1
|
Tabari F, Patron C, Cryer H, Johari K. HD-tDCS over left supplementary motor area differentially modulated neural correlates of motor planning for speech vs. limb movement. Int J Psychophysiol 2024; 201:112357. [PMID: 38701898 DOI: 10.1016/j.ijpsycho.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The supplementary motor area (SMA) is implicated in planning, execution, and control of speech production and limb movement. The SMA is among putative generators of pre-movement EEG activity which is thought to be neural markers of motor planning. In neurological conditions such as Parkinson's disease, abnormal pre-movement neural activity within the SMA has been reported during speech production and limb movement. Therefore, this region can be a potential target for non-invasive brain stimulation for both speech and limb movement. The present study took an initial step in examining the application of high-definition transcranial direct current stimulation (HD-tDCS) over the left SMA in 24 neurologically intact adults. Subsequently, event-related potentials (ERPs) were recorded while participants performed speech and limb movement tasks. Participants' data were collected in three counterbalanced sessions: anodal, cathodal and sham HD-tDCS. Relative to sham stimulation, anodal, but not cathodal, HD-tDCS significantly attenuated ERPs prior to the onset of the speech production. In contrast, neither anodal nor cathodal HD-tDCS significantly modulated ERPs prior to the onset of limb movement compared to sham stimulation. These findings showed that neural correlates of motor planning can be modulated using HD-tDCS over the left SMA in neurotypical adults, with translational implications for neurological conditions that impair speech production. The absence of a stimulation effect on ERPs prior to the onset of limb movement was not expected in this study, and future studies are warranted to further explore this effect.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Celeste Patron
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Hope Cryer
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Combrisson E, Di Rienzo F, Saive AL, Perrone-Bertolotti M, Soto JLP, Kahane P, Lachaux JP, Guillot A, Jerbi K. Human local field potentials in motor and non-motor brain areas encode upcoming movement direction. Commun Biol 2024; 7:506. [PMID: 38678058 PMCID: PMC11055917 DOI: 10.1038/s42003-024-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Limb movement direction can be inferred from local field potentials in motor cortex during movement execution. Yet, it remains unclear to what extent intended hand movements can be predicted from brain activity recorded during movement planning. Here, we set out to probe the directional-tuning of oscillatory features during motor planning and execution, using a machine learning framework on multi-site local field potentials (LFPs) in humans. We recorded intracranial EEG data from implanted epilepsy patients as they performed a four-direction delayed center-out motor task. Fronto-parietal LFP low-frequency power predicted hand-movement direction during planning while execution was largely mediated by higher frequency power and low-frequency phase in motor areas. By contrast, Phase-Amplitude Coupling showed uniform modulations across directions. Finally, multivariate classification led to an increase in overall decoding accuracy (>80%). The novel insights revealed here extend our understanding of the role of neural oscillations in encoding motor plans.
Collapse
Affiliation(s)
- Etienne Combrisson
- Psychology Department, University of Montreal, Montreal, QC, Canada.
- University of Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité UR 7424, F-69622, Villeurbanne, France.
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, 13005, Marseille, France.
| | - Franck Di Rienzo
- University of Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité UR 7424, F-69622, Villeurbanne, France
| | - Anne-Lise Saive
- Psychology Department, University of Montreal, Montreal, QC, Canada
- Cognitive Science Department, Lyfe Research and Innovation Center, Ecully, France
| | | | - Juan L P Soto
- Telecommunications and Control Engineering Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Philippe Kahane
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Aymeric Guillot
- University of Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité UR 7424, F-69622, Villeurbanne, France
| | - Karim Jerbi
- Psychology Department, University of Montreal, Montreal, QC, Canada.
- Mila (Quebec AI Institute), montreal, QC, Canada.
- UNIQUE Centre (Quebec Neuro-AI research Center), Montreal, QC, Canada.
| |
Collapse
|
3
|
Zheng W, Guan X, Zhang X, Gong J. Early recovery of cognition and brain plasticity after surgery in children with low-grade frontal lobe tumors. Front Pediatr 2023; 11:1127098. [PMID: 36969297 PMCID: PMC10036824 DOI: 10.3389/fped.2023.1127098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Low-grade frontal lobe tumors (LGFLT) can be cured through total resection, but surgical trauma could impair higher-order cognitive function. We aim to characterize the short-term natural cognitive recovery and brain plasticity in surgically-treated pediatric patients with LGFLT. Methods Ten pediatric patients with LGFLT were enrolled. Their cognitive function was assessed before the surgery (S0), in the first month post-surgery (S1), and 3-6 months post-surgery (S2), using the CNS Vital Signs battery. DTI and rs-fMRI were performed during the same time periods. Changes of cognition and image metrics between S1>S0 and S2>S1 were analyzed. Results The Motor Speed (MotSp) and Reaction Time (RT) scores significantly decreased in S1 and recovered in S2. Rs-fMRI showed decreased functional connectivity (FC) between the bilateral frontal lobes and bilateral caudates, putamina, and pallidi in S1>S0 (voxel threshold p -unc < 0.001 , cluster threshold p -FDR < 0.05 ). In S2>S1, FC recovery was observed in the neighboring frontal cortex areas ( p -unc < 0.001 , p -FDR < 0.05 ). Among them, the FC in the caudates-right inferior frontal gyri was positively correlated to the RT ( p -FDR < 0.05 ). A DTI Tract-based spatial statistics (TBSS) analysis showed decreased fractional anisotropy and axial diffusivity mainly in the corticospinal tracts, cingulum, internal capsule, and external capsule at 0-6 months post-surgery (TFCE- p < 0.05 ). The DTI metrics were not associated with the cognitive data. Conclusion Processing speed impairment after an LGFLT resection can recover naturally within 3-6 months in school-age children. Rs-fMRI is more sensitive to short-term brain plasticity than DTI TBSS analysis. "Map expansion" plasticity in the frontal-basal ganglia circuit may contribute to the recovery.
