1
|
Faizal A, Subramonian SG, Amir AP, Jawahar DB. An Uncommon Coexistence of Dural and Intraventricular Meningiomas. Cureus 2024; 16:e54510. [PMID: 38516436 PMCID: PMC10955442 DOI: 10.7759/cureus.54510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Meningiomas, originating from the meninges encasing the brain and spinal cord, are the most prevalent primary intracranial tumors, constituting around 40% of all such tumors. These tumors primarily manifest within the dura mater, the outermost meningeal layer, and occasionally in locations such as the ventricular system. However, the concurrent presence of dural and intraventricular meningiomas is exceedingly rare. It could be challenging to tell them apart from metastases. We present a case of a middle-aged female with chronic headaches, where magnetic resonance imaging (MRI) revealed two distinct supratentorial lesions, one dural and the other intraventricular. Surgical excision was successfully performed, and histopathological analysis confirmed the presence of meningiomas in both locations, and subsequent referral was made for comprehensive management, encompassing radiotherapy and chemotherapy. This case underscores the significance of advanced imaging modalities, particularly MRI, in diagnosing and assessing intricate brain tumors.
Collapse
Affiliation(s)
- Afwaan Faizal
- Radio-Diagnosis, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sakthi Ganesh Subramonian
- Radio-Diagnosis, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Aashika Parveen Amir
- Radio-Diagnosis, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Dinesh Babu Jawahar
- Radio-Diagnosis, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Galldiks N, Hattingen E, Langen KJ, Tonn JC. Imaging Characteristics of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:21-33. [PMID: 37432617 DOI: 10.1007/978-3-031-29750-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Contemporary neuroimaging of meningiomas has largely relied on computed tomography, and more recently magnetic resonance imaging. While these modalities are frequently used in nearly all clinical settings where meningiomas are treated for the routine diagnosis and follow-up of these tumors, advances in neuroimaging have provided novel opportunities for prognostication and treatment planning (including both surgical planning and radiotherapy planning). These include perfusion MRIs, and positron emission tomography (PET) imaging modalities. Here we will summarize the contemporary uses for neuroimaging in meningiomas, and future applications of novel, cutting edge imaging techniques that may be routinely implemented in the future to enable more precise treatment of these challenging tumors.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Aachen, Germany.
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Aachen, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich (LMU), Munich, Germany
| |
Collapse
|
3
|
Galldiks N, Angenstein F, Werner JM, Bauer EK, Gutsche R, Fink GR, Langen KJ, Lohmann P. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathol 2022; 32:e13015. [PMID: 35213083 PMCID: PMC8877736 DOI: 10.1111/bpa.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Masalha W, Daka K, Woerner J, Pompe N, Weber S, Delev D, Krüger MT, Schnell O, Beck J, Heiland DH, Grauvogel J. Metabolic alterations in meningioma reflect the clinical course. BMC Cancer 2021; 21:211. [PMID: 33648471 PMCID: PMC7923818 DOI: 10.1186/s12885-021-07887-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. Methods We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. Results We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. Conclusion Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07887-5.
