1
|
Dhayal SK, Lund M, van den Brink J, Medjahdi G, Celzard A, Fierro V, Gardiennet C, Pasc A, Canilho N. Enhancing the activity of biocatalysts supported on calcium phosphate by inducing mesoporosity with phosphopeptides. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Shi X, Wu D, Xu Y, Yu X. Engineering the optimum pH of β-galactosidase from Aspergillus oryzae for efficient hydrolysis of lactose. J Dairy Sci 2022; 105:4772-4782. [PMID: 35450720 DOI: 10.3168/jds.2021-21760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
Abstract
β-Galactosidase (lacA) from Aspergillus oryzae is widely used in the dairy industry. Its acidic pH optimum and severe product inhibition limit its application for lactose hydrolysis in milk. In the present study, structure-based sequence alignment was conducted to determine the candidate mutations to shift the pH optimum of lacA to the neutral range. The Y138F and Y364F mutants shifted the pH optimum of lacA from 4.5 to 5.5 and 6.0, respectively. The acid dissociation constant (pKa) values of catalytic acid/base residues with upwards shift were consistent with the increased pH optimum. All variants in the present study also alleviated galactose inhibition to various extents. Molecular dynamics demonstrated that the less rigid tertiary structures and lower galactose-binding free energy of Y138F and Y364F might facilitate the release of the end product. Both Y138F and Y364F mutants exhibited better hydrolytic ability than lacA in milk lactose hydrolysis. The higher pH optimum and lower galactose inhibition of Y138F and Y364F may explain their superiority over lacA. The Y138F and Y364F mutants in the present study showed potential in producing low-lactose milk, and our studies provide a novel strategy for engineering the pH optimum of glycoside hydrolase.
Collapse
Affiliation(s)
- Xin Shi
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
3
|
Ambrogi V, Bottacini F, O'Callaghan J, Casey E, van Breen J, Schoemaker B, Cao L, Kuipers B, O'Connell Motherway M, Schoterman M, van Sinderen D. Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Front Microbiol 2021; 12:662959. [PMID: 34012427 PMCID: PMC8126724 DOI: 10.3389/fmicb.2021.662959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted β-galactosidases encoded by various species and strains of infant-associated bifidobacteria. In the current study, we further characterized seven out of these seventeen bifidobacterial β-galactosidases in terms of their kinetics, enzyme stability and oligomeric state. Accordingly, we established whether these β-galactosidases are capable of synthesizing GOS via enzymatic transgalactosylation employing lactose as the feed substrate. Our findings show that the seven selected enzymes all possess such transgalactosylation activity, though they appear to differ in their efficiency by which they perform this reaction. From chromatography analysis, it seems that these enzymes generate two distinct GOS mixtures: GOS with a relatively short or long degree of polymerization profile. These findings may be the stepping stone for further studies aimed at synthesizing new GOS variants with novel and/or enhanced prebiotic activities and potential for industrial applications.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Eoghan Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Chen X, Wang T, Jin M, Tan Y, Liu L, Liu L, Li C, Yang Y, Du P. Metabolomics analysis of growth inhibition of
Lactobacillus plantarum
under ethanol stress. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Tingting Wang
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Man Jin
- National Dairy Quality Supervision and Inspection Center Harbin150028China
| | - Ying Tan
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Libo Liu
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Lihua Liu
- Institute of Animal Science (IAS) Chinese Academy of Agricultural Sciences (CAAS) Beijing100193China
| | - Chun Li
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Yuzhuo Yang
- Heilongjiang Academy of Green Food Science Harbin150030China
| | - Peng Du
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| |
Collapse
|
5
|
Labus K. Effective detection of biocatalysts with specified activity by using a hydrogel-based colourimetric assay - β-galactosidase case study. PLoS One 2018; 13:e0205532. [PMID: 30308030 PMCID: PMC6181394 DOI: 10.1371/journal.pone.0205532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
The main aim of this study was to prepare gelatine-based hydrogels containing entrapped substrate and to examine the applicability of these matrices for detection of enzymes with a specified catalytic activity. The general research concept assumed the use of a substrate that, in the presence of a particular enzyme, will quickly undergo conversion to a coloured product. ortho-Nitrophenyl-β-D-galactopyranoside (ONPG) was used as the immobilized substrate and β-galactosidase from Kluyveromyces lactis as the biocatalyst to be determined. Among other factors, the range of detectable concentrations of galactosidase, the operational pH range, the time necessary to achieve a visible response and the preferred storage conditions for the test were determined. As a result, an effective colourimetric test for β-galactosidase detection was obtained. Its main advantages include (i) the effective detection of the enzyme at concentrations greater than or equal to 0.6 mg.L-1, (ii) the ability to perform initial quantification of the enzyme on the basis of the intensity of the obtained colour (iii) applicability in a wide pH range (from 4.0 to 9.0), (iv) a relatively short response time (from 1 to a maximum of 30 minutes) and (v) stability in long-term storage at 4°C (90 days without loss of specific properties).