Collapse
Affiliation(s)
- Wenjian Zheng
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyi Guan
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Beijing, China
| | | | - Jian Gong
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Beijing, China
- Correspondence: Jian Gong
| |
Collapse
|
4
|
Skrebenkov EA, Vlasova OL. Mathematical Simulation of Efferent Regulation of Muscle Contraction. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Tatti E, Ferraioli F, Cacciola A, Chan C, Quartarone A, Ghilardi MF. Modulation of Gamma Spectral Amplitude and Connectivity During Reaching Predicts Peak Velocity and Movement Duration. Front Neurosci 2022; 16:836703. [PMID: 35281507 PMCID: PMC8908429 DOI: 10.3389/fnins.2022.836703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Modulation of gamma oscillations recorded from the human motor cortex and basal ganglia appears to play a key role in movement execution. However, there are still major questions to be answered about the specific role of cortical gamma activity in both the planning and execution of movement features such as the scaling of peak velocity and movement time. In this study, we characterized movement-related gamma oscillatory dynamics and its relationship with kinematic parameters based on 256-channels EEG recordings in 64 healthy subjects while performing fast and uncorrected reaching movements to targets located at three distances. In keeping with previous studies, we found that movement-related gamma synchronization occurred during movement execution. As a new finding, we showed that gamma synchronization occurred also before movement onset, with planning and execution phases involving different gamma peak frequencies and topographies. Importantly, the amplitude of gamma synchronization in both planning and execution increased with target distance and predicted peak velocity and movement time. Additional analysis of phase coherence revealed a gamma-coordinated long-range network involving occipital, frontal and central regions during movement execution that was positively related to kinematic features. This is the first evidence in humans supporting the notion that gamma synchronization amplitude and phase coherence pattern can reliably predict peak velocity amplitude and movement time. Therefore, these findings suggest that cortical gamma oscillations have a crucial role for the selection, implementation and control of the appropriate kinematic parameters of goal-directed reaching movements.
Collapse
Affiliation(s)
- Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York (CUNY), School of Medicine, New York, NY, United States
- *Correspondence: Elisa Tatti,
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York (CUNY), School of Medicine, New York, NY, United States
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York (CUNY), School of Medicine, New York, NY, United States
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Maria Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York (CUNY), School of Medicine, New York, NY, United States
- Maria Felice Ghilardi,
| |
Collapse
|
6
|
A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity. Sci Rep 2022; 12:1101. [PMID: 35058514 PMCID: PMC8776813 DOI: 10.1038/s41598-022-05079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
The effective decoding of movement from non-invasive electroencephalography (EEG) is essential for informing several therapeutic interventions, from neurorehabilitation robots to neural prosthetics. Deep neural networks are most suitable for decoding real-time data but their use in EEG is hindered by the gross classes of motor tasks in the currently available datasets, which are solvable even with network architectures that do not require specialized design considerations. Moreover, the weak association with the underlying neurophysiology limits the generalizability of modern networks for EEG inference. Here, we present a neurophysiologically interpretable 3-dimensional convolutional neural network (3D-CNN) that captured the spatiotemporal dependencies in brain areas that get co-activated during movement. The 3D-CNN received topography-preserving EEG inputs, and predicted complex components of hand movements performed on a plane using a back-drivable rehabilitation robot, namely (a) the reaction time (RT) for responding to stimulus (slow or fast), (b) the mode of movement (active or passive, depending on whether there was an assistive force provided by the apparatus), and (c) the orthogonal directions of the movement (left, right, up, or down). We validated the 3D-CNN on a new dataset that we acquired from an in-house motor experiment, where it achieved average leave-one-subject-out test accuracies of 79.81%, 81.23%, and 82.00% for RT, active vs. passive, and direction classifications, respectively. Our proposed method outperformed the modern 2D-CNN architecture by a range of 1.1% to 6.74% depending on the classification task. Further, we identified the EEG sensors and time segments crucial to the classification decisions of the network, which aligned well with the current neurophysiological knowledge on brain activity in motor planning and execution tasks. Our results demonstrate the importance of biological relevance in networks for an accurate decoding of EEG, suggesting that the real-time classification of other complex brain activities may now be within our reach.
Collapse
|
7
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Piovesan D, Kolesnikov M, Lynch K, Mussa-Ivaldi FA. The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances. JOURNAL OF MECHANISMS AND ROBOTICS 2019; 11:060903. [PMID: 34163561 PMCID: PMC8208241 DOI: 10.1115/1.4044599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/13/2023]
Abstract
The simultaneous control of force and motion is important in everyday activities when humans interact with objects. While many studies have analyzed the control of movement within a perturbing force field, few have investigated its dual aspects of controlling a contact force in nonisometric conditions. The mechanism by which the central nervous system controls forces during movements is still unclear, and it can be elucidated by estimating the mechanical properties of the arm during tasks with concurrent motion and contact force goals. We investigate how arm mechanics change when a force control task is accomplished during low-frequency positional perturbations of the arm. Contrary to many force regulation algorithms implemented in robotics, where contact impedance is decreased to reduce force fluctuations in response to position disturbances, we observed a steady increase of arm endpoint stiffness as the task progressed. Based on this evidence, we propose a theoretical framework suggesting that an internal model of the perturbing trajectory is formed. We observed that force regulation in the presence of predictable positional disturbances is implemented using a position control strategy together with the modulation of the endpoint stiffness magnitude, where the direction of the endpoint stiffness ellipse's major axis is oriented toward the desired force.
Collapse
Affiliation(s)
- Davide Piovesan
- Department Biomedical Industrial and Systems Engineering, Gannon University, 109 University Square, Erie, PA 16541
| | | | - Kevin Lynch
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Ferdinando A. Mussa-Ivaldi
- The Shirley Ryan Ability Lab, 355 E Erie Street, Chicago, IL 60611
- Department of Physiology, Northwestern University, M211 303 E. Chicago Avenue, Chicago, IL 60611
| |
Collapse
|
9
|
Bockbrader MA, Francisco G, Lee R, Olson J, Solinsky R, Boninger ML. Brain Computer Interfaces in Rehabilitation Medicine. PM R 2019; 10:S233-S243. [PMID: 30269808 DOI: 10.1016/j.pmrj.2018.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022]
Abstract
One innovation currently influencing physical medicine and rehabilitation is brain-computer interface (BCI) technology. BCI systems used for motor control record neural activity associated with thoughts, perceptions, and motor intent; decode brain signals into commands for output devices; and perform the user's intended action through an output device. BCI systems used for sensory augmentation transduce environmental stimuli into neural signals interpretable by the central nervous system. Both types of systems have potential for reducing disability by facilitating a user's interaction with the environment. Investigational BCI systems are being used in the rehabilitation setting both as neuroprostheses to replace lost function and as potential plasticity-enhancing therapy tools aimed at accelerating neurorecovery. Populations benefitting from motor and somatosensory BCI systems include those with spinal cord injury, motor neuron disease, limb amputation, and stroke. This article discusses the basic components of BCI for rehabilitation, including recording systems and locations, signal processing and translation algorithms, and external devices controlled through BCI commands. An overview of applications in motor and sensory restoration is provided, along with ethical questions and user perspectives regarding BCI technology.
