1
|
Santos VS, Vieira GM, Ruckert MT, Andrade PVD, Nagano LF, Brunaldi MO, Dos Santos JS, Silveira VS. Atypical phosphatase DUSP11 inhibition promotes nc886 expression and potentiates gemcitabine-mediated cell death through NF-kB modulation. Cancer Gene Ther 2024; 31:1402-1411. [PMID: 39048662 DOI: 10.1038/s41417-024-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers among all solid tumors. First-line treatment relies on gemcitabine (Gem) and despite treatment improvements, refractoriness remains a universal challenge. Attempts to decipher how feedback-loops control signaling pathways towards drug resistance have gained attention in recent years, particularly focused on the role of phosphatases. In this study, a CRISPR/Cas9-based phenotypic screen was performed to identify members from the dual-specificity phosphatases (DUSP) family potentially acting on Gem response in PDAC cells. The approach revealed the atypical RNA phosphatase DUSP11 as a potential target, whose inhibition creates vulnerability of PDAC cells to Gem. DUSP11 genetic inhibition impaired cell survival and promoted apoptosis, synergistically enhancing Gem cytotoxicity. In silico transcriptome analysis of RNA-seq data from PDAC human samples identified NF-ĸB signaling pathway highly correlated with DUSP11 upregulation. Consistently, Gem-induced NF-ĸB phosphorylation was blocked upon DUSP11 inhibition in vitro. Mechanistically, we found that DUSP11 directly impacts nc886 expression and modulates PKR-NF-ĸB signaling cascade after Gem exposure in PDAC cells resulting in resistance to Gem-induced cell death. In conclusion, this study provides new insights on DUSP11 role in RNA biology and Gem response in PDAC cells.
Collapse
Affiliation(s)
- Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriela Maciel Vieira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Fernando Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Sebastião Dos Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
3
|
Halatsch ME. Special Issue: Principal Challenges in the Adjuvant Treatment of Glioblastoma. Biomedicines 2023; 11:1881. [PMID: 37509520 PMCID: PMC10377107 DOI: 10.3390/biomedicines11071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Despite advances in local treatments, such as supramaximal resection (even in eloquent locations [...].
Collapse
Affiliation(s)
- Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, CH-8400 Winterthur, Switzerland
| |
Collapse
|
4
|
Mu J, Gong J, Shi M, Zhang Y. Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma. BMC Med Genomics 2023; 16:109. [PMID: 37208656 DOI: 10.1186/s12920-023-01538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients. METHODS 143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics. RESULTS Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores. CONCLUSION The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Chang SH, Liu JY, Hsiao MW, Yang HL, Wang GW, Ye JC. Protective Effects of Ocimum gratissimumAqueous Extracts on HaCaT Cells Against UVC-Induced Inhibition of Cell Viability and Migration. Int J Med Sci 2021; 18:2086-2092. [PMID: 33850479 PMCID: PMC8040403 DOI: 10.7150/ijms.54644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet C (UVC) has been applied to treatment of infections in wounds for at least the last two decades, however, cells being treated can be damaged if exposure is prolonged, which calls for protective measures, such as drug or herbal pre-treatment, to minimize damage. Ocimum gratissimum contains plant polyphenols such as isoflavones and caffeic acid, which have antioxidant effects. We hypothesize that Ocimum gratissimum aqueous extracts (OGE) can inhibit UVC-induced oxidative damage on skin cells. In this study, HaCaT skin cells are used to test the protective effects of OGE on cell proliferation and migration after exposure to UVC radiation. Pretreatment with OGE (50~150μg/mL) before 40 J/m2 UVC exposure was able to restore survival from 32.25% to between 46.77% and 68.00%, and 80 J/m2 UVC exposure from 11.49% to between 19.07% and 43.04%. Morphological observation of primarily apoptotic cell death confirms the above findings. The flow cytometry analysis revealed that UVC increased the number of cells at the sub-G1 phase in a dose dependent manner, and when pre-treated with OGE the changes were partially reversed. Moreover, the wound healing test for observing migration showed that UVC 40-80 J/m2 decreased cell migration to 47-28% activity and 100 μg/mL OGE was able to restore cell activity to81-69% at day 3. Based on the above results, we suggest that OGE has a protective effect on UVC-induced inhibition of cell proliferation and migration of skin cells and thus has potential application in wound care.
Collapse
Affiliation(s)
- Sheng-Huang Chang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Meen-Woon Hsiao
- School of Applied Chemistry, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Guan-Wei Wang
- School of Applied Chemistry, Chung-Shan Medical University, Taichung, Taiwan
| | - Je-Chiuan Ye
- Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan.,Master Program in Biomedical Science, National Taitung University, Taitung, Taiwan
| |
Collapse
|
6
|
Wang J, Liu Z, Pang Q, Zhang T, Chen X, Er P, Wang Y, Wang P, Wang J. Prognostic analysis of patients with non-small cell lung cancer harboring exon 19 or 21 mutation in the epidermal growth factor gene and brain metastases. BMC Cancer 2020; 20:837. [PMID: 32883221 PMCID: PMC7469092 DOI: 10.1186/s12885-020-07249-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Background In 1997, the Radiation Therapy Oncology Group (RTOG) put forward the recursive partitioning analysis classification for the prognosis of brain metastases (BMs), but this system does not take into account the epidermal growth factor receptor (EGFR) mutations. The aim of the study is to assess the prognosis of patients with EGFR-mutated non-small cell lung cancer (NSCLC) and BMs in the era of tyrosine kinase inhibitor (TKI) availability. Methods This was a retrospective study of consecutive patients with EGFR-mutated (exon 19 or 21) NSCLC diagnosed between 01/2011 and 12/2014 at the Tianjin Medical University Cancer Institute & Hospital and who were ultimately diagnosed with BMs. The patients were stage I-III at initial presentation and developed BMs as the first progression. Overall survival (OS), OS after BM diagnosis (mOS), intracranial progression-free survival (iPFS), response to treatment, and adverse reactions were analyzed. Results Median survival was 35 months, and the 1- and 2- year survival rates were 95.6% (108/113) and 74.3% (84/113). The 3-month CR + PR rates of radiotherapy(R), chemotherapy(C), targeted treatment(T), and targeted treatment + radiotherapy(T+R) after BMs were 63.0% (17/27), 26.7% (4/15), 50.0% (7/14), and 89.7% (35/39), respectively. The median survival of the four treatments was 20, 9, 12, and 25 months after BMs, respectively (P = 0.001). Multivariable analysis showed that < 3 BMs (odds ratio (OR) = 3.34, 95% confidence interval (CI): 1.89–5.91, P < 0.001) and treatment after BMs (OR = 0.68, 95%CI: 0.54–0.85, P = 0.001) were independently associated with better prognosis. Conclusions The prognosis of patients with NSCLC and EGFR mutation in exon 19 or 21 after BM is associated with the number of brain metastasis and the treatment method. Targeted treatment combined with radiotherapy may have some advantages over other treatments, but further study is warranted to validate the results.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Zhiyan Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Puchun Er
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Yuwen Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China.