Collapse
Affiliation(s)
- Waseem Masalha
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Karam Daka
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jakob Woerner
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Pompe
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Delev
- Department of Neurosurgery, RWTH University, Aachen, Germany
| | - Marie T Krüger
- Department of Neurosurgery, Cantonal Hospital St.Gallen, st. gallen, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Juergen Grauvogel
- Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
6
|
Huntoon K, Toland AMS, Dahiya S. Meningioma: A Review of Clinicopathological and Molecular Aspects. Front Oncol 2020; 10:579599. [PMID: 33194703 PMCID: PMC7645220 DOI: 10.3389/fonc.2020.579599] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most the common primary brain tumors in adults, representing approximately a third of all intracranial neoplasms. They classically are found to be more common in females, with the exception of higher grades that have a predilection for males, and patients of older age. Meningiomas can also be seen as a spectrum of inherited syndromes such as neurofibromatosis 2 as well as ionizing radiation. In general, the 5-year survival for a WHO grade I meningioma exceeds 80%; however, survival is greatly reduced in anaplastic meningiomas. The standard of care for meningiomas in a surgically-accessible location is gross total resection. Radiation therapy is generally saved for atypical, anaplastic, recurrent, and surgically inaccessible benign meningiomas with a total dose of ~60 Gy. However, the method of radiation, regimen and timing is still evolving and is an area of active research with ongoing clinical trials. While there are currently no good adjuvant chemotherapeutic agents available, recent advances in the genomic and epigenomic landscape of meningiomas are being explored for potential targeted therapy.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Bender L, Somme F, Ruhland E, Cicek AE, Bund C, Namer IJ. Metabolomic Profile of Aggressive Meningiomas by Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. J Proteome Res 2019; 19:292-299. [PMID: 31679342 DOI: 10.1021/acs.jproteome.9b00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meningiomas are in most cases benign brain tumors. The WHO 2016 classification defines three grades of meningiomas. This classification had a prognosis value because grade III meningiomas have a worse prognosis value compared to grades I and II meningiomas. However, some benign or atypical meningiomas can have a clinical aggressive behavior. There are currently no reliable markers which allow distinguishing between the meningiomas with a good prognosis and those which may recur. High-resolution magic angle spinning (HRMAS) spectrometry is a noninvasive method able to determine the metabolite profile of a tissue sample. We retrospectively analyzed 62 meningioma samples by using HRMAS spectrometry (43 metabolites). We described a metabolic profile defined by a high concentration for acetate, threonine, N-acetyl-lysine, hydroxybutyrate, myoinositol, ascorbate, scylloinositol, and total choline and a low concentration for aspartate, glucose, isoleucine, valine, adenosine, arginine, and alanine. This metabolomic signature was associated with poor prognosis histological markers [Ki-67 ≥ 40%, high histological grade and negative progesterone receptor (PR) expression]. We also described a similar metabolomic spectrum between grade III and grade I meningiomas. Moreover, all grade I meningiomas with a low Ki-67 expression and a positive PR expression did not have the same metabolomic profile. Metabolomic analysis could be used to determine an aggressive meningioma in order to discuss a personalized treatment. Further studies are needed to confirm these results and to correlate this metabolic profile with survival data.
Collapse
Affiliation(s)
| | | | | | - A Ercüment Cicek
- Computational Biology Department, School of Computer Science , Carnegie Mellon University , Pittsburgh 15213 , Pennsylvania , United States.,Computer Engineering Department , Bilkent University , Ankara 06800 , Turkey
| | - Caroline Bund
- ICube, Université de Strasbourg/CNRS, UMR 7357 , Strasbourg 67081 , Alsace , France
| | - Izzie Jacques Namer
- ICube, Université de Strasbourg/CNRS, UMR 7357 , Strasbourg 67081 , Alsace , France
| |
Collapse
|
8
|
Pînzariu O, Georgescu B, Georgescu CE. Metabolomics-A Promising Approach to Pituitary Adenomas. Front Endocrinol (Lausanne) 2018; 9:814. [PMID: 30705668 PMCID: PMC6345099 DOI: 10.3389/fendo.2018.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Metabolomics-the novel science that evaluates the multitude of low-molecular-weight metabolites in a biological system, provides new data on pathogenic mechanisms of diseases, including endocrine tumors. Although development of metabolomic profiling in pituitary disorders is at an early stage, it seems to be a promising approach in the near future in identifying specific disease biomarkers and understanding cellular signaling networks. Objectives: To review the metabolomic profile and the contributions of metabolomics in pituitary adenomas (PA). Methods: A systematic review was conducted via PubMed, Web of Science Core Collection and Scopus databases, summarizing studies that have described metabolomic aspects of PA. Results: Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectrometry, which are traditional techniques employed in metabolomics, suggest amino acids metabolism appears to be primarily altered in PA. N-acetyl aspartate, choline-containing compounds and creatine appear as highly effective in differentiating PA from healthy tissue. Deoxycholic and 4-pyridoxic acids, 3-methyladipate, short chain fatty acids and glucose-6-phosphate unveil metabolite biomarkers in patients with Cushing's disease. Phosphoethanolamine, N-acetyl aspartate and myo-inositol are down regulated in prolactinoma, whereas aspartate, glutamate and glutamine are up regulated. Phosphoethanolamine, taurine, alanine, choline-containing compounds, homocysteine, and methionine were up regulated in unclassified PA across studies. Intraoperative use of ultra high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which allows localization and delineation between functional PA and healthy pituitary tissue, may contribute to achievement of complete tumor resection in addition to preservation of pituitary cell lines and vasopressin secretory cells, thus avoiding postoperative diabetes insipidus. Conclusion: Implementation of ultra high performance metabolomics analysis techniques in the study of PA will significantly improve diagnosis and, potentially, the therapeutic approach, by identifying highly specific disease biomarkers in addition to novel molecular pathogenic mechanisms. Ultra high mass resolution MALDI-MSI emerges as a helpful clinical tool in the neurosurgical treatment of pituitary tumors. Therefore, metabolomics appears to be a science with a promising prospect in the sphere of PA, and a starting point in pituitary care.