Collapse
Affiliation(s)
- Marcia A Bockbrader
- Department of Physical Medicine & Rehabilitation, The Ohio State University, 480 Medical Center Dr, Columbus, OH 43210; and Neurological Institute, Ohio State University Wexner Medical Center, Columbus, OH(∗).
| | - Gerard Francisco
- Department of Physical Medicine & Rehabilitation, The University of Texas, Houston, TX(†)
| | - Ray Lee
- Department of Orthopaedic and Rehabilitation, Schwab Rehabilitation Hospital, University of Chicago, Chicago, IL(‡)
| | - Jared Olson
- Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO(§)
| | - Ryan Solinsky
- Spaulding Rehabilitation Hospital, Boston; and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA(¶)
| | - Michael L Boninger
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh; and VA Pittsburgh Health Care System, Pittsburgh, PA(#)
| |
Collapse
|
10
|
Zhang Q, Zhang P, Song L, Yang Y, Yuan S, Chen Y, Sun S, Bai X. Brain Activation of Elite Race Walkers in Action Observation, Motor Imagery, and Motor Execution Tasks: A Pilot Study. Front Hum Neurosci 2019; 13:80. [PMID: 30881297 PMCID: PMC6405507 DOI: 10.3389/fnhum.2019.00080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/14/2019] [Indexed: 11/17/2022] Open
Abstract
Walking plays an important role in human daily life. Many previous studies suggested that long-term walking training can modulate brain functions. However, due to the use of measuring techniques such as fMRI and PET, which are highly motion-sensitive, it is difficult to record individual brain activities during the movement. This pilot study used functional near-infrared spectroscopy (fNIRS) to measure the hemodynamic responses in the frontal-parietal cortex of four elite race walkers (experimental group, EG) and twenty college students (control group, CG) during tasks involving action observation, motor imagery, and motor execution. The results showed that activation levels of the pars triangularis of the inferior frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC), premotor and supplementary motor cortex (PMC and SMC), and primary somatosensory cortex (S1) in the EG were significantly lower than in the CG during motor execution and observation tasks. And primary motor cortex (M1) of EG in motor execution task was significantly lower than its in CG. During the motor imagery task, activation intensities of the DLPFC, PMC and SMC, and M1 in the EG were significantly higher than in the CG. These findings suggested that the results of motor execution and observation tasks might support the brain efficiency hypothesis, and the related brain regions strengthened the efficiency of neural function, but the results in motor imagery tasks could be attributed to the internal forward model of elite race walkers, which showed a trend opposed to the brain efficiency hypothesis. Additionally, the activation intensities of the pars triangularis and PMC and SMC decreased with the passage of time in the motor execution and imagery tasks, whereas during the action observation task, no significant differences in these regions were found. This reflected differences of the internal processing among the tasks.
Collapse
Affiliation(s)
- Qihan Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Peng Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Lu Song
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Yu Yang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Sheng Yuan
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Yixin Chen
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Shinan Sun
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China
| | - Xuejun Bai
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,College of Educational Science, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| |
Collapse
|
11
|
Shirinbayan SI, Dreyer AM, Rieger JW. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Hum Brain Mapp 2018; 40:151-162. [PMID: 30251771 DOI: 10.1002/hbm.24361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/05/2022] Open
Abstract
Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed-related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed-related BOLD-activation. Effect size analysis revealed bilateral putamen as the most speed-specific region among the speed-related clusters whereas primary SMC showed the strongest specificity for movement versus non-movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal-ganglia-thalamo-cortical loop for speed regulation.
Collapse
Affiliation(s)
| | - Alexander M Dreyer
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jochem W Rieger
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Cañas A, Juncadella M, Lau R, Gabarrós A, Hernández M. Working Memory Deficits After Lesions Involving the Supplementary Motor Area. Front Psychol 2018; 9:765. [PMID: 29875717 PMCID: PMC5974158 DOI: 10.3389/fpsyg.2018.00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
The Supplementary Motor Area (SMA)—located in the superior and medial aspects of the superior frontal gyrus—is a preferential site of certain brain tumors and arteriovenous malformations, which often provoke the so-called SMA syndrome. The bulk of the literature studying this syndrome has focused on two of its most apparent symptoms: contralateral motor and speech deficits. Surprisingly, little attention has been given to working memory (WM) even though neuroimaging studies have implicated the SMA in this cognitive process. Given its relevance for higher-order functions, our main goal was to examine whether WM is compromised in SMA lesions. We also asked whether WM deficits might be reducible to processing speed (PS) difficulties. Given the connectivity of the SMA with prefrontal regions related to executive control (EC), as a secondary goal we examined whether SMA lesions also hampered EC. To this end, we tested 12 patients with lesions involving the left (i.e., the dominant) SMA. We also tested 12 healthy controls matched with patients for socio-demographic variables. To ensure that the results of this study can be easily transferred and implemented in clinical practice, we used widely-known clinical neuropsychological tests: WM and PS were measured with their respective Wechsler Adult Intelligence Scale indexes, and EC was tested with phonemic and semantic verbal fluency tasks. Non-parametric statistical methods revealed that patients showed deficits in the executive component of WM: they were able to sustain information temporarily but not to mentally manipulate this information. Such WM deficits were not subject to patients' marginal PS impairment. Patients also showed reduced phonemic fluency, which disappeared after controlling for the influence of WM. This observation suggests that SMA damage does not seem to affect cognitive processes engaged by verbal fluency other than WM. In conclusion, WM impairment needs to be considered as part of the SMA syndrome. These findings represent the first evidence about the cognitive consequences (other than language) of damage to the SMA. Further research is needed to establish a more specific profile of WM impairment in SMA patients and determine the consequences of SMA damage for other cognitive functions.