Collapse
Affiliation(s)
- Karolina Labus
- Division of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
6
|
Zhang L, Jin Q, Luo J, Wu J, Wang S, Wang Z, Gong S, Zhang W, Lan X. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity. J Food Sci 2018; 83:1311-1320. [PMID: 29660758 DOI: 10.1111/1750-3841.14117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Antifreeze peptides can protect living organisms from low temperatures by preventing damage or killing due to ice crystal formation between cells. Therefore, antifreeze peptides can be used as a low temperature protectant for cryopreservation of cells and tissues, and also in food production. In this study, a recombinant SF-P gene was constructed and inserted into pNZ8149 to construct a food grade expression vector, which was then electroporated into Lactococcus lactis NZ3900. The expression of the target protein was induced using Nisin, and the optimal expression condition was determined to be a pH of 6.0, Nisin concentration of 25 ng/mL, temperature of 37 °C, and incubation time of 6 hr. Compared to the strain NZ3900 and the recombinant strain SF-P1 without addition of Nisin, the recombinant strain SF-P2 showed the highest cell survival and thermal hysteresis activity, and had a reduction in the changes of activities of extracellular and intracellular lactate dehydrogenase and β-galactosidase after freezing. Moreover, analysis by SEM showed that SF-P2 cells were more completely and regularly shaped than other strains, displayed no obvious leakage of cell contents, and had an intact boundary between cells after freezing. These results indicate that the recombinant strain SF-P2 has a protective effect against freezing. This paper presents a food grade expression system for an antifreeze peptide SF-P using L. lactis as a host, and shows that the intracellular expression of antifreeze peptide could protect the cellular integrity and physiological functions of L. lactis. PRACTICAL APPLICATION The recombinant Lactococcus lactis with intracellular expression of antifreeze peptides SF-P could reduce the damage of bacteria cells induced by freezing or freeze drying, so, it could be applied in the process of freezing food without separation, such as the manufacture of yoghurt ice cream, frozen dough, and so on.
Collapse
Affiliation(s)
- Li Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Quan Jin
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jing Luo
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jinhong Wu
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou Univ., Fuzhou, 350108, China
| | - Zhengwu Wang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shengxiang Gong
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Xiaohong Lan
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
7
|
Fischer C, Kleinschmidt T. Synthesis of Galactooligosaccharides in Milk and Whey: A Review. Compr Rev Food Sci Food Saf 2018; 17:678-697. [DOI: 10.1111/1541-4337.12344] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Christin Fischer
- Dept. of Applied Biosciences and Process Engineering; Anhalt Univ. of Applied Sciences; Bernburger Str. 55 06366 Köthen Germany
| | - Thomas Kleinschmidt
- Dept. of Applied Biosciences and Process Engineering; Anhalt Univ. of Applied Sciences; Bernburger Str. 55 06366 Köthen Germany
| |
Collapse
|
8
|
Altas MC, Kudryashov E, Buckin V. Ultrasonic Monitoring of Enzyme Catalysis; Enzyme Activity in Formulations for Lactose-Intolerant Infants. Anal Chem 2016; 88:4714-23. [PMID: 27018312 DOI: 10.1021/acs.analchem.5b04673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The paper introduces ultrasonic technology for real-time, nondestructive, precision monitoring of enzyme-catalyzed reactions in solutions and in complex opaque media. The capabilities of the technology are examined in a comprehensive analysis of the effects of a variety of diverse factors on the performance of enzyme β-galactosidase in formulations for reduction of levels of lactose in infant milks. These formulations are added to infant's milk bottles prior to feeding to overcome the frequently observed intolerance to lactose (a milk sugar), a serious issue in healthy development of infants. The results highlight important impediments in the development of these formulations and also illustrate the capability of the described ultrasonic tools in the assessment of the performance of enzymes in complex reaction media and in various environmental conditions.