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cance, Tianjin's Clinical Research Centre for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, PR China.
| |
Collapse
|
7
|
Goka ET, Chaturvedi P, Lopez DTM, Lippman ME. Rac Signaling Drives Clear Cell Renal Carcinoma Tumor Growth by Priming the Tumor Microenvironment for an Angiogenic Switch. Mol Cancer Ther 2020; 19:1462-1473. [PMID: 32371578 DOI: 10.1158/1535-7163.mct-19-0762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) remains a common cause of cancer mortality. Better understanding of ccRCC molecular drivers resulted in the development of antiangiogenic therapies that block the blood vessels that supply tumors with nutrients for growth and metastasis. Unfortunately, most ccRCC patients eventually become resistant to initial treatments, creating a need for alternative treatment options. We investigated the role of the small GTPase Rac1 in ccRCC. Analysis of ccRCC clinical samples indicates that Rac signaling drives disease progression and predicts patients with poorer outcomes. Investigation of Rac1 identifies multiple roles for Rac1 in the pathogenesis of ccRCC. Rac1 is overexpressed in RCC cell lines and drives proliferation and migratory/metastatic potential. Rac1 is also critical for endothelial cells to grow and form endothelial tubular networks potentiated by angiogenic factors. Importantly, Rac1 controls paracrine signaling of angiogenic factors including VEGF from renal carcinoma cells to surrounding blood vessels. A novel Rac1 inhibitor impaired the growth and migratory potential of both renal carcinoma cells and endothelial cells and reduced VEGF production by RCC cells, thereby limiting paracrine signaling both in vitro and in vivo Lastly, Rac1 was shown to be downstream of VEGF receptor (VEGFR) signaling and required for activation of MAPK signaling. In combination with VEGFR2 inhibitors, Rac inhibition provides enhanced suppression of angiogenesis. Therefore, targeting Rac in ccRCC has the potential to block the growth of tumor cells, endothelial cell recruitment, and paracrine signaling from tumor cells to other cells in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Marc E Lippman
- Department of Oncology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
8
|
Kernel Differential Subgraph Analysis to Reveal the Key Period Affecting Glioblastoma. Biomolecules 2020; 10:biom10020318. [PMID: 32079293 PMCID: PMC7072688 DOI: 10.3390/biom10020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is a fast-growing type of malignant primary brain tumor. To explore the mechanisms in GBM, complex biological networks are used to reveal crucial changes among different biological states, which reflect on the development of living organisms. It is critical to discover the kernel differential subgraph (KDS) that leads to drastic changes. However, identifying the KDS is similar to the Steiner Tree problem that is an NP-hard problem. In this paper, we developed a criterion to explore the KDS (CKDS), which considered the connectivity and scale of KDS, the topological difference of nodes and function relevance between genes in the KDS. The CKDS algorithm was applied to simulated datasets and three single-cell RNA sequencing (scRNA-seq) datasets including GBM, fetal human cortical neurons (FHCN) and neural differentiation. Then we performed the network topology and functional enrichment analyses on the extracted KDSs. Compared with the state-of-art methods, the CKDS algorithm outperformed on simulated datasets to discover the KDSs. In the GBM and FHCN, seventeen genes (one biomarker, nine regulatory genes, one driver genes, six therapeutic targets) and KEGG pathways in KDSs were strongly supported by literature mining that they were highly interrelated with GBM. Moreover, focused on GBM, there were fifteen genes (including ten regulatory genes, three driver genes, one biomarkers, one therapeutic target) and KEGG pathways found in the KDS of neural differentiation process from activated neural stem cells (aNSC) to neural progenitor cells (NPC), while few genes and no pathway were found in the period from NPC to astrocytes (Ast). These experiments indicated that the process from aNSC to NPC is a key differentiation period affecting the development of GBM. Therefore, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes and KDSs.