Collapse
Affiliation(s)
- Alba Cañas
- Department of Neurology, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Montserrat Juncadella
- Department of Neurology, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Ruth Lau
- Department of Neurosurgery, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain
| | - Andreu Gabarrós
- Department of Neurosurgery, Hospital Universitari de Bellvitge L'Hospitalet de Llobregat, Spain.,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet de Llobregat, Spain
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet de Llobregat, Spain.,Section of Cognitive Processes, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Basque Center on Cognition, Brain and Language, Donostia, Spain
| |
Collapse
|
13
|
Stark‐Inbar A, Dayan E. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38:5970-5986. [PMID: 28885740 PMCID: PMC6867018 DOI: 10.1002/hbm.23802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 07/04/2017] [Accepted: 08/27/2017] [Indexed: 11/06/2022] Open
Abstract
Voluntary movements require control of multiple kinematic parameters, a task carried out by a distributed brain architecture. However, it remains unclear whether regions along the motor system encode single, or rather a mixture of, kinematic parameters during action execution. Here, rapid event-related functional magnetic resonance imaging was used to differentiate brain activity along the motor system during the encoding of movement amplitude, duration, and speed. We present cumulative evidence supporting preferential encoding of kinematic parameters along the motor system, based on blood-oxygenation-level dependent signal recorded in a well-controlled single-joint wrist-flexion task. Whereas activity in the left primary motor cortex (M1) showed preferential encoding of movement amplitude, the anterior lobe of the right cerebellum (primarily lobule V) showed preferential encoding of movement speed. Conversely, activity in the left supplementary motor area (SMA), basal ganglia (putamen), and anterior intraparietal sulcus was not preferentially modulated by any specific parameter. We found no preference in peak activation for duration encoding in any of the tested regions. Electromyographic data was mainly modulated by movement amplitude, restricting the distinction between amplitude and muscle force encoding. Together, these results suggest that during single-joint movements, distinct kinematic parameters are controlled by largely distinct brain-regions that work together to produce and control precise movements. Hum Brain Mapp 38:5970-5986, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alit Stark‐Inbar
- Department of PsychologyUniversity of CaliforniaBerkeleyCalifornia
| | - Eran Dayan
- Department of RadiologyBiomedical Research Imaging Center and Neuroscience Curriculum, University of North Carolina at Chapel HillNorth Carolina
| |
Collapse
|
14
|
Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C. Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 2017; 39:1078-1092. [PMID: 29193484 DOI: 10.1002/hbm.23872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Stroke patients with motor deficits typically feature enhanced neural activity in several cortical areas when moving their affected hand. However, also healthy subjects may show higher levels of neural activity in tasks with higher motor demands. Therefore, the question arises to what extent stroke-related overactivity reflects performance-level-associated recruitment of neural resources rather than stroke-induced neural reorganization. We here investigated which areas in the lesioned brain enable the flexible adaption to varying motor demands compared to healthy subjects. Accordingly, eleven well-recovered left-hemispheric chronic stroke patients were scanned using functional magnetic resonance imaging. Motor system activity was assessed for fist closures at increasing movement frequencies performed with the affected/right or unaffected/left hand. In patients, an increasing movement rate of the affected hand was associated with stronger neural activity in ipsilesional/left primary motor cortex (M1) but unlike in healthy controls also in contralesional/right dorsolateral premotor cortex (PMd) and contralesional/right superior parietal lobule (SPL). Connectivity analyses using dynamic causal modeling revealed stronger coupling of right SPL onto affected/left M1 in patients but not in controls when moving the affected/right hand independent of the movement speed. Furthermore, coupling of right SPL was positively coupled with the "active" ipsilesional/left M1 when stroke patients moved their affected/right hand with increasing movement frequency. In summary, these findings are compatible with a supportive role of right SPL with respect to motor function of the paretic hand in the reorganized brain.
Collapse
Affiliation(s)
- Eva-Maria Pool
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Martha Leimbach
- Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Ellen Binder
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Charlotte Nettekoven
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
15
|
Nakajima T, Arisawa H, Hosaka R, Mushiake H. Intended arm use influences interhemispheric correlation of β-oscillations in primate medial motor areas. J Neurophysiol 2017; 118:2865-2883. [PMID: 28855290 DOI: 10.1152/jn.00379.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the role of interhemispheric β-synchronization in the selection of motor effectors, we trained two monkeys to memorize and perform multiple two-movement sequences that included unimanual repetition and bimanual switching. We recorded local field potentials simultaneously in the bilateral supplementary motor area (SMA) and pre-SMA to examine how the β-power in both hemispheres and the interhemispheric relationship of β-oscillations depend on the prepared sequence of arm use. We found a significant ipsilateral enhancement of β-power for bimanual switching trials in the left hemisphere and an enhancement of β-power in the right SMA while preparing for unimanual repetition. Furthermore, interhemispheric synchrony in the SMA was significantly more enhanced while preparing unimanual repetition than while preparing bimanual switching. This enhancement of synchrony was detected in terms of β-phase but not in terms of modulation of β-power. Furthermore, the assessment of the interhemispheric phase difference revealed that the β-oscillation in the hemisphere contralateral to the instructed arm use significantly advanced its phase relative to that in the ipsilateral hemisphere. There was no arm use-dependent shift in phase difference in the pairwise recordings within each hemisphere. Both neurons with and without arm use-selective activity were phase-locked to the β-oscillation. These results imply that the degree of interhemispheric phase synchronization as well as phase differences and oscillatory power in the β-band may contribute to the selection of arm use depending on the behavioral conditions of sequential arm use.NEW & NOTEWORTHY We addressed interhemispheric relationships of β-oscillations during bimanual coordination. While monkeys prepared to initiate movement of the instructed arm, β-oscillations in the contralateral hemisphere showed a phase advance relative to the other hemisphere. Furthermore, the sequence of arm use influenced β-power and the degree of interhemispheric phase synchronization. Thus the dynamics of interhemispheric phases and power in β-oscillations may contribute to the specification of motor effectors in a given behavioral context.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Haruka Arisawa
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Ryosuke Hosaka
- Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and.,Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, Wako, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan; .,Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and
| |
Collapse
|
16
|
Courson M, Macoir J, Tremblay P. Role of medial premotor areas in action language processing in relation to motor skills. Cortex 2017; 95:77-91. [PMID: 28858609 DOI: 10.1016/j.cortex.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing.
