599 Stuttgart, Germany.
| | | | | |
Collapse
|
10
|
Genetic diversity of Guernsey population using pedigree data and gene-dropping simulations. Animal 2012; 7:192-201. [PMID: 23032118 DOI: 10.1017/s1751731112001723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The objectives of this study were to analyze the trend of within-breed genetic diversity and identify major causes leading to loss of genetic diversity in Guernsey breed in three countries. Pedigree files of Canadian (GCN), South African (GSA) and American (GUS) Guernsey populations containing 130 927, 18 593 and 1 851 624 records, respectively, were analyzed. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness index of GCN, GSA and GUS populations, in the most recent year (2007), was 97%, 74% and 79%, respectively, considering four generations back in the analysis. The rate of inbreeding in each population was 0.19%, 0.16% and 0.17% between 2002 and 2007, respectively. For the same period, the estimated effective population size for GCN, GSA and GUS was 46, 57 and 46, respectively. The estimated percentage of genetic diversity lost within each population over the last four decades was 8%, 3% and 5%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in the three populations was 93%, 91% and 86%, respectively. In conclusion, the results suggested that GCN and GUS have lost more genetic diversity than GSA over the past four decades, and this loss is gaining momentum due to increasing rates of inbreeding. Therefore, strategies such as optimum contribution selection and migration of genetic material are advised to increase effective population size, particularly in GCN and GUS.
Collapse
|
11
|
Alemayehu K. Population viability analysis of Walia ibex (Capra walie) at Simien Mountains National Park (SMNP), Ethiopia. Afr J Ecol 2012. [DOI: 10.1111/aje.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kefyalew Alemayehu
- Department of Animal Production and Technology; Bahir Dar University; PO Box 21 45; Bahir Dar; Ethiopia
| |
Collapse
|
12
|
Abstract
Many local breeds of farm animals have small populations and, consequently, are highly endangered. The correct genetic management of such populations is crucial for their survival. Managing an animal population involves two steps: first, the individuals who will be permitted to leave descendants are to be chosen and the number offspring they will be permitted to produce has to be determined; second, the mating scheme has to be identified. Strategies dealing with the first step are directed towards the maximisation of effective population size and, therefore, act jointly on the reduction in the loss of genetic variation and in the increase of inbreeding. In this paper, the most relevant methods are summarised, including the so-called 'Optimum Contribution' methodology (contributions are proportional to the coancestry of each individual with the rest), which has been shown to be the best. Typically, this method is applied to pedigree information, but molecular marker data can be used to complete or replace the genealogy. When the population is subjected to explicit selection on any trait, the above methodology can be used by balancing the response to selection and the increase in coancestry/inbreeding. Different mating strategies also exist. Some of the mating schemes try to reduce the level of inbreeding in the short term by preventing mating between relatives. Others involve regular (circular) schemes that imply higher levels of inbreeding within populations in the short term, but demonstrate better performance in the long term. In addition, other tools such as cryopreservation and reproductive techniques aid in the management of small populations. In the future, genomic marker panels may replace the pedigree information in measuring the coancestry. The paper also includes the results of several experiments and field studies on the effectiveness and on the consequences of the use of the different strategies.