Collapse
|
9
|
Kanwar N, Carmine-Simmen K, Nair R, Wang C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang J, Pasculescu A, Datti A, Mak T, Lewis JD, Done SJ. Amplification of a calcium channel subunit CACNG4 increases breast cancer metastasis. EBioMedicine 2020; 52:102646. [PMID: 32062352 PMCID: PMC7016384 DOI: 10.1016/j.ebiom.2020.102646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previously, we found that amplification of chromosome 17q24.1-24.2 is associated with lymph node metastasis, tumour size, and lymphovascular invasion in invasive ductal carcinoma. A gene within this amplicon, CACNG4, an L-type voltage-gated calcium channel gamma subunit, is elevated in breast cancers with poor prognosis. Calcium homeostasis is achieved by maintaining low intracellular calcium levels. Altering calcium influx/efflux mechanisms allows tumour cells to maintain homeostasis despite high serum calcium levels often associated with advanced cancer (hypercalcemia) and aberrant calcium signaling. METHODS In vitro 2-D and 3-D assays, and intracellular calcium influx assays were utilized to measure tumourigenic activity in response to altered CANCG4 levels and calcium channel blockers. A chick-CAM model and mouse model for metastasis confirmed these results in vivo. FINDINGS CACNG4 alters cell motility in vitro, induces malignant transformation in 3-dimensional culture, and increases lung-specific metastasis in vivo. CACNG4 functions by closing the channel pore, inhibiting calcium influx, and altering calcium signaling events involving key survival and metastatic pathway genes (AKT2, HDAC3, RASA1 and PKCζ). INTERPRETATION CACNG4 may promote homeostasis, thus increasing the survival and metastatic ability of tumour cells in breast cancer. Our findings suggest an underlying pathway for tumour growth and dissemination regulated by CACNG4 that is significant with respect to developing treatments that target these channels in tumours with aberrant calcium signaling. FUNDING Canadian Breast Cancer Foundation, Ontario; Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Nisha Kanwar
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Ranju Nair
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Chunjie Wang
- Department of Pathology and Laboratory Medicine, Saskatoon City Hospital, Saskatoon, SK S7K 0M7, Canada
| | - Soode Moghadas-Jafari
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Heiko Blaser
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Danh Tran-Thanh
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montréal, QC H2W 1T8, Canada
| | - Dongyu Wang
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Peiqi Wang
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Jenny Wang
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Tak Mak
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susan J Done
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada; Laboratory Medicine Program, Department of Pathology, University Health Network, Toronto General Hospital, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
10
|
Huang CC, Hwang JM, Tsai JH, Chen JH, Lin H, Lin GJ, Yang HL, Liu JY, Yang CY, Ye JC. Aqueous Ocimum gratissimum extract induces cell apoptosis in human hepatocellular carcinoma cells. Int J Med Sci 2020; 17:338-346. [PMID: 32132869 PMCID: PMC7053345 DOI: 10.7150/ijms.39436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/10/2019] [Indexed: 01/30/2023] Open
Abstract
Treatment of advanced hepatocellular carcinoma (HCC) has exhibited a poor overall survival rate of only six to ten months, and the urgency of the development of more effective novel agents is ever present. In this line of research, we aimed to investigate the effects and inhibitive mechanisms of aqueous Ocimum gratissimum leaf extract (OGE), the extract of Ocimum gratissimum, which is commonly used as a therapeutic herb for its numerous pharmacological properties, on malignant HCC cells. Our results showed that OGE decreased the cell viability of HCC SK-Hep1 and HA22T cells in a dose-dependent manner (from 400 to 800 µg/mL), while there is little effect on Chang liver cells. Moreover, cell-cycle analysis shows increased Sub-G1 cell count in SK-Hep1 and HA22T cells which is not observed in Chang liver cells. These findings raise suspicion that the OGE-induced cell death may be mediated through proteins that regulate cell cycle and apoptosis in SK-Hep1 and HA22T cells, and further experimentation revealed that OGE treatment resulted in a dose-dependent decrease in caspase 3 and PARP expressions and in CDK4and p-ERK1/2expressions. Moreover, animal tests also exhibited decreased HCC tumor growth by OGE treatment. We therefore suggest that the inhibition of cell viability and tumor growth induced by OGE may be correlated to the alteration of apoptosis-related proteins.
Collapse
Affiliation(s)
- Chen-Cheng Huang
- Institute of Molecular Biology College of Life Science, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Jin-Ming Hwang
- School of Applied Chemistry, Chung-Shan Medical University, Taichung 40201, Taiwan
| | - Jen-Hsiang Tsai
- Basic Medical Science Education Center, College of Medicine and Health, Fooyin University, Kaohsiung, Taiwan
| | - Jing Huei Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Geng-Jhih Lin
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chiou-Ying Yang
- Institute of Molecular Biology College of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Je-Chiuan Ye
- Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan
- Master Program in Biomedical Science, National Taitung University, Taitung, Taiwan
| |
Collapse
|
11
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Abstract
FGF19 is a noncanonical FGF ligand that can control a broad spectrum of physiological responses, which include bile acid homeostasis, liver metabolism and glucose uptake. Many of these responses are mediated by FGF19 binding to its FGFR4/β-klotho receptor complex and controlling activation of an array of intracellular signaling events. Overactivation of the FGF19/FGFR4 axis has been implicated in tumorigenic formation, progression and metastasis, and inhibitors of this axis have recently been developed for single agent use or in combination with other anticancer drugs. Considering the critical role of this receptor complex in cancer, this review focuses on recent developments and applications of FGF19/FGFR4-targeted therapeutics.
Collapse
|
13
|
Identification of the Gene Expression Rules That Define the Subtypes in Glioma. J Clin Med 2018; 7:jcm7100350. [PMID: 30322114 PMCID: PMC6210469 DOI: 10.3390/jcm7100350] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
As a common brain cancer derived from glial cells, gliomas have three subtypes: glioblastoma, diffuse astrocytoma, and anaplastic astrocytoma. The subtypes have distinctive clinical features but are closely related to each other. A glioblastoma can be derived from the early stage of diffuse astrocytoma, which can be transformed into anaplastic astrocytoma. Due to the complexity of these dynamic processes, single-cell gene expression profiles are extremely helpful to understand what defines these subtypes. We analyzed the single-cell gene expression profiles of 5057 cells of anaplastic astrocytoma tissues, 261 cells of diffuse astrocytoma tissues, and 1023 cells of glioblastoma tissues with advanced machine learning methods. In detail, a powerful feature selection method, Monte Carlo feature selection (MCFS) method, was adopted to analyze the gene expression profiles of cells, resulting in a feature list. Then, the incremental feature selection (IFS) method was applied to the obtained feature list, with the help of support vector machine (SVM), to extract key features (genes) and construct an optimal SVM classifier. Several key biomarker genes, such as IGFBP2, IGF2BP3, PRDX1, NOV, NEFL, HOXA10, GNG12, SPRY4, and BCL11A, were identified. In addition, the underlying rules of classifying the three subtypes were produced by Johnson reducer algorithm. We found that in diffuse astrocytoma, PRDX1 is highly expressed, and in glioblastoma, the expression level of PRDX1 is low. These rules revealed the difference among the three subtypes, and how they are formed and transformed. These genes are not only biomarkers for glioma subtypes, but also drug targets that may switch the clinical features or even reverse the tumor progression.
