1
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
2
|
Manrique P, Freire MO, Chen C, Zadeh HH, Young M, Suci P. Perturbation of the indigenous rat oral microbiome by ciprofloxacin dosing. Mol Oral Microbiol 2013; 28:404-14. [PMID: 23844936 DOI: 10.1111/omi.12033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
Mucosal surfaces such as the gut, vagina and oral cavity are colonized by microbiota that are an integral component of the healthy ecosystem. Recent molecular techniques make it feasible to correlate antimicrobial dosing levels with changes in microbiome composition. The objective of this study was to characterize the rat oral plaque microbiome composition at doses of ciprofloxacin that were considerably above and below nominal in vitro minimal inhibitory concentrations of a variety of gram-positive oral commensal bacteria. We exposed the oral cavities of rats to relatively low (0.1 μg ml(-1) ) and high (20 μg ml(-1)) doses of ciprofloxacin in the drinking water over a 3-day period. Plaque microbiota were characterized using 454 pyrosequencing. The rat indigenous community was dominated by the genera Rothia (74.4%) and Streptococcus (4.7%). Dosing at 0.1 μg ml(-1) was associated with changes in Rothia and Streptococcus species that were not significant, whereas dosing at 20 μg ml(-1) caused a pronounced (significant) reduction in the relative abundance of the Streptococcus genus. Taxonomic independent analysis indicated that the perturbation in the overall community structure attributed to dosing with ciprofloxacin at either the low or high dose was relatively low. The results suggest that it is feasible to use an antimicrobial dosing regimen to selectively target a specific subset of a mucosal microbiome for elimination with minimal perturbation of the entire community.
Collapse
Affiliation(s)
- P Manrique
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
3
|
Mattila-Sandholm T, Alivehmas T, Kaartinen L, Honkanen-Buzalski T. Growth characteristics of Staphylococcus aureus and Escherichia coli in whey from sequentially infected milk. Acta Vet Scand 1990. [PMID: 2260509 DOI: 10.1186/bf03547558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The growth of Staphylococcus aureus and Escherichia coli was followed in bovine whey samples which had been prepared from milk previously incubated with cultures of S. aureus or E. coli. Staphylococcal strains were divided into 2 groups according to their ability to form compact or diffuse colonies on serum soft agar, which is related to the absence or presence of capsule respectively. The growth of compact staphylococci was dependent on the bulk tank milk used whereas diffuse colony forming staphylococci grew equally well in all bulk milk, also in all inoculated milk. The growth of E. coli was markedly enhanced in whey samples prepared from milk preincubated with staphylococci. However, clear growth inhibition was seen with E. coli and S. aureus strains when grown in whey prepared from milk preincubated with E. coli. Results indicate that the growth promotion of pathogens due to compositional changes in milk are of importance during the course of infection because the growth pattern on staphylococci is dependent on these compositional changes. The growth-inhibitory effects caused by E. coli may explain difficulties in isolating this organism.
Collapse
|
4
|
Hogan JS, Smith KL, Todhunter DA, Schoenberger PS. Rate of environmental mastitis in quarters infected with Corynebacterium bovis and Staphylococcus species. J Dairy Sci 1988; 71:2520-5. [PMID: 3183146 DOI: 10.3168/jds.s0022-0302(88)79840-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rates of environmental streptococcal and coliform intramammary infections were compared among quarters uninfected and infected with either Corynebacterium bovis or Staphylococcus species. Rate of environmental streptococcal intramammary infections was 3.9 times greater in C. bovis-infected quarters than in uninfected quarters. Rate of environmental streptococcal infections was 2.6 times greater in quarters infected with Staphylococcus species than in uninfected quarters. Rate of coliform intramammary infections did not differ among quarters with differing bacteriological infection statuses. Quarters infected with either C. bovis or Staphylococcus species had higher milk SCC than did uninfected quarters. Intramammary infection with either Corynebacterium bovis or Staphylococcus species did not protect quarters against coliform infection. Rate of environmental streptococcal infections was enhanced in quarters infected with either C. bovis or Staphylococcus species.
Collapse
Affiliation(s)
- J S Hogan
- Department of Dairy Science, Ohio State University, Wooster 44691
| | | | | | | |
Collapse
|