Collapse
Affiliation(s)
- Margarida C Altas
- School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Evgeny Kudryashov
- School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Vitaly Buckin
- School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Effect of Prebiotic Galacto-Oligosaccharides on Serum Lipid Profile of Hypercholesterolemics. Probiotics Antimicrob Proteins 2016; 8:19-30. [DOI: 10.1007/s12602-016-9206-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Vašák M, Schnabl J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. Met Ions Life Sci 2016; 16:259-90. [DOI: 10.1007/978-3-319-21756-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Hu B, Tian F, Wang G, Zhang Q, Zhao J, Zhang H, Chen W. Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin. Lett Appl Microbiol 2015; 61:13-9. [PMID: 25800811 DOI: 10.1111/lam.12418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED This study evaluated the effect of soy lecithin on the bile resistance of Lactobacillus plantarum. Six strains were cultured in MRS broth supplemented with soy lecithin at different concentrations. The strains incubated in MRS broth with 1·0% soy lecithin showed no inhibitory effect on cell growth. After culturing in MRS broth with 0·2-1·0% soy lecithin, the survival rate of harvested cells increased significantly (P < 0·05) in the 0·3% bile challenge compared with the no added soy lecithin group. The cells incubated with 0·6% soy lecithin were able to grow in an MRS broth with a higher bile salt content. The surface hydrophobicity and cell leakage in the bile challenge were assessed to reveal the physical changes caused by the addition of soy lecithin. The cell surface hydrophobicity was enhanced and the membrane integrity in the bile challenge increased after culturing with soy lecithin. A shift in the fatty acid composition was also observed, illustrating the cell membrane change in the soy lecithin culture. SIGNIFICANCE AND IMPACT OF THE STUDY In this study, we report for the first time the beneficial effect of adding soy lecithin to an MRS broth on subsequent bile tolerance of Lactobacillus plantarum. Soy lecithin had no inhibitory effect on strain viability but significantly enhanced bile resistance. Surface hydrophobicity and cell integrity increased in strains cultured with soy lecithin. The observed shift in the cell fatty acid composition indicated changes to the cell membrane. As soy lecithin is safe for use in the food industry, its protective effects can be harnessed for the development of bile-sensitive strains with health-benefit functions for use in probiotic products.