Collapse
Affiliation(s)
- Oana Pînzariu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen E. Georgescu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
- *Correspondence: Carmen E. Georgescu
| |
Collapse
|
9
|
Smith KA, Leever JD, Hylton PD, Camarata PJ, Chamoun RB. Meningioma consistency prediction utilizing tumor to cerebellar peduncle intensity on T2-weighted magnetic resonance imaging sequences: TCTI ratio. J Neurosurg 2017; 126:242-248. [DOI: 10.3171/2016.1.jns152329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Meningioma consistency, firmness or softness as it relates to resectability, affects the difficulty of surgery and, to some degree, the extent of resection. Preoperative knowledge of tumor consistency would affect preoperative planning and instrumentation. Several methods of prediction have been proposed, but the majority lack objectivity and reproducibility or generalizability to other surgeons. In a previous pilot study of 20 patients the authors proposed a new method of prediction based on tumor/cerebellar peduncle T2-weighted imaging intensity (TCTI) ratios in comparison with objective intraoperative findings. In the present study they sought validation of this method.
METHODS
Magnetic resonance images from 100 consecutive patients undergoing craniotomy for meningioma resection were evaluated preoperatively. During surgery a consistency grade was prospectively applied to lesions by the operating surgeon, as determined by suction and/or cavitron ultrasonic surgical aspirator (CUSA) intensity. Consistency grades were A, soft; B, intermediate; and C, fibrous. Using T2-weighted MRI sequences, TCTI ratios were calculated. Analysis of the TCTI ratios and intraoperative tumor consistency was completed with ANOVA and receiver operating characteristic curves.
RESULTS
Of the 100 tumors evaluated, 50 were classified as soft, 29 as intermediate, and 21 as firm. The median TCTI ratio for firm tumors was 0.88; for intermediate tumors, 1.5; and for soft tumors, 1.84. One-way ANOVA comparing TCTI ratios for these groups was statistically significant (p < 0.0001). A single cutoff TCTI value of 1.41 for soft versus firm tumors was found to be 81.9% sensitive and 84.8% specific.
CONCLUSIONS
The authors propose this T2-based method of tumor consistency prediction with correlation to objective intraoperative consistency. This method is quantifiable and reproducible, which expands its usability. Additionally, it places tumor consistency on a graded continuum in a clinically meaningful way that could affect preoperative surgical planning.
Collapse
Affiliation(s)
| | - John D. Leever
- 2Radiology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | |
Collapse
|
10
|
Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS). Metabolites 2016; 6:metabo6010011. [PMID: 27011205 PMCID: PMC4812340 DOI: 10.3390/metabo6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.