Collapse
|
14
|
Lovewell TRJ, McDonagh AJG, Messenger AG, Azzouz M, Tazi-Ahnini R. Meta-Analysis of Autoimmune Regulator-Regulated Genes in Human and Murine Models: A Novel Human Model Provides Insights on the Role of Autoimmune Regulator in Regulating STAT1 and STAT1-Regulated Genes. Front Immunol 2018; 9:1380. [PMID: 30002654 PMCID: PMC6031710 DOI: 10.3389/fimmu.2018.01380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (AIRE) regulates promiscuous expression of tissue-restricted antigens in medullary epithelial cells (mTEC) of the thymus. To understand the diverse effects of AIRE, it is crucial to elucidate the molecular mechanisms underlying the process of AIRE-regulated gene expression. In this study, we generated a recombinant AIRE expression variant of the TEC 1A3 human cell line, TEC 1A3 AIREhi, to determine genes targeted by AIRE, and using microarray analysis, we identified 482 genes showing significant differential expression (P < 0.05; false discovery rate <5%), with 353 upregulated and 129 downregulated by AIRE expression. Microarray data were validated by quantitative PCR, confirming the differential expression of 12 known AIRE-regulated genes. Comparison of AIRE-dependent differential expression in our cell line model with murine datasets identified 447 conserved genes with a number of transcription regulatory interactions, forming several key nodes, including STAT1, which had over 30 interactions with other AIRE-regulated genes. As STAT1 mutations cause dominant chronic mucocutaneous candidiasis and decreased STAT1 levels in monocytes of autoimmune polyglandular syndrome 1 (APS-1) patients, it was important to further characterize AIRE–STAT1 interactions. TEC 1A3AIREhi were treated with the STAT1 phosphorylation inhibitors fludarabine and LLL3 showed that phosphorylated STAT1 (p-STAT1) was not responsible for any of the observed differential expression. Moreover, treatment of TEC 1A3 AIREhi with STAT1 shRNA did not induce any significant variation in the expression of unphosphorylated STAT1 (U-STAT1) downstream genes, suggesting that these genes were directly regulated by AIRE but not via U-STAT1. The novel model system we have developed provides potential opportunities for further analysis of the pathogenesis of (APS-1) and the wider roles of the AIRE gene.
Collapse
Affiliation(s)
- Thomas R J Lovewell
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J G McDonagh
- Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Andrew G Messenger
- Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Rachid Tazi-Ahnini
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Vidak M, Jovcevska I, Samec N, Zottel A, Liovic M, Rozman D, Dzeroski S, Juvan P, Komel R. Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Glioblastoma Marker Candidates. Int J Mol Sci 2018; 19:ijms19051369. [PMID: 29734672 PMCID: PMC5983642 DOI: 10.3390/ijms19051369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive brain malignancy. Although some potential glioblastoma biomarkers have already been identified, there is a lack of cell membrane-bound biomarkers capable of distinguishing brain tissue from glioblastoma and/or glioblastoma stem cells (GSC), which are responsible for the rapid post-operative tumor reoccurrence. In order to find new GB/GSC marker candidates that would be cell surface proteins (CSP), we have performed meta-analysis of genome-scale mRNA expression data from three data repositories (GEO, ArrayExpress and GLIOMASdb). The search yielded ten appropriate datasets, and three (GSE4290/GDS1962, GSE23806/GDS3885, and GLIOMASdb) were used for selection of new GB/GSC marker candidates, while the other seven (GSE4412/GDS1975, GSE4412/GDS1976, E-GEOD-52009, E-GEOD-68848, E-GEOD-16011, E-GEOD-4536, and E-GEOD-74571) were used for bioinformatic validation. The selection identified four new CSP-encoding candidate genes—CD276, FREM2, SPRY1, and SLC47A1—and the bioinformatic validation confirmed these findings. A review of the literature revealed that CD276 is not a novel candidate, while SLC47A1 had lower validation test scores than the other new candidates and was therefore not considered for experimental validation. This validation revealed that the expression of FREM2—but not SPRY1—is higher in glioblastoma cell lines when compared to non-malignant astrocytes. In addition, FREM2 gene and protein expression levels are higher in GB stem-like cell lines than in conventional glioblastoma cell lines. FREM2 is thus proposed as a novel GB biomarker and a putative biomarker of glioblastoma stem cells. Both FREM2 and SPRY1 are expressed on the surface of the GB cells, while SPRY1 alone was found overexpressed in the cytosol of non-malignant astrocytes.
Collapse
Affiliation(s)
- Marko Vidak
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Ivana Jovcevska
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Neja Samec
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Alja Zottel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Mirjana Liovic
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Damjana Rozman
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Saso Dzeroski
- Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Peter Juvan
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Radovan Komel
- Faculty of Medicine, Medical Centre for Molecular Biology, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
16
|
Cardama GA, Alonso DF, Gonzalez N, Maggio J, Gomez DE, Rolfo C, Menna PL. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit Rev Oncol Hematol 2018; 124:29-36. [PMID: 29548483 DOI: 10.1016/j.critrevonc.2018.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022] Open
Abstract
Rac1 GTPase signaling pathway has a critical role in the regulation of a plethora of cellular functions governing cancer cell behavior. Recently, it has been shown a critical role of Rac1 in the emergence of resistance mechanisms to cancer therapy. This review describes the current knowledge regarding Rac1 pathway deregulation and its association with chemoresistance, radioresistance, resistance to targeted therapies and immune evasion. This supports the idea that interfering Rac1 signaling pathway could be an interesting approach to tackle cancer resistance.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D F Alonso
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - C Rolfo
- Phase I-Early Clinical trials Unit, Oncology Department Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Belgium.
| | - P L Menna
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J 2017; 474:2903-2924. [PMID: 28801478 DOI: 10.1042/bcj20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.
Collapse
|
18
|
Covell DG. A data mining approach for identifying pathway-gene biomarkers for predicting clinical outcome: A case study of erlotinib and sorafenib. PLoS One 2017; 12:e0181991. [PMID: 28792525 PMCID: PMC5549706 DOI: 10.1371/journal.pone.0181991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
A novel data mining procedure is proposed for identifying potential pathway-gene biomarkers from preclinical drug sensitivity data for predicting clinical responses to erlotinib or sorafenib. The analysis applies linear ridge regression modeling to generate a small (N~1000) set of baseline gene expressions that jointly yield quality predictions of preclinical drug sensitivity data and clinical responses. Standard clustering of the pathway-gene combinations from gene set enrichment analysis of this initial gene set, according to their shared appearance in molecular function pathways, yields a reduced (N~300) set of potential pathway-gene biomarkers. A modified method for quantifying pathway fitness is used to determine smaller numbers of over and under expressed genes that correspond with favorable and unfavorable clinical responses. Detailed literature-based evidence is provided in support of the roles of these under and over expressed genes in compound efficacy. RandomForest analysis of potential pathway-gene biomarkers finds average treatment prediction errors of 10% and 22%, respectively, for patients receiving erlotinib or sorafenib that had a favorable clinical response. Higher errors were found for both compounds when predicting an unfavorable clinical response. Collectively these results suggest complementary roles for biomarker genes and biomarker pathways when predicting clinical responses from preclinical data.