Collapse
Affiliation(s)
- B Hu
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - F Tian
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - G Wang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Q Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - J Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - H Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - W Chen
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
12
|
Li X, Lopetcharat K, Qiu Y, Drake M. Sugar reduction of skim chocolate milk and viability of alternative sweetening through lactose hydrolysis. J Dairy Sci 2015; 98:1455-66. [DOI: 10.3168/jds.2014-8490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/28/2014] [Indexed: 11/19/2022]
|
13
|
Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chem 2014; 145:388-94. [DOI: 10.1016/j.foodchem.2013.08.060] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 12/26/2022]
|
14
|
Wei W, Qi D, Zhao HZ, Lu ZX, Lv F, Bie X. Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol. Food Chem 2013; 141:3085-92. [DOI: 10.1016/j.foodchem.2013.05.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/18/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
|
15
|
Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J. The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int J Biol Macromol 2013; 60:109-15. [DOI: 10.1016/j.ijbiomac.2013.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/27/2022]
|
16
|
Cardelle-Cobas A, Corzo N, Martínez-Villaluenga C, Olano A, Villamiel M. Effect of reaction conditions on lactulose-derived trisaccharides obtained by transgalactosylation with β-galactosidase of Kluyveromyces lactis. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1496-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
PINHO JEANMARCELRODRIGUES, PASSOS FLÁVIAMARIALOPES. SOLVENT EXTRACTION OF β-GALACTOSIDASE FROM KLUYVEROMYCES LACTIS YIELDS A STABLE AND HIGHLY ACTIVE ENZYME PREPARATION. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00384.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Otieno DO. Synthesis of β-Galactooligosaccharides from Lactose Using Microbial β-Galactosidases. Compr Rev Food Sci Food Saf 2010; 9:471-482. [PMID: 33467831 DOI: 10.1111/j.1541-4337.2010.00121.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galactooligosaccharides (GOSs) are nondigestible oligosaccharides and are comprised of 2 to 20 molecules of galactose and 1 molecule of glucose. They are recognized as important prebiotics for their stimulation of the proliferation of intestinal lactic acid bacteria and bifidobacteria. Therefore, they beneficially affect the host by selectively stimulating the growth and/or activity of a limited number of gastrointestinal microbes (probiotics) that confer health benefits. Prebiotics and probiotics have only recently been recognized as contributors to human health. A GOS can be produced by a series of enzymatic reactions catalyzed by β-galactosidase, where the glycosyl group of one or more D-galactosyl units is transferred onto the D-galactose moiety of lactose, in a process known as transgalactosylation. Microbes can be used as a source for the β-galactosidase enzyme or as agents to produce GOS molecules. Commercial β-galactosidase enzymes also do have a great potential for their use in GOS synthesis. These transgalactosyl reactions, which could find useful application in the dairy as well as the larger food industry, have not been fully exploited. A better understanding of the enzyme reaction as well as improved analytical techniques for GOS measurements are important in achieving this worthwhile objective.
Collapse
Affiliation(s)
- Daniel Obed Otieno
- Author is with Bioenergy and Bioproducts Engineering Laboratories-BSEL, Washington State Univ., TriCities Campus, 2710 Univ. Drive, Richland, WA 99354, U.S.A. Direct inquiries to author Otieno (E-mail: )
| |
Collapse
|
19
|
Maksimainen M, Timoharju T, Kallio JM, Hakulinen N, Turunen O, Rouvinen J. Crystallization and preliminary diffraction analysis of a beta-galactosidase from Trichoderma reesei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:767-9. [PMID: 19652334 PMCID: PMC2720328 DOI: 10.1107/s1744309109023926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/22/2009] [Indexed: 11/10/2022]
Abstract
An extracellular beta-galactosidase from Trichoderma reesei was crystallized from sodium cacodylate buffer using polyethylene glycol (PEG) as a precipant. Crystals grown by homogenous streak-seeding belonged to space group P1, with unit-cell parameters a = 67.3, b = 69.1, c = 81.5 A, alpha = 109.1, beta = 97.3, gamma = 114.5 degrees . The crystals diffracted to 1.8 A resolution using a rotating-anode generator and to 1.2 A resolution using a synchrotron source. On the basis of the Matthews coefficient (V(M) = 3.16 A(3) Da(-1)), one molecule is estimated to be present in the asymmetric unit. The aim of the determination of the crystal structure is to increase the understanding of this industrially significant enzyme.