Collapse
|
11
|
Smith KA, Leever JD, Chamoun RB. Predicting Consistency of Meningioma by Magnetic Resonance Imaging. J Neurol Surg B Skull Base 2015. [PMID: 26225306 DOI: 10.1055/s-0034-1543965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Objective Meningioma consistency is important because it affects the difficulty of surgery. To predict preoperative consistency, several methods have been proposed; however, they lack objectivity and reproducibility. We propose a new method for prediction based on tumor to cerebellar peduncle T2-weighted imaging intensity (TCTI) ratios. Design The magnetic resonance (MR) images of 20 consecutive patients were evaluated preoperatively. An intraoperative consistency scale was applied to these lesions prospectively by the operating surgeon based on Cavitron Ultrasonic Surgical Aspirator (Valleylab, Boulder, Colorado, United States) intensity. Tumors were classified as A, very soft; B, soft/intermediate; or C, fibrous. Using T2-weighted MR sequence, the TCTI ratio was calculated. Tumor consistency grades and TCTI ratios were then correlated. Results Of the 20 tumors evaluated prospectively, 7 were classified as very soft, 9 as soft/intermediate, and 4 as fibrous. TCTI ratios for fibrous tumors were all ≤ 1; very soft tumors were ≥ 1.8, except for one outlier of 1.66; and soft/intermediate tumors were > 1 to < 1.8. Conclusion We propose a method using quantifiable region-of-interest TCTIs as a uniform and reproducible way to predict tumor consistency. The intraoperative consistency was graded in an objective and clinically significant way and could lead to more efficient tumor resection.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John D Leever
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Roukoz B Chamoun
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
12
|
Kanberoglu B, Moore NZ, Frakes D, Karam LJ, Debbins JP, Preul MC. Neuronavigation Using Three-Dimensional Proton Magnetic Resonance Spectroscopy Data. Stereotact Funct Neurosurg 2014; 92:306-14. [DOI: 10.1159/000363751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/04/2014] [Indexed: 11/19/2022]
|
13
|
Differential diagnosis of intracranial meningiomas based on magnetic resonance spectroscopy. Neurol Neurochir Pol 2013; 47:247-55. [PMID: 23821422 DOI: 10.5114/ninp.2013.32998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE To determine in vivo magnetic resonance spectroscopy (MRS) characteristics of intracranial meningiomas and to assess MRS reliability in meningioma grading and discrimination from tumours of similar radiological appearance, such as lymphomas, schwannomas and haemangiopericytomas. MATERIAL AND METHODS Analysis of spectra of 14 patients with meningiomas, 6 with schwannomas, 2 with lymphomas, 2 with haemangiopericytomas and 17 control spectra taken from healthy hemispheres. RESULTS All the patients with meningiomas had a high Cho signal (long TE). There were very low signals of Naa and Cr in the spectra of 10 patients. A reversed Ala doublet was seen only in 2 cases. Four patients had a negative Lac signal, whereas 3 had high Lac-Lip spectra. Twelve spectra showed high Cho signals (short TE). In one case the Cho signal was extremely low. All spectra displayed a very low Cr signal, but high Glx and Lac-Lip signals. Ala presence was found only in 3 patients. The mean Cho/Cr ratio (PRESS) was 5.97 (1.12 in normal brain, p < 0.05). Lac-Lip was present in all the meningiomas (STEAM). The Ala signal was seen only in 2 spectra with long TE and in 3 sequences of the short TE sequences. There were both β/γ-Glx and α-Glx/glutathione signals in all 14 meningiomas. CONCLUSIONS MRS is unable to discriminate low and high grade meningiomas. The method seems to be helpful in discriminating lymphomas (absent Glx signal), schwannomas (mI signal in the short TE sequences) and haemangiopericytomas (presence of mI band) from meningiomas.