Collapse
Affiliation(s)
- Melody Courson
- Département de Réadaptation, Université Laval, CERVO Brain Research Center, Québec, Qc., Canada
| | - Joël Macoir
- Département de Réadaptation, Université Laval, CERVO Brain Research Center, Québec, Qc., Canada
| | - Pascale Tremblay
- Département de Réadaptation, Université Laval, CERVO Brain Research Center, Québec, Qc., Canada.
| |
Collapse
|
17
|
Tankus A, Strauss I, Gurevich T, Mirelman A, Giladi N, Fried I, Hausdorff JM. Subthalamic Neurons Encode Both Single- and Multi-Limb Movements in Parkinson's Disease Patients. Sci Rep 2017; 7:42467. [PMID: 28211850 PMCID: PMC5304178 DOI: 10.1038/srep42467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/11/2017] [Indexed: 11/30/2022] Open
Abstract
The subthalamic nucleus (STN) is the main target for neurosurgical treatment of motor signs of Parkinson’s disease (PD). Despite the therapeutic effect on both upper and lower extremities, its role in motor control and coordination and its changes in Parkinson’s disease are not fully clear. We intraoperatively recorded single unit activity in ten patients with PD who performed repetitive feet or hand movements while undergoing implantation of a deep brain stimulator. We found both distinct and overlapping representations of upper and lower extremity movement kinematics in subthalamic units and observed evidence for re-routing to a multi-limb representation that participates in limb coordination. The well-known subthalamic somatotopy showed a large overlap of feet and hand representations in the PD patients. This overlap and excessive amounts of kinematics or coordination units may reflect pathophysiology or compensatory mechanisms. Our findings thus explain, at the single neuron level, the important subthalamic role in motor control and coordination and indicate the effect of PD on the neuronal representation of movement.
Collapse
Affiliation(s)
- Ariel Tankus
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tanya Gurevich
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel
| | - Anat Mirelman
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sieratzki Chair in Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey M Hausdorff
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Exploring human epileptic activity at the single-neuron level. Epilepsy Behav 2016; 58:11-7. [PMID: 26994366 DOI: 10.1016/j.yebeh.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions.
Collapse
|
19
|
Trost W, Frühholz S, Cochrane T, Cojan Y, Vuilleumier P. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity. Soc Cogn Affect Neurosci 2015; 10:1705-21. [PMID: 25994970 DOI: 10.1093/scan/nsv060] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 05/08/2015] [Indexed: 11/12/2022] Open
Abstract
To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions.
Collapse
Affiliation(s)
- Wiebke Trost
- Swiss Center of Affective Sciences, University of Geneva, Geneva, Switzerland, Neuroscience of Emotions and Affective Dynamics Laboratory, University of Geneva, Geneva, Switzerland,
| | - Sascha Frühholz
- Swiss Center of Affective Sciences, University of Geneva, Geneva, Switzerland, Neuroscience of Emotions and Affective Dynamics Laboratory, University of Geneva, Geneva, Switzerland
| | - Tom Cochrane
- Department of Philosophy, University of Sheffield, Sheffield, UK, and
| | - Yann Cojan
- Swiss Center of Affective Sciences, University of Geneva, Geneva, Switzerland, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Swiss Center of Affective Sciences, University of Geneva, Geneva, Switzerland, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Nakajima R, Nakada M, Miyashita K, Kinoshita M, Okita H, Yahata T, Hayashi Y. Intraoperative Motor Symptoms during Brain Tumor Resection in the Supplementary Motor Area (SMA) without Positive Mapping during Awake Surgery. Neurol Med Chir (Tokyo) 2015; 55:442-50. [PMID: 25925753 PMCID: PMC4628172 DOI: 10.2176/nmc.oa.2014-0343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Awake surgery could be a useful modality for lesions locating in close proximity to the eloquent areas including primary motor cortex and pyramidal tract. In case with supplementary motor area (SMA) lesion, we often encounter with intraoperative motor symptoms during awake surgery even in area without positive mapping. Although the usual recovery of the SMA syndrome has been well documented, rare cases with permanent deficits could be encountered in the clinical setting. It has been difficult to evaluate during surgery whether the intraoperative motor symptoms lead to postoperative permanent deficits. The purpose of this study was to demonstrate the intraoperative motor symptoms could be reversible, further to provide useful information for making decision to continue surgical procedure of tumor resection. Eight consecutive patients (from July 2012 to June 2014, six men and two women, aged 33–63 years) with neoplastic lesions around the SMA underwent an awake surgery. Using a retrospective analysis of intraoperative video records, intraoperative motor symptoms during tumor resection were investigated. In continuous functional monitoring during resection of SMA tumor under awake conditions, the following motor symptoms were observed during resection of the region without positive mapping: delayed motor weakness, delay of movement initiation, slowness of movement, difficulty in dual task response, and coordination disturbance. In seven patients hemiparesis observed immediately after surgery recovered to preoperative level within 6 weeks. During awake surgery for SMA tumors, the above-mentioned motor symptoms could occur in area without positive mapping and might be predictors for reversible SMA syndrome.
Collapse
Affiliation(s)
- Riho Nakajima
- Pharmaceutical and Health Sciences, Kanazawa University
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
With the growing interdependence between medicine and technology, the prospect of connecting machines to the human brain is rapidly being realized. The field of neuroprosthetics is transitioning from the proof of concept stage to the development of advanced clinical treatments. In one area of brain-machine interfaces (BMIs) related to the motor system, also termed ‘motor neuroprosthetics’, research successes with implanted microelectrodes in animals have demonstrated immense potential for restoring motor deficits. Early human trials have also begun, with some success but also highlighting several technical challenges. Here we review the concepts and anatomy underlying motor BMI designs, review their early use in clinical applications, and offer a framework to evaluate these technologies in order to predict their eventual clinical utility. Ultimately, we hope to help neuroscience clinicians understand and participate in this burgeoning field.
Collapse
|
22
|
A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176857. [PMID: 25050324 PMCID: PMC4090526 DOI: 10.1155/2014/176857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding objectives.