Collapse
Affiliation(s)
- David G. Covell
- Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
19
|
Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma. Future Oncol 2016; 11:1407-20. [PMID: 25952786 DOI: 10.2217/fon.15.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most lethal brain tumor. The poor prognosis results from lack of defined tumor margins, critical location of the tumor mass and presence of chemo- and radio-resistant tumor stem cells. The current treatment for glioblastoma consists of neurosurgery, followed by radiotherapy and temozolomide chemotherapy. A better understanding of the role of molecular and genetic heterogeneity in glioblastoma pathogenesis allowed the design of novel targeted therapies. New targets include different key-role signaling molecules and specifically altered pathways. The new approaches include interference through small molecules or monoclonal antibodies and RNA-based strategies mediated by siRNA, antisense oligonucleotides and ribozymes. Most of these treatments are still being tested yet they stay as solid promises for a clinically relevant success.
Collapse
Affiliation(s)
- Maira Zorzan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
20
|
NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumour Biol 2015; 37:4493-500. [DOI: 10.1007/s13277-015-4245-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
|
21
|
Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des 2015; 20:2881-98. [PMID: 23944363 DOI: 10.2174/13816128113199990594] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine 1, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Jha P, Agrawal R, Pathak P, Kumar A, Purkait S, Mallik S, Suri V, Chand Sharma M, Gupta D, Suri A, Sharma BS, Julka PK, Kulshreshtha R, Sarkar C. Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. Int J Cancer 2015; 137:2343-53. [PMID: 25994230 DOI: 10.1002/ijc.29610] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Pediatric high-grade gliomas (HGGs) are highly malignant tumors that remain incurable and relatively understudied. The crucial role of noncoding RNAs (ncRNAs) has been reported in various cancers. However, the study on miRNAs in pediatric HGGs is scant and there is no report till date on the status of other small ncRNAs. Genome-wide microarray analysis was performed to investigate small ncRNA expression in pediatric HGG (n = 14) and compared to adult glioblastoma (GBM) signature. The validation of miRNAs and small nucleolar RNAs (snoRNAs) was done by real-time polymerase chain reaction. TP53 and H3F3A mutation-specific miRNA and snoRNA profiles were generated and analyzed. Pediatric HGGs showed upregulation of miR-17/92 and its paralog clusters (miR106b/25 and miR-106a/363), whereas majority of downregulated miRNAs belonged to miR379/656 cluster (14q32). Unsupervised hierarchical clustering identified two distinct groups. Interestingly, Group 2 with downregulated 14q32 cluster showed better overall survival. The miRNAs unique to pediatric HGG as compared to adult GBM were predicted to affect PDGFR and SMAD2/3 pathways. Similarities were seen between pediatric HGG and TP53 mutant miRNA profiles as compared to wild types. Several of H3F3A mutation-regulated genes were found to be the targets of H3F3A mutant-specific miRNAs. Remarkably, a significant downregulation of HBII-52 snoRNA cluster was found in pediatric HGGs, and was specific to H3F3A nonmutants. This is the first genome-wide profiling study on miRNAs and snoRNAs in pediatric HGGs with respect to H3F3A and TP53 mutations. The comparison of miRNA profiles of pediatric HGGs and adult GBM reiterates the overlaps and differences as also seen with their gene expression and methylation signatures.
Collapse
Affiliation(s)
- Prerana Jha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Rahul Agrawal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Supriyo Mallik
- Department of Radiotherapy, Dr B R Ambedkar Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - B S Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - P K Julka
- Department of Radiotherapy, Dr B R Ambedkar Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Nabissi M, Morelli MB, Amantini C, Liberati S, Santoni M, Ricci-Vitiani L, Pallini R, Santoni G. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int J Cancer 2015; 137:1855-69. [DOI: 10.1002/ijc.29573] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Massimo Nabissi
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| | - Maria Beatrice Morelli
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
- Department of Molecular Medicine; Sapienza University; Rome Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Sonia Liberati
- Department of Molecular Medicine; Sapienza University; Rome Italy
| | - Matteo Santoni
- Clinica Di Oncologia Medica; AOU Ospedali Riuniti-Università Politecnica Delle Marche; Ancona Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore Di Sanità; Rome Italy
| | - Roberto Pallini
- Department of Neurosurgery; Università Cattolica Del Sacro Cuore; Rome Italy
| | - Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| |
Collapse
|
24
|
Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, Mariot P. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene 2015; 34:5383-94. [PMID: 25619833 DOI: 10.1038/onc.2014.467] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/05/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
In the present study, we have assessed whether a putative calcium channel α2δ2 auxiliary subunit (CACNA2D2 gene) could be involved in prostate cancer (PCA) progression. We therefore carried out experiments to determine whether this protein is expressed in PCA LNCaP cells and in PCA tissues, and whether its expression may be altered during cancer development. In addition, we evaluated the influence on cell proliferation of overexpressing or downregulating this subunit. In vitro experiments show that α2δ2 subunit overexpression is associated with increased cell proliferation, alterations of calcium homeostasis and the recruitment of a nuclear factor of activated T-cells pathway. Furthermore, we carried out in vivo experiments on immuno-deficient nude mice in order to evaluate the tumorigenic potency of the α2δ2 subunit. We show that α2δ2-overexpressing PCA LNCaP cells are more tumorigenic than control LNCaP cells when injected into nude mice. In addition, gabapentin, a ligand of α2δ2, reduces tumor development in LNCaP xenografts. Finally, we show that the action of α2δ2 on tumor development occurs not only through a stimulation of proliferation, but also through a stimulation of angiogenesis, via an increased secretion of vascular endothelial growth factor in cells overexpressing α2δ2.