Collapse
|
14
|
Cohen M, Bartels U, Branson H, Kulkarni AV, Hamilton J. Trends in treatment and outcomes of pediatric craniopharyngioma, 1975-2011. Neuro Oncol 2013; 15:767-74. [PMID: 23486689 DOI: 10.1093/neuonc/not026] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Craniopharyngioma tumors and their treatment can lead to significant long-term morbidity due to their proximity to vital structures. The optimal treatment has been debated for many years. We aimed to review the long-term outcomes of children treated for craniopharyngioma in our institution over the past decade and describe trends in treatment and outcomes over the past 3 decades. METHODS Charts of children with craniopharyngioma treated and followed at The Hospital for Sick Children between 2001 and 2011 were reviewed. Data regarding findings at diagnosis, treatment, and long-term outcomes were analyzed. Comparison was made with previously published data from our institution. RESULTS Data from 33 patients are included; mean age at treatment, 10.7 ± 4.8 years. In 18 children (55%), the initial surgical approach was tumor cyst decompression with or without adjuvant therapy, compared with only 0-2% in the preceding decades (P < .01). Diabetes insipidus occurred in 55% of children and panhypopituitarism in 58% compared with 88% (P < .01) and 86% (P < .01), respectively, in the previous 10 years. Overall, there was a 36% reduction in the number of children who developed severe obesity compared with the preceding decade. Body mass index at follow-up was associated with body mass index at diagnosis (P = .004) and tumor resection as an initial treatment approach (P = .028). CONCLUSIONS A shift in surgical treatment approach away from gross total resection has led to improved endocrine outcomes. This may have beneficial implications for quality of life in survivors.
Collapse
Affiliation(s)
- Michal Cohen
- Division of Endocrinology, The Hospital for Sick Children, 555 University Ave. Toronto, Ontario, Canada M5G1X8
| | | | | | | | | |
Collapse
|
15
|
Fauvelle F, Carpentier P, Dorandeu F, Foquin A, Testylier G. Prediction of Neuroprotective Treatment Efficiency Using a HRMAS NMR-Based Statistical Model of Refractory Status Epilepticus on Mouse: A Metabolomic Approach Supported by Histology. J Proteome Res 2012; 11:3782-95. [DOI: 10.1021/pr300291d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florence Fauvelle
- Département Effets Biologiques
des Rayonnements, IRBA-CRSSA, La Tronche,
France
| | - Pierre Carpentier
- Département
de Toxicologie
et Risques Chimiques, IRBA-CRSSA, La Tronche,
France
| | - Frederic Dorandeu
- Département
de Toxicologie
et Risques Chimiques, IRBA-CRSSA, La Tronche,
France
- Ecole du Val-de-Grâce, Paris, France
| | - Annie Foquin
- Département
de Toxicologie
et Risques Chimiques, IRBA-CRSSA, La Tronche,
France
| | - Guy Testylier
- Département
de Toxicologie
et Risques Chimiques, IRBA-CRSSA, La Tronche,
France
| |
Collapse
|
16
|
Hoover JM, Morris JM, Meyer FB. Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int 2011; 2:142. [PMID: 22059137 PMCID: PMC3205511 DOI: 10.4103/2152-7806.85983] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/08/2011] [Indexed: 11/08/2022] Open
Abstract
Background: Meningioma firmness is a critical factor that influences ease of resection and risk, notably when operating on tumors intimate with neurovascular structures such as the mesial sphenoid wing. This study develops a predictive tool using preoperative magnetic resonance imaging (MRI) characteristics to determine meningioma consistency. Methods: 101 patients with intracranial meningioma (50 soft/51 firm) were included. MRI characteristics of 38 tumors (19 soft/19 firm) were retrospectively reviewed to identify preoperative imaging features that were then correlated with intraoperative description of the tumor as either “soft and/or suckable” or “firm and/or fibrous”. Criteria were developed to predict consistency and then blindly applied to the remaining 63 meningiomas (31 soft/32 firm). Results: The overall sensitivities for detecting soft and firm consistency were 90% and 56%, respectively (95% CI = 73–97% and 38–73%; P < 0.001). Compared to gray matter, meningiomas that were T2 hypointense were almost always firm. Soft meningiomas were hyperintense on T2 and hypointense on T1. Soft meningiomas were slightly larger and less likely to be associated with edema. There was a slight preponderance of firm meningiomas in the infratentorial compartment. Grade of meningioma was not predictive. Contrast enhancement, diffusion restriction, changes in overlying bone, intratumoral cysts, and angiographic features were not predictable. Conclusions: This tool using T1 and T2 series predicts meningioma consistency. Such knowledge should assist the surgeon in preoperative planning and counseling.