Collapse
|
23
|
Kadmon Harpaz N, Flash T, Dinstein I. Scale-Invariant Movement Encoding in the Human Motor System. Neuron 2014; 81:452-62. [DOI: 10.1016/j.neuron.2013.10.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
|
24
|
Futagi Y, Yanagihara K, Mogami Y, Ikeda T, Suzuki Y. The babkin reflex in infants: clinical significance and neural mechanism. Pediatr Neurol 2013; 49:149-55. [PMID: 23953951 DOI: 10.1016/j.pediatrneurol.2013.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND There have been very few studies concerning the Babkin reflex-opening of the mouth and flexion of the arms in response to stimulation of the palms. We attempted to clarify the clinical significance and neural mechanism of the reflex through systematic review. METHODS Searches were conducted on Medline, Embase, and Google Scholar from their inception through August 2012. RESULTS In normal term infants, the Babkin reflex can be elicited from the time of birth, becomes increasingly suppressed with age, and disappears in the great majority by the end of the fifth month of age. A marked response in the fourth or fifth month of age and persistence of the reflex beyond the fifth month of age are generally regarded as abnormal. On the other hand, because there are some normal infants showing no response during the neonatal period or early infancy, the absence of the response during these periods is not necessarily an abnormal finding. CONCLUSIONS Infants with these abnormal findings should be carefully observed for the appearance of neurological abnormalities including cerebral palsy and mental retardation. It is most likely that the Babkin reflex is mediated by the reticular formation of the brainstem, which receives inputs from the nonprimary motor cortices. On the basis of the hand-mouth reflex, more adaptive movement develops as control of the nonprimary motor cortices over the reflex mechanism in the reticular formation increases. Soon it evolves into the voluntary eye-hand-mouth coordination necessary for food intake as the control of the prefrontal cortex over the nonprimary motor cortices becomes predominant.
Collapse
Affiliation(s)
- Yasuyuki Futagi
- Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, Japan.
| | | | | | | | | |
Collapse
|
25
|
Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 2013; 82:68-76. [PMID: 23747288 DOI: 10.1016/j.neuroimage.2013.05.123] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 02/05/2023] Open
Abstract
Motor skills are mediated by a dynamic and finely regulated interplay of the primary motor cortex (M1) with various cortical and subcortical regions engaged in movement preparation and execution. To date, data elucidating the dynamics in the motor network that enable movements at different levels of behavioral performance remain scarce. We here used functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to investigate effective connectivity of key motor areas at different movement frequencies performed by right-handed subjects (n=36) with the left or right hand. The network of interest consisted of motor regions in both hemispheres including M1, supplementary motor area (SMA), ventral premotor cortex (PMv), motor putamen, and motor cerebellum. The connectivity analysis showed that performing hand movements at higher frequencies was associated with a linear increase in neural coupling strength from premotor areas (SMA, PMv) contralateral to the moving hand and ipsilateral cerebellum towards contralateral, active M1. In addition, we found hemispheric differences in the amount by which the coupling of premotor areas and M1 was modulated, depending on which hand was moved. Other connections were not modulated by changes in motor performance. The results suggest that a stronger coupling, especially between contralateral premotor areas and M1, enables increased motor performance of simple unilateral hand movements.
Collapse
|
26
|
Mahan MY, Georgopoulos AP. Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circuits 2013; 7:92. [PMID: 23720612 PMCID: PMC3654201 DOI: 10.3389/fncir.2013.00092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022] Open
Abstract
Motor directional tuning (Georgopoulos et al., 1982) has been found in every brain area in which it has been sought for during the past 30-odd years. It is typically broad, with widely distributed preferred directions and a population signal that predicts accurately the direction of an upcoming reaching movement or isometric force pulse (Georgopoulos et al., 1992). What is the basis for such ubiquitous directional tuning? How does the tuning come about? What are the implications of directional tuning for understanding the brain mechanisms of movement in space? This review addresses these questions in the light of accumulated knowledge in various sub-fields of neuroscience and motor behavior. It is argued (a) that direction in space encompasses many aspects, from vision to muscles, (b) that there is a directional congruence among the central representations of these distributed “directions” arising from rough but orderly topographic connectivities among brain areas, (c) that broad directional tuning is the result of broad excitation limited by recurrent and non-recurrent (i.e., direct) inhibition within the preferred direction loci in brain areas, and (d) that the width of the directional tuning curve, modulated by local inhibitory mechanisms, is a parameter that determines the accuracy of the directional command.
Collapse
Affiliation(s)
- Margaret Y Mahan
- Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
27
|
Kang EE, Zalay OC, Serletis D, Carlen PL, Bardakjian BL. Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons. J Neural Eng 2012; 9:056004. [PMID: 22871606 DOI: 10.1088/1741-2560/9/5/056004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg(2 +) and K(+) of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).
Collapse
Affiliation(s)
- Eunji E Kang
- Department of Electrical and Computer Engineering, University of Toronto, M5S 3G4 ON, Canada.
| | | | | | | | | |
Collapse
|
28
|
The grasp reflex and moro reflex in infants: hierarchy of primitive reflex responses. Int J Pediatr 2012; 2012:191562. [PMID: 22778756 PMCID: PMC3384944 DOI: 10.1155/2012/191562] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/30/2012] [Indexed: 11/18/2022] Open
Abstract
The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship.
Collapse
|
29
|
Tankus A, Fried I. Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 2011; 24:600-10. [PMID: 22066588 DOI: 10.1162/jocn_a_00160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The division of cortical visual processing into distinct dorsal and ventral streams is a key concept in primate neuroscience [Goodale, M. A., & Milner, A. D. Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20-25, 1992; Steele, G., Weller, R., & Cusick, C. Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. Journal of Comparative Neurology, 306, 495-520, 1991]. The ventral stream is usually characterized as a "What" pathway, whereas the dorsal stream is implied in mediating spatial perception ("Where") and visually guided actions ("How"). A subpathway emerging from the dorsal stream and projecting to the medial-temporal lobe has been identified [Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12, 217-230, 2011; Cavada, C., & Goldman-Raiuc, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory cortico-cortical connections. Journal of Comparative Neurology, 287, 393-421, 1989]. The current article studies the coordination of visual information typically associated with the dorsal stream ("Where"), with planned movements, focusing on the temporal lobe. We recorded extracellular activity from 565 cells in the human medial-temporal and frontal lobes while 13 patients performed cued hand movements with visual feedback (visuomotor task), without feedback (motor task), or observed visual feedback without motor movement (visual-only task). We discovered two different neural populations in the human medial-temporal lobe. One consists of motor-like neurons representing hand position, speed or acceleration during the motor task but not during the visuomotor or visual tasks. The other is specific to the parahippocampal gyrus (an area known to process visual motion [Gur, M., & Snodderly, D. M. Direction selectivity in V1 of alert monkeys: Evidence for parallel pathways for motion processing. Journal of Physiology, 585, 383-400, 2007; Sato, N., & Nakamura, K. Visual response properties of neurons in the parahippocampal cortex of monkeys. Journal of Neurophysiology, 90, 876-886, 2003]) and encodes speed, acceleration, or direction of hand movements, but only during the visuomotor task: neither during visual-only nor during motor tasks. These findings suggest a functional basis for the anatomical subpathway between the dorsal stream and the medial-temporal lobe. Similar to the recent expansion of the motor control process into the sensory cortex [Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., et al. Motor control by sensory cortex. Science, 330, 1240-1243, 2010], our findings render the human medial-temporal lobe an important junction in the process of planning and execution of motor acts whether internally or externally (visually) driven. Thus, the medial-temporal lobe might serve as an integration node between the two processing streams. Our findings thus shed new light on the brain mechanisms underlying visuomotor coordination which is a crucial capacity for everyday survival, whether it is identifying and picking up food, sliding a key into a lock, driving a vehicle, or escaping a predator.