Collapse
Affiliation(s)
- M Warnier
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - M Roudbaraki
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - S Derouiche
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - P Delcourt
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - A Bokhobza
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - N Prevarskaya
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| | - P Mariot
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Villeneuve d'Ascq Cédex, France
| |
Collapse
|
25
|
Ríos P, Nunes-Xavier CE, Tabernero L, Köhn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 2014; 20:2251-73. [PMID: 24206177 DOI: 10.1089/ars.2013.5709] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE The dual-specificity phosphatases (DUSPs) constitute a heterogeneous group of cysteine-based protein tyrosine phosphatases, whose members exert a pivotal role in cell physiology by dephosphorylation of phosphoserine, phosphothreonine, and phosphotyrosine residues from proteins, as well as other non-proteinaceous substrates. RECENT ADVANCES A picture is emerging in which a selected group of DUSP enzymes display overexpression or hyperactivity that is associated with human disease, especially human cancer, making feasible targeted therapy approaches based on their inhibition. A panoply of molecular and functional studies on DUSPs have been performed in the previous years, and drug-discovery efforts are ongoing to develop specific and efficient DUSP enzyme inhibitors. This review summarizes the current status on inhibitory compounds targeting DUSPs that belong to the MAP kinase phosphatases-, small-sized atypical-, and phosphatases of regenerating liver subfamilies, whose inhibition could be beneficial for the prevention or mitigation of human disease. CRITICAL ISSUES Achieving specificity, potency, and bioavailability are the major challenges in the discovery of DUSP inhibitors for the clinics. Clinical validation of compounds or alternative inhibitory strategies of DUSP inhibition has yet to come. FUTURE DIRECTIONS Further work is required to understand the dual role of many DUSPs in human cancer, their function-structure properties, and to identify their physiologic substrates. This will help in the implementation of therapies based on DUSPs inhibition.
Collapse
Affiliation(s)
- Pablo Ríos
- 1 Genome Biology Unit, European Molecular Biology Laboratory , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
26
|
Prabhakar S, Asuthkar S, Lee W, Chigurupati S, Zakharian E, Tsung AJ, Velpula KK. Targeting DUSPs in glioblastomas - wielding a double-edged sword? Cell Biol Int 2013; 38:145-53. [PMID: 24155099 DOI: 10.1002/cbin.10201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/04/2013] [Indexed: 12/22/2022]
Abstract
Several dual-specificity phosphatases (DUSPs) that play key roles in the direct or indirect inactivation of different MAP kinases (MAPKs) have been implicated in human cancers over the past decade. This has led to a growing interest in identifying DUSPs and their specific inhibitors for further testing and validation as therapeutic targets in human cancers. However, the lack of understanding of the complex regulatory mechanisms and cross-talks between MAPK signaling pathways, combined with the fact that DUSPs can act as a double-edged sword in cancer progression, calls for a more careful and thorough investigation. Among the various types of brain cancer, glioblastoma multiforme (GBM) is notorious for its aggressiveness and resistance to current treatment modalities. This has led to the search for new molecular targets, particularly those involving various signaling pathways. DUSPs appear to be a promising target, but much more information on DUSP targets and their effects on GBM is needed before potential therapies can be developed, tested, and validated. This review identifies and summarize the specific roles of DUSP1, DUSP4, DUSP6 and DUSP26 that have been implicated in GBM.
Collapse
Affiliation(s)
- Sheila Prabhakar
- Department of Natural and Health Sciences, Southeastern University, Lakeland, Florida, 33801, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhuang H, Yuan Z, Wang J, Zhao L, Pang Q, Wang P. Phase II study of whole brain radiotherapy with or without erlotinib in patients with multiple brain metastases from lung adenocarcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1179-86. [PMID: 24133369 PMCID: PMC3797237 DOI: 10.2147/dddt.s53011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this paper is to explore the efficacy of whole brain radiotherapy (WBRT) versus WBRT concurrent with erlotinib in patients with multiple brain metastases of lung adenocarcinoma. WBRT was administered at 30Gy/10f in both arms. In the combination arm, 150 mg erlotinib was given each day, starting the first day of radiotherapy and continuing for 1 month following the end of radiotherapy. Thereafter, pemetrexed or docetaxel monotherapy or the best supportive therapy was given to both arms. The intracranial objective response rate and the local progression-free survival (LPFS) were primary endpoints. Toxicity, progression-free survival (PFS) and overall survival (OS) were secondary endpoints. Thirty-one patients in the WBRT group and 23 patients in the combination group were enrolled from November 2009 to December 2011. In the WBRT and the combination arms, respectively, the objective response rate was 54.84% and 95.65% (P = 0.001), the median local progression-free survival was 6.8 months and 10.6 months (P = 0.003), the median PFS was 5.2 months and 6.8 months (P = 0.009), and median OS was 8.9 months and 10.7 months (P = 0.020). In the combination group, there were no differences of LPFS, PFS, and OS between the epidermal growth factor receptor (EGFR) mutation patients and EGFR wild-type patients. No Grade 4 or higher side effects were observed in either group. A multivariate analysis indicated that erlotinib was the most important prognostic factor for a prolonged survival. Data showed that erlotinib in combination with WBRT had a tolerable toxicity profile and prolonged the LPFS, PFS, and OS of lung adenocarcinoma patients with multiple brain metastases compared with WBRT monotherapy.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China ; National Clinical Research Center of Cancer, Tianjin, People's Republic of China ; Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China ; Tianjin Lung Cancer Center, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Karpel-Massler G, Westhoff MA, Zhou S, Nonnenmacher L, Dwucet A, Kast RE, Bachem MG, Wirtz CR, Debatin KM, Halatsch ME. Combined Inhibition of HER1/EGFR and RAC1 Results in a Synergistic Antiproliferative Effect on Established and Primary Cultured Human Glioblastoma Cells. Mol Cancer Ther 2013; 12:1783-95. [DOI: 10.1158/1535-7163.mct-13-0052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Zhuang H, Wang J, Zhao L, Yuan Z, Wang P. The theoretical foundation and research progress for WBRT combined with erlotinib for the treatment of multiple brain metastases in patients with lung adenocarcinoma. Int J Cancer 2013; 133:2277-83. [PMID: 23720067 DOI: 10.1002/ijc.28290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy; and Tianjin Lung Cancer Center; Tianjin; PR; China
| | - Jun Wang
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy; and Tianjin Lung Cancer Center; Tianjin; PR; China
| | - Lujun Zhao
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy; and Tianjin Lung Cancer Center; Tianjin; PR; China
| | - Zhiyong Yuan
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy; and Tianjin Lung Cancer Center; Tianjin; PR; China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy; and Tianjin Lung Cancer Center; Tianjin; PR; China
| |
Collapse
|
30
|
García-Claver A, Lorente M, Mur P, Campos-Martín Y, Mollejo M, Velasco G, Meléndez B. Gene expression changes associated with erlotinib response in glioma cell lines. Eur J Cancer 2013; 49:1641-53. [DOI: 10.1016/j.ejca.2013.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/11/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
31
|
Epidermal growth factor receptor as a therapeutic target in glioblastoma. Neuromolecular Med 2013; 15:420-34. [PMID: 23575987 DOI: 10.1007/s12017-013-8229-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023]
Abstract
Glioblastoma represents one of the most challenging problems in neurooncology. Among key elements driving its behavior is the transmembrane epidermal growth factor receptor family, with the first member epidermal growth factor receptor (EGFR) centered in most studies. Engagement of the extracellular domain with a ligand activates the intracellular tyrosine kinase (TK) domain of EGFR, leading to autophosphorylation and signal transduction that controls proliferation, gene transcription, and apoptosis. Oncogenic missense mutations, deletions, and insertions in the EGFR gene are preferentially located in the extracellular domain in glioblastoma and cause constitutive activation of the receptor. The mutant EGFR may also transactivate other cell surface molecules, such as additional members of the EGFR family and the platelet-derived growth factor receptor, which ignite signaling cascades that synergize with the EGFR-initiated cascade. Because of the cell surface location and increased expression of the receptor along with its important biological function, EGFR has triggered much effort for designing targeted therapy. These approaches include TK inhibition, monoclonal antibody, vaccine, and RNA-based downregulation of the receptor. Treatment success requires that the drug penetrates the blood-brain barrier and has low systemic toxicity but high selectivity for the tumor. While the blockade of EGFR-dependent processes resulted in experimental and clinical treatment success, cells capable of using alternative signaling ultimately escape this strategy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways will likely enhance efficacy. Studies on EGFR in glioblastoma have revealed much information about the complexity of gliomagenesis and also facilitated the development of strategies for targeting drivers of tumor growth and combination therapies with increasing complexity.