Collapse
Affiliation(s)
| | - Tommi Timoharju
- Department of Biotechnology and Chemical Technology, Helsinki University of Technology, Finland
| | | | | | - Ossi Turunen
- Department of Biotechnology and Chemical Technology, Helsinki University of Technology, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Joensuu, Finland
| |
Collapse
|
20
|
Neri DF, Balcão VM, Carneiro-da-Cunha MG, Carvalho Jr. LB, Teixeira JA. Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. CATAL COMMUN 2008. [DOI: 10.1016/j.catcom.2008.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Stimulation of zero-trans rates of lactose and maltose uptake into yeasts by preincubation with hexose to increase the adenylate energy charge. Appl Environ Microbiol 2008; 74:3076-84. [PMID: 18378647 DOI: 10.1128/aem.00188-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initial rates of sugar uptake (zero-trans rates) are often measured by incubating yeast cells with radiolabeled sugars for 5 to 30 s and determining the radioactivity entering the cells. The yeast cells used are usually harvested from growth medium, washed, suspended in nutrient-free buffer, and stored on ice before they are assayed. With this method, the specific rates of zero-trans lactose uptake by Kluyveromyces lactis or recombinant Saccharomyces cerevisiae strains harvested from lactose fermentations were three- to eightfold lower than the specific rates of lactose consumption during fermentation. No significant extracellular beta-galactosidase activity was detected. The ATP content and adenylate energy charge (EC) of the yeasts were relatively low before the [(14)C]lactose uptake reactions were started. A short (1- to 7-min) preincubation of the yeasts with 10 to 30 mM glucose caused 1.5- to 5-fold increases in the specific rates of lactose uptake. These increases correlated with increases in EC (from 0.6 to 0.9) and ATP (from 4 to 8 micromol x g dry yeast(-1)). Stimulation by glucose affected the transport V(max) values, with smaller increases in K(m) values. Similar observations were made for maltose transport, using a brewer's yeast. These findings suggest that the electrochemical proton potential that drives transport through sugar/H(+) symports is significantly lower in the starved yeast suspensions used for zero-trans assays than in actively metabolizing cells. Zero-trans assays with such starved yeast preparations can produce results that seriously underestimate the capacity of sugar/H(+) symports. A short exposure to glucose allows a closer approach to the sugar/H(+) symport capacity of actively metabolizing cells.
Collapse
|
22
|
Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.08.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Ladero Galán M, Pessela B, Fernandez-Lafuente R, Guisan JM, Garcia-Ochoa F. Enhancement of the activity of an industrial β-galactosidase from Kluyveromies lactis by metal cations: Kinetic modelling. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Rodríguez ÁP, Leiro RF, Trillo MC, Cerdán ME, Siso MIG, Becerra M. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microb Cell Fact 2006; 5:41. [PMID: 17176477 PMCID: PMC1764428 DOI: 10.1186/1475-2859-5-41] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 12/18/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The beta-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the beta-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. RESULTS The highest levels of intracellular and extracellular beta-galactosidase were obtained when the segment corresponding to the five domain of K. lactis beta-galactosidase was replaced by the corresponding five domain of the A. niger beta-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature (40 degrees C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the beta-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence of Ni2+. The affinity for synthetic (ONPG) or natural (lactose) substrates was higher in the hybrid than in the native K. lactis beta-galactosidase. Finally, a structural-model of the hybrid protein was obtained by homology modelling and the experimentally determined properties of the protein were discussed in relation to it. CONCLUSION A hybrid protein between K. lactis and A. niger beta-galactosidases was constructed that increases the yield of the protein released to the growth medium. Modifications introduced in the construction, besides to improve secretion, conferred to the protein biochemical characteristics of biotechnological interest.
Collapse
Affiliation(s)
- Ángel Pereira Rodríguez
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Rafael Fernández Leiro
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Cristina Trillo
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Esperanza Cerdán
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Isabel González Siso
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Manuel Becerra
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| |
Collapse
|
25
|
Kreft M, Jelen P. Stability and Activity of β-Galactosidase in Sonicated Cultures of Lactobacillus delbrueckii ssp. bulgaricus 11842 as Affected by Temperature and Ionic Environments. J Food Sci 2000. [DOI: 10.1111/j.1365-2621.2000.tb10613.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
van Rantwijk F, Woudenberg-van Oosterom M, Sheldon R. Glycosidase-catalysed synthesis of alkyl glycosides. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(99)00042-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|