Collapse
|
30
|
Abstract
The ultimate goal of neuroscience research is to understand the operating mechanism of the human brain and to exploit this understanding to devise methods for repair when it malfunctions. A key feature of this operating mechanism is electrical activity of single brain cells and cell assemblies. For obvious ethical reasons, scientists rely mostly on animal research in the study of such signals. Research in humans is often limited to electrical signals that can be recorded at the scalp or to surrogates of electrical activity, namely magnetic source imaging and measures of regional blood flow and metabolism. Invasive brain recordings performed in patients during various clinical procedures provide a unique opportunity to record high-resolution signals in vivo from the human brain-data that are otherwise unavailable. Of special value are the rare opportunities to record in awake humans the activity of single brain cells and small cellular assemblies. These recordings provide a unique view on aspects of human cognition that are impossible to study in animals, including language, imagery, episodic memory, volition, and even consciousness. In the current review we discuss the unique contribution of invasive recordings from patients to the field of cognitive neuroscience.
Collapse
Affiliation(s)
- Roy Mukamel
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 90095, USA.
| | | |
Collapse
|
31
|
Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 2011; 504:62-7. [PMID: 21925236 DOI: 10.1016/j.neulet.2011.08.059] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 11/20/2022]
Abstract
Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain.
Collapse
|
32
|
Suzuki Y, Kiyosawa M, Mochizuki M, Ishiwata K, Ishii K. The pre-supplementary and primary motor areas generate rhythm for voluntary eye opening and closing movements. TOHOKU J EXP MED 2011; 222:97-104. [PMID: 20877165 DOI: 10.1620/tjem.222.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Blinking and opening/closing of the eyelid are considered to be different movements with independent control mechanisms. Apraxia of lid opening (ALO) is a clinical syndrome in which patients experience difficulty in opening their eyes voluntarily. Our previous study with fluorodeoxyglucose and positron emission tomography (PET) has suggested that functional impairments in the supplementary motor area (SMA) and the anterior cingulate gyrus may be involved in the pathophysiology of ALO. The aim of this study was to explore the physiological mechanisms for voluntary eyelid opening/closing and the difference between self-initiated and triggered movements, using [(15)O]H(2)O and PET. We measured the regional cerebral blood flow in 8 healthy subjects under 3 conditions: [A] at rest with eyes closed, [B] with self-paced lid opening/closing, and [C] with triggered lid opening/closing. All tasks were done with a blindfold to exclude the influence of visual input. The SMA proper and the angular gyrus were activated during self-paced and triggered lid opening/closing movements; however, the pre-SMA and the primary motor area (M1) were activated only during self-paced movements. The anterior cingulate gyrus and the cerebellum were activated during self-paced condition over triggered condition. The roles of SMA, M1 and cerebellum were assumed in eyelid opening/closing movements: the preparation and processing of movements in SMA, execution of movements in M1, and rhythmic generation in pre-SMA, M1 and cerebellum. We suggest that the activation in pre-SMA, anterior cingulate gyrus, and cerebellum may be responsible for the self-initiated eyelid opening/closing movements.
Collapse
Affiliation(s)
- Yukihisa Suzuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
33
|
Spapé MM, Serrien DJ. Interregional synchrony of visuomotor tracking: Perturbation effects and individual differences. Behav Brain Res 2010; 213:313-8. [DOI: 10.1016/j.bbr.2010.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/10/2010] [Accepted: 05/15/2010] [Indexed: 10/19/2022]
|
34
|
Futagi Y, Suzuki Y. Neural mechanism and clinical significance of the plantar grasp reflex in infants. Pediatr Neurol 2010; 43:81-6. [PMID: 20610116 DOI: 10.1016/j.pediatrneurol.2010.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/25/2010] [Accepted: 04/05/2010] [Indexed: 11/20/2022]
Abstract
The plantar grasp reflex can be elicited in all normal infants from 25 weeks of postconceptional age until the end of 6 months of corrected age according to the expected birth date. This reflex in human infants can be regarded as a rudiment of responses that were once essential for ape infants in arboreal life. The spinal center for this reflex is probably located at the L(5)-S(2) levels, which, however, are controlled by higher brain structures. Nonprimary motor areas may exert regulatory control of the spinal reflex mechanism through interneurons. In infants, this reflex can be elicited as the result of insufficient control of the spinal mechanism by the immature brain. In adults, lesions in nonprimary motor areas may cause a release of inhibitory control by spinal interneurons, leading to a reappearance of the reflex. The plantar grasp reflex in infants is of high clinical significance. A negative or diminished reflex during early infancy is often a sensitive indicator of spasticity. Infants with athetoid type cerebral palsy exhibit an extremely strong retention of the reflex, and infants with mental retardation also exhibit a tendency toward prolonged retention of the reflex.