Collapse
|
32
|
Rink L, Ochs MF, Zhou Y, von Mehren M, Godwin AK. ZNF-mediated resistance to imatinib mesylate in gastrointestinal stromal tumor. PLoS One 2013; 8:e54477. [PMID: 23372733 PMCID: PMC3556080 DOI: 10.1371/journal.pone.0054477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Although imatinib mesylate (IM) has transformed the treatment of gastrointestinal stromal tumors (GIST), many patients experience primary/secondary drug resistance. In a previous study, we identified a gene signature, consisting mainly of Kruppel-associated box (KRAB) domain containing zinc finger (ZNF) transcriptional repressors that predict short-term response to IM. To determine if these genes have functional significance, a siRNA library targeting these genes was constructed and applied to GIST cells in vitro. These screens identified seventeen “IM sensitizing genes” in GIST cells (sensitization index (SI) <0.85 ratio of drug/vehicle) with a false discovery rate (FDR) <15%, including twelve ZNF genes, the majority of which are located within the HSA19p12–13.1 locus. These genes were shown to be highly specific to IM and another tyrosine kinase inhibitor (TKI), sunitinib, in GIST cells. In order to determine mechanistically how these ZNFs might be modulating response to IM, RNAi approaches were used to individually silence genes within the predictive signature in GIST cells and expression profiling was performed. Knockdown of the 14 IM-sensitizing genes (10 ZNFs) universally led to downregulation of six genes, including TGFb3, periostin, and NEDD9. These studies implicate a role of KRAB-ZNFs in modulating response to TKIs in GIST.
Collapse
Affiliation(s)
- Lori Rink
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
33
|
Ramis G, Thomàs-Moyà E, Fernández de Mattos S, Rodríguez J, Villalonga P. EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS One 2012; 7:e38770. [PMID: 22701710 PMCID: PMC3368887 DOI: 10.1371/journal.pone.0038770] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/13/2012] [Indexed: 12/30/2022] Open
Abstract
Enforced EGFR activation upon gene amplification and/or mutation is a common hallmark of malignant glioma. Small molecule EGFR tyrosine kinase inhibitors, such as erlotinib (Tarceva), have shown some activity in a subset of glioma patients in recent trials, although the reported data on the cellular basis of glioma cell responsiveness to these compounds have been contradictory. Here we have used a panel of human glioma cell lines, including cells with amplified or mutant EGFR, to further characterize the cellular effects of EGFR inhibition with erlotinib. Dose-response and cellular growth assays indicate that erlotinib reduces cell proliferation in all tested cell lines without inducing cytotoxic effects. Flow cytometric analyses confirm that EGFR inhibition does not induce apoptosis in glioma cells, leading to cell cycle arrest in G1. Interestingly, erlotinib also prevents spontaneous multicellular tumour spheroid growth in U87MG cells and cooperates with sub-optimal doses of temozolomide (TMZ) to reduce multicellular tumour spheroid growth. This cooperation appears to be schedule-dependent, since pre-treatment with erlotinib protects against TMZ-induced cytotoxicity whereas concomitant treatment results in a cooperative effect. Cell cycle arrest in erlotinib-treated cells is associated with an inhibition of ERK and Akt signaling, resulting in cyclin D1 downregulation, an increase in p27kip1 levels and pRB hypophosphorylation. Interestingly, EGFR inhibition also perturbs Rho GTPase signaling and cellular morphology, leading to Rho/ROCK-dependent formation of actin stress fibres and the inhibition of glioma cell motility and invasion.