Collapse
|
13
|
Caballero A, Rodríguez-Ramilo ST. A new method for the partition of allelic diversity within and between subpopulations. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0107-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Boettcher PJ, Tixier-Boichard M, Toro MA, Simianer H, Eding H, Gandini G, Joost S, Garcia D, Colli L, Ajmone-Marsan P. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim Genet 2010; 41 Suppl 1:64-77. [PMID: 20500756 DOI: 10.1111/j.1365-2052.2010.02050.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genetic diversity of the world's livestock populations is decreasing, both within and across breeds. A wide variety of factors has contributed to the loss, replacement or genetic dilution of many local breeds. Genetic variability within the more common commercial breeds has been greatly decreased by selectively intense breeding programmes. Conservation of livestock genetic variability is thus important, especially when considering possible future changes in production environments. The world has more than 7500 livestock breeds and conservation of all of them is not feasible. Therefore, prioritization is needed. The objective of this article is to review the state of the art in approaches for prioritization of breeds for conservation, particularly those approaches that consider molecular genetic information, and to identify any shortcomings that may restrict their application. The Weitzman method was among the first and most well-known approaches for utilization of molecular genetic information in conservation prioritization. This approach balances diversity and extinction probability to yield an objective measure of conservation potential. However, this approach was designed for decision making across species and measures diversity as distinctiveness. For livestock, prioritization will most commonly be performed among breeds within species, so alternatives that measure diversity as co-ancestry (i.e. also within-breed variability) have been proposed. Although these methods are technically sound, their application has generally been limited to research studies; most existing conservation programmes have effectively primarily based decisions on extinction risk. The development of user-friendly software incorporating these approaches may increase their rate of utilization.
Collapse
Affiliation(s)
- P J Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome 00153, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
|
17
|
Toro MA, Fernández J, Caballero A. Molecular characterization of breeds and its use in conservation. Livest Sci 2009. [DOI: 10.1016/j.livsci.2008.07.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics 2008; 179:683-92. [PMID: 18493080 DOI: 10.1534/genetics.107.083816] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the context of a conservation program the management of subdivided populations implies a compromise between the control of the global genetic diversity, the avoidance of high inbreeding levels, and, sometimes, the maintenance of a certain degree of differentiation between subpopulations. We present a dynamic and flexible methodology, based on genealogical information, for the maximization of the genetic diversity (measured through the global population coancestry) in captive subdivided populations while controlling/restricting the levels of inbreeding. The method is able to implement specific restrictions on the desired relative levels of coancestry between and within subpopulations. By accounting for the particular genetic population structure, the method determines the optimal contributions (i.e., number of offspring) of each individual, the number of migrants, and the particular subpopulations involved in the exchange of individuals. Computer simulations are used to illustrate the procedure and its performance in a range of reasonable scenarios. The method performs well in most situations and is shown to be more efficient than the commonly accepted one-migrant-per-generation strategy.
Collapse
|
19
|
Bennewitz J, Simianer H, Meuwissen THE. Investigations on merging breeds in genetic conservation schemes. J Dairy Sci 2008; 91:2512-9. [PMID: 18487675 DOI: 10.3168/jds.2007-0924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic diversity within livestock species is threatened by extinction of breeds and by genetic drift; the need to conserve genetic diversity by conservation schemes is widely accepted. To maintain the between-breed diversity, breeds are usually kept separately in live conservation schemes. However, in some cases it might be very difficult or even impossible to conserve a highly endangered breed in a closed population. If this breed is important for diversity, it might be beneficial to merge it with one or more breeds to conserve a part of the diversity that is contributed by this breed. The present study introduces a general framework that may enable one to decide when it is beneficial to form a synthetic breed that includes highly endangered breeds to maximize conserved diversity and when to keep the breeds separate. Expected future diversities were estimated using a kinship-based diversity measure together with extinction probabilities of the breeds. Using a small hypothetical data set, the pattern of diversity and its 2 components, within-breed and between-breed diversity, were analyzed in detail when forming a synthetic breed. The suggested approach was applied to a data set of 13 central European red and yellow cattle breeds. The results suggested forming a synthetic breed by combining a nonendangered breed with 1 of the 2 highly endangered breeds, which would result in a slight increase in conserved diversity.
Collapse
Affiliation(s)
- J Bennewitz
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Box 1432, As, Norway.
| | | | | |
Collapse
|
20
|
Simianer H. Accounting for non-independence of extinction probabilities in the derivation of conservation priorities based on Weitzman’s diversity concept. CONSERV GENET 2007. [DOI: 10.1007/s10592-007-9319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|