Collapse
Affiliation(s)
- Yasuyuki Futagi
- Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan.
| | | |
Collapse
|
35
|
Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 2010; 50:1148-67. [PMID: 20056149 DOI: 10.1016/j.neuroimage.2009.12.112] [Citation(s) in RCA: 932] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, many neuroimaging studies have assessed the human brain networks underlying action observation and imitation using a variety of tasks and paradigms. Nevertheless, questions concerning which areas consistently contribute to these networks irrespective of the particular experimental design and how such processing may be lateralized remain unresolved. The current study aimed at identifying cortical areas consistently involved in action observation and imitation by combining activation likelihood estimation (ALE) meta-analysis with probabilistic cytoarchitectonic maps. Meta-analysis of 139 functional magnetic resonance and positron emission tomography experiments revealed a bilateral network for both action observation and imitation. Additional subanalyses for different effectors within each network revealed highly comparable activation patterns to the overall analyses on observation and imitation, respectively, indicating an independence of these findings from potential confounds. Conjunction analysis of action observation and imitation meta-analyses revealed a bilateral network within frontal premotor, parietal, and temporo-occipital cortex. The most consistently rostral inferior parietal area was PFt, providing evidence for a possible homology of this region to macaque area PF. The observation and imitation networks differed particularly with respect to the involvement of Broca's area: whereas both networks involved a caudo-dorsal part of BA 44, activation during observation was most consistent in a more rostro-dorsal location, i.e., dorsal BA 45, while activation during imitation was most consistent in a more ventro-caudal aspect, i.e., caudal BA 44. The present meta-analysis thus summarizes and amends previous descriptions of the human brain networks related to action observation and imitation.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
36
|
Tankus A, Yeshurun Y, Fried I. An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits. J Neural Eng 2009; 6:056001. [PMID: 19667458 DOI: 10.1088/1741-2560/6/5/056001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While automatic spike sorting has been investigated for decades, little attention has been allotted to consistent evaluation criteria that will automatically determine whether a cluster of spikes represents the activity of a single cell or a multiunit. Consequently, the main tool for evaluation has remained visual inspection by a human. This paper quantifies the visual inspection process. The results are well-defined criteria for evaluation, which are mainly based on visual features of the spike waveform, and an automatic adaptive algorithm that learns the classification by a given human and can apply similar visual characteristics for classification of new data. To evaluate the suggested criteria, we recorded the activity of 1652 units (single cells and multiunits) from the cerebrum of 12 human patients undergoing evaluation for epilepsy surgery requiring implantation of chronic intracranial depth electrodes. The proposed method performed similar to human classifiers and obtained significantly higher accuracy than two existing methods (three variants of each). Evaluation on two synthetic datasets is also provided. The criteria are suggested as a standard for evaluation of the quality of separation that will allow comparison between different studies. The proposed algorithm is suitable for real-time operation and as such may allow brain-computer interfaces to treat single cells differently than multiunits.
Collapse
Affiliation(s)
- Ariel Tankus
- Department of Neurosurgery, University of California, Los Angeles, 90095, USA.
| | | | | |
Collapse
|
37
|
von Lehe M, Schramm J. Gliomas of the cingulate gyrus: surgical management and functional outcome. Neurosurg Focus 2009; 27:E9. [DOI: 10.3171/2009.6.focus09104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
In this paper, the authors' goal was to summarize their experience with the surgical treatment of gliomas arising from the cingulate gyrus.
Methods
The authors analyzed preoperative data, surgical strategies, complications, and functional outcome in a series of 34 patients (mean age 42 years, range 12–69 years; 14 females) who underwent 38 operations between May 2001 and November 2008.
Results
In 7 cases (18%) the tumor was located in the posterior (parietal) part of the cingulate gyrus, and in 31 (82%) the tumor was in the anterior (frontal) part. In 10 cases (26%) the glioma was solely located in the cingulate gyrus, and in 28 cases (74%) the tumor extended to the supracingular frontal/parietal cortex. Most cases (23 [61%]) had seizures as the presenting symptom, 8 patients (24%) suffered from a hemiparesis/hemihypesthesia, and 4 patients (12%) had aphasic symptoms.
The authors chose an interhemispheric approach for tumor resection in 11 (29%) and a transcortical approach in 27 (71%) cases; intraoperative electrophysiological monitoring was applied in 23 (61%) and neuronavigation in 15 (39%) cases. A > 90% resection was achieved in 32 (84%) and > 70% in another 5 (13%) cases. Tumors were classified as low-grade gliomas in 11 cases (29%). A glioblastoma multiforme (WHO Grade IV, 10 cases [26%]) and oligoastrocytoma (WHO Grade III, 9 cases [24%]) were the most frequent histopathological results.
Postoperatively, patients in 13 cases suffered from a transient supplementary motor area syndrome (34%), all of whom had tumors in the anterior cingulate gyrus. In the early postoperative period (30 days) a new deficit occurred in 5 cases (13%, mild motor deficits or aphasic symptoms). One patient had a major bleeding episode 2 days after surgery and was in a persistent vegetative state.
Conclusions
Gliomas arising from the cingulate gyrus are rare. A gross-total resection is often possible and acceptably safe; intraoperative monitoring and neuronavigation are helpful adjuncts. In case of resection of gliomas arising from the anterior cingulate gyrus a supplementary motor area syndrome has to be considered, particularly when the tumor extends to the supracingular cortex
Collapse
|
38
|
Bradberry TJ, Rong F, Contreras-Vidal JL. Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Neuroimage 2009; 47:1691-700. [PMID: 19539036 DOI: 10.1016/j.neuroimage.2009.06.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/05/2009] [Accepted: 06/08/2009] [Indexed: 11/25/2022] Open
Abstract
During reaching or drawing, the primate cortex carries information about the current and upcoming position of the hand. Researchers have decoded hand position, velocity, and acceleration during center-out reaching or drawing tasks from neural recordings acquired invasively at the microscale and mesoscale levels. Here we report that we can continuously decode information about hand velocity at the macroscale level from magnetoencephalography (MEG) data acquired from the scalp during a center-out drawing task with an imposed hand-cursor rotation. The grand mean (n=5) correlation coefficients (CCs) between measured and decoded velocity profiles were 0.48, 0.40, 0.38, and 0.28 for the horizontal dimension of movement and 0.32, 0.49, 0.56, and 0.23 for the vertical dimension of movement where the order of the CCs indicates pre-exposure, early-exposure, late-exposure, and post-exposure to the hand-cursor rotation. By projecting the sensor contributions to decoding onto whole-head scalp maps, we found that a macroscale sensorimotor network carries information about detailed hand velocity and that contributions from sensors over central and parietal scalp areas change due to adaptation to the rotated environment. Moreover, a 3-D linear estimation of distributed current sources using standardized low-resolution brain electromagnetic tomography (sLORETA) permitted a more detailed investigation into the cortical network that encodes for hand velocity in each of the adaptation phases. Beneficial implications of these findings include a non-invasive methodology to examine the neural correlates of behavior on a macroscale with high temporal resolution and the potential to provide continuous, complex control of a non-invasive neuromotor prosthesis for movement-impaired individuals.
Collapse
Affiliation(s)
- Trent J Bradberry
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|