Chen D, Rocha-Mendoza D, Shan S, Smith Z, García-Cano I, Prost J, Jimenez-Flores R, Campanella O. Characterization and Cellular Uptake of Peptides Derived from
In Vitro Digestion of Meat Analogues Produced by a Sustainable Extrusion Process.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022;
70:8124-8133. [PMID:
35730749 DOI:
10.1021/acs.jafc.2c01711]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Whether proteins in meat analogues (MAs) have the ability to provide equivalent nutrition as those in animal meat remains unknown. Herein, a MA was produced by high-moisture extrusion using soy and wheat proteins. The physicochemical properties, in vitro digestion, and cellular uptake of the released peptides were systematically compared between the MA and the chicken breast (CB). The MA showed a higher hardness but a lower degree of texturization than the CB. After simulated digestion, soluble peptides in the MA had a higher molecular weight and higher hydrophobicity. No observable cytotoxicity or inflammatory response to Caco-2 cells was found for both MA and CB digests. The former exhibited less permeability of peptides across Caco-2 cells. Liquid chromatography with tandem mass spectrometry found that the identified peptides in MA and CB digests contained 7-30 and 7-20 amino acid residues, respectively, and they became shorter after cellular transportation. The amino acid composition showed fewer essential and non-essential amino acids in the MA permeate than in the CB permeate.
Collapse