Collapse
Affiliation(s)
- Guillem Ramis
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Illes Balears, Spain
| | - Elena Thomàs-Moyà
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Illes Balears, Spain
| | - Silvia Fernández de Mattos
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Illes Balears, Spain
- Departament de Biologia Fonamental, Universitat de les Illes Balears, Illes Balears, Spain
| | - José Rodríguez
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Illes Balears, Spain
| | - Priam Villalonga
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Illes Balears, Spain
- Departament de Biologia Fonamental, Universitat de les Illes Balears, Illes Balears, Spain
- * E-mail:
| |
Collapse
|
34
|
Astanehe A, Finkbeiner MR, Krzywinski M, Fotovati A, Dhillon J, Berquin IM, Mills GB, Marra MA, Dunn SE. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene 2012; 31:4434-46. [PMID: 22249268 DOI: 10.1038/onc.2011.617] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trastuzumab (Herceptin) resistance is a major obstacle in the treatment of patients with HER2-positive breast cancers. We recently reported that the transcription factor Y-box binding protein-1 (YB-1) leads to acquisition of resistance to trastuzumab in a phosphorylation-dependent manner that relies on p90 ribosomal S6 kinase (RSK). To explore how this may occur we compared YB-1 target genes between trastuzumab-sensitive cells (BT474) and those with acquired resistance (HR5 and HR6) using genome-wide chromatin immunoprecipitation sequencing (ChIP-sequencing), which identified 1391 genes uniquely bound by YB-1 in the resistant cell lines. We then examined differences in protein expression and phosphorylation between these cell lines using the Kinexus Kinex antibody microarrays. Cross-referencing these two data sets identified the mitogen-activated protein kinase-interacting kinase (MNK) family as potentially being involved in acquired resistance downstream from YB-1. MNK1 and MNK2 were subsequently shown to be overexpressed in the resistant cell lines; however, only the former was a YB-1 target based on ChIP-PCR and small interfering RNA (siRNA) studies. Importantly, loss of MNK1 expression using siRNA enhanced sensitivity to trastuzumab. Further, MNK1 overexpression was sufficient to confer resistance to trastuzumab in cells that were previously sensitive. We then developed a de novo model of acquired resistance by exposing BT474 cells to trastuzumab for 60 days (BT474LT). Similar to the HR5/HR6 cells, the BT474LT cells had elevated MNK1 levels and were dependent on it for survival. In addition, we demonstrated that RSK phosphorylated MNK1, and that this phosphorylation was required for ability of MNK1 to mediate resistance to trastuzumab. Furthermore, inhibition of RSK with the small molecule BI-D1870 repressed the MNK1-mediated trastuzumab resistance. In conclusion, this unbiased integrated approach identified MNK1 as a player in mediating trastuzumab resistance as a consequence of YB-1 activation, and demonstrated RSK inhibition as a means to overcome recalcitrance to trastuzumab.
Collapse
Affiliation(s)
- A Astanehe
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
High cyclin D3 expression confers erlotinib resistance in aerodigestive tract cancer. Lung Cancer 2011; 74:384-91. [DOI: 10.1016/j.lungcan.2011.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 11/20/2022]
|
36
|
Caino MC, von Burstin VA, Lopez-Haber C, Kazanietz MG. Differential regulation of gene expression by protein kinase C isozymes as determined by genome-wide expression analysis. J Biol Chem 2011; 286:11254-64. [PMID: 21252239 DOI: 10.1074/jbc.m110.194332] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein kinase C (PKC) isozymes are key signal transducers involved in normal physiology and disease and have been widely implicated in cancer progression. Despite our extensive knowledge of the signaling pathways regulated by PKC isozymes and their effectors, there is essentially no information on how individual members of the PKC family regulate gene transcription. Here, we report the first PKC isozyme-specific analysis of global gene expression by microarray using RNAi depletion of diacylglycerol/phorbol ester-regulated PKCs. A thorough analysis of this microarray data revealed unique patterns of gene expression controlled by PKCα, PKCδ, and PKCε, which are remarkably different in cells growing in serum or in response to phorbol ester stimulation. PKCδ is the most relevant isoform in controlling the induction of genes by phorbol ester stimulation, whereas PKCε predominantly regulates gene expression in serum. We also established that two PKCδ-regulated genes, FOSL1 and BCL2A1, mediate the apoptotic effect of phorbol esters or the chemotherapeutic agent etoposide in prostate cancer cells. Our studies offer a unique opportunity for establishing novel transcriptional effectors for PKC isozymes and may have significant functional and therapeutic implications.
Collapse
Affiliation(s)
- M Cecilia Caino
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
37
|
Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 2011; 12:675-84. [PMID: 20824044 DOI: 10.1593/neo.10688] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 01/27/2023] Open
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, Delta EGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM.
Collapse
|
38
|
Li J, Di C, Mattox AK, Wu L, Adamson DC. The future role of personalized medicine in the treatment of glioblastoma multiforme. Pharmgenomics Pers Med 2010; 3:111-27. [PMID: 23226047 PMCID: PMC3513213 DOI: 10.2147/pgpm.s6852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most malignant primary central nervous system tumors. Personalized therapeutic approaches have not become standard of care for GBM, but science is fast approaching this goal. GBM's heterogeneous genomic landscape and resistance to radiotherapy and chemotherapy make this tumor one of the most challenging to treat. Recent advances in genome-wide studies and genetic profiling show that there is unlikely to be a single genetic or cellular event that can be effectively targeted in all patients. Instead, future therapies will likely require personalization for each patient's tumor genotype or proteomic profile. Over the past year, many investigations specifically focused simultaneously on strategies to target oncogenic pathways, angiogenesis, tumor immunology, epigenomic events, glioma stem cells (GSCs), and the highly migratory glioma cell population. Combination therapy targeting multiple pathways is becoming a fast growing area of research, and many studies put special attention on small molecule inhibitors. Because GBM is a highly vascular tumor, therapy that directs monoclonal antibodies or small molecule tyrosine kinase inhibitors toward angiogenic factors is also an area of focus for the development of new therapies. Passive, active, and adoptive immunotherapies have been explored by many studies recently, and epigenetic regulation of gene expression with microRNAs is also becoming an important area of study. GSCs can be useful targets to stop tumor recurrence and proliferation, and recent research has found key molecules that regulate GBM cell migration that can be targeted by therapy. Current standard of care for GBM remains nonspecific; however, pharmacogenomic studies are underway to pave the way for patient-specific therapies that are based on the unique aberrant pathways in individual patients. In conclusion, recent studies in GBM have found many diverse molecular targets possible for therapy. The next obstacle in treating this fatal tumor is ascertaining which molecules in each patient should be targeted and how best to target them, so that we can move our current nonspecific therapies toward the realm of personalized medicine.
Collapse
Affiliation(s)
- Jing Li
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA
- Department of Surgery (Neurosurgery), Duke Medical Center, Durham, North Carolina, USA
| | - Chunhui Di
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA
- Department of Surgery (Neurosurgery), Duke Medical Center, Durham, North Carolina, USA
| | - Austin K Mattox
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA
- Department of Surgery (Neurosurgery), Duke Medical Center, Durham, North Carolina, USA
| | - Linda Wu
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA
- Department of Surgery (Neurosurgery), Duke Medical Center, Durham, North Carolina, USA
| | - D Cory Adamson
- Preston Robert Tisch Brain Tumor Center, Duke Medical Center, Durham, North Carolina, USA
- Department of Surgery (Neurosurgery), Duke Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Duke Medical Center, Durham, North Carolina, USA
- Neurosurgery Section, Durham VA Medical Center, Durham, North Carolina, USA
| |
Collapse
|