Gulliksen SM, Lie KI, Sølverød L, Østerås O. Risk factors associated with colostrum quality in Norwegian dairy cows.
J Dairy Sci 2008;
91:704-12. [PMID:
18218758 DOI:
10.3168/jds.2007-0450]
[Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of the present study were to evaluate colostrum quality in Norwegian dairy cows based on IgG content, and to identify associations between possible risk factors and low colostral IgG. A longitudinal cross-sectional survey on calf health in Norway was performed between June 2004 and December 2006. The participating dairy herds were randomly selected among herds registered in the Norwegian Dairy Herd Recording System as having at least 15 cow years. The participating farmers were requested to sample 10 mL of colostrum from the first milking after calving from 12 cows that had calved during the defined project period of 365 d. Colostrum samples from 1,250 cows from 119 herds were collected. The material consisted of 451, 337, 213, and 249 samples collected from cows in their first, second, third, and fourth parity or more, respectively. Analysis was performed on IgG content by using single radial immunodiffusion. Mixed models with herd as a cluster were fit by using grams of IgG per liter of colostrum as the dependent variable for the statistical analyses. The IgG content in the colostrum sampled ranged from 4 to 235 g/L, with a median of 45.0 g of IgG/L, with the 10th, 25th, 75th, and 90th percentiles being 23.1, 31.4, 63.6, and 91.6 g of IgG/L, respectively. Altogether, 57.8% of the samples contained less than the desired 50 g of IgG/L of colostrum. Cows in their fourth parity or more were found to have significantly higher levels of IgG per liter of colostrum than cows in their first or second parity. Colostrum from cows in their second parity had the lowest level of IgG. Cows calving during the winter months (December, January, and February) produced colostrum with a significantly lower IgG content compared with cows calving in any other season of the year. Somatic cell count, measured after calving, was significantly higher in cows producing colostrum of inferior quality compared with those producing high-quality colostrum. Of the total variation in colostrum quality, 13.7% could be explained by cluster effects within herd. The variation in IgG content in colostrum produced by Norwegian dairy cows indicates a need for improved colostrum quality control and subsequent adjustment of the colostrum feeding regimen to ensure a protective immunological status for newborn calves.
Collapse