Collapse
Affiliation(s)
- Jason M Hoover
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
17
|
Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M. pH optimization for a reliable quantification of brain tumor cell and tissue extracts with (1)H NMR: focus on choline-containing compounds and taurine. Anal Bioanal Chem 2010; 399:987-99. [PMID: 21069302 DOI: 10.1007/s00216-010-4321-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 12/23/2022]
Abstract
The aim of this study was to define the optimal pH for (1)H nuclear magnetic resonance (NMR) spectroscopy analysis of perchloric acid or methanol-chloroform-water extracts from brain tumor cells and tissues. The systematic study of the proton chemical shift variations as a function of pH of 13 brain metabolites in model solutions demonstrated that recording (1)H NMR spectra at pH 10 allowed resolving resonances that are overlapped at pH 7, especially in the 3.2-3.3 ppm choline-containing-compounds region. (1)H NMR analysis of extracts at pH 7 or 10 showed that quantitative measurements of lactate, alanine, glutamate, glutamine (Gln), creatine + phosphocreatine and myo-inositol (m-Ino) can be readily performed at both pHs. The concentrations of glycerophosphocholine, phosphocholine and choline that are crucial metabolites for tumor brain malignancy grading were accurately measured at pH 10 only. Indeed, the resonances of their trimethylammonium moieties are cleared of any overlapping signal, especially those of taurine (Tau) and phosphoethanolamine. The four non-ionizable Tau protons resonating as a singlet in a non-congested spectral region permits an easier and more accurate quantitation of this apoptosis marker at pH 10 than at pH 7 where the triplet at 3.43 ppm can be overlapped with the signals of glucose or have an intensity too low to be measured. Glycine concentration was determined indirectly at both pHs after subtracting the contribution of the overlapped signals of m-Ino at pH 7 or Gln at pH 10.
Collapse
Affiliation(s)
- O Robert
- UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Groupe de RMN Biomédicale, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Monleón D, Morales JM, Gonzalez-Segura A, Gonzalez-Darder JM, Gil-Benso R, Cerdá-Nicolás M, López-Ginés C. Metabolic aggressiveness in benign meningiomas with chromosomal instabilities. Cancer Res 2010; 70:8426-34. [PMID: 20861191 DOI: 10.1158/0008-5472.can-10-1498] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meningiomas are often considered benign tumors curable by surgery, but most recurrent meningiomas correspond to histologic benign tumors. Because alterations in chromosome 14 among others have suggested clinical aggressiveness and recurrence, determining both the molecular phenotype and the genetic profile may help distinguish tumors with aggressive metabolism. The aim of this study was to achieve higher specificity in the detection of meningioma subgroups by measuring chromosomal instabilities by fluorescence in situ hybridization and cytogenetics and metabolic phenotypes by high-resolution magic angle spinning spectroscopy. We studied 46 meningioma biopsies with these methodologies. Of these, 34 were of WHO grade 1 and 12 were of WHO grade 2. Genetic analysis showed a subgroup of histologic benign meningioma with chromosomal instabilities. The metabolic phenotype of this subgroup indicated an aggressive metabolism resembling that observed for atypical meningioma. According to the metabolic profiles, these tumors had increased energy demand, higher hypoxic conditions, increased membrane turnover and cell proliferation, and possibly increased resistance to apoptosis. Taken together, our results identify distinct metabolic phenotypes for otherwise benign meningiomas based on cytogenetic studies and global metabolic profiles of intact tumors. Measuring the metabolic phenotype of meningioma intact biopsies at the same time as histopathologic analysis may allow the early detection of clinically aggressive tumors.
Collapse
Affiliation(s)
- Daniel Monleón
- Fundación de Investigación del Hospital Clínico Universitario de Valencia/INCLIVA, Universitat de Valencia, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|