1
|
Tuleasca C, Leroy HA, Strachowski O, Derre B, Maurage CA, Peciu-Florianu I, Reyns N. Combined use of intraoperative MRI and awake tailored microsurgical resection to respect functional neural networks: preliminary experience. Swiss Med Wkly 2023; 153:40072. [PMID: 37192405 DOI: 10.57187/smw.2023.40072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
INTRODUCTION The combined use of intraoperative MRI and awake surgery is a tailored microsurgical resection to respect functional neural networks (mainly the language and motor ones). Intraoperative MRI has been classically considered to increase the extent of resection for gliomas, thereby reducing neurological deficits. Herein, we evaluated the combined technique of awake microsurgical resection and intraoperative MRI for primary brain tumours (gliomas, metastasis) and epilepsy (cortical dysplasia, non-lesional, cavernomas). PATIENTS AND METHODS Eighteen patients were treated with the commonly used "asleep awake asleep" (AAA) approach at Lille University Hospital, France, from November 2016 until May 2020. The exact anatomical location was insular with various extensions, frontal, temporal or fronto-temporal in 8 (44.4%), parietal in 3 (16.7%), fronto-opercular in 4 (22.2%), Rolandic in two (11.1%), and the supplementary motor area (SMA) in one (5.6%). RESULTS The patients had a mean age of 38.4 years (median 37.1, range 20.8-66.9). The mean surgical duration was 4.1 hours (median 4.2, range 2.6-6.4) with a mean duration of intraoperative MRI of 28.8 minutes (median 25, range 13-55). Overall, 61% (11/18) of patients underwent further resection, while 39% had no additional resection after intraoperative MRI. The mean preoperative and postoperative tumour volumes of the primary brain tumours were 34.7 cc (median 10.7, range 0.534-130.25) and 3.5 cc (median 0.5, range 0-17.4), respectively. Moreover, the proportion of the initially resected tumour volume at the time of intraoperative MRI (expressed as 100% from preoperative volume) and the final resected tumour volume were statistically significant (p= 0.01, Mann-Whitney test). The tumour remnants were commonly found posterior (5/9) or anterior (2/9) insular and in proximity with the motor strip (1/9) or language areas (e.g. Broca, 1/9). Further resection was not required in seven patients because there were no remnants (3/7), cortical stimulation approaching eloquent areas (3/7) and non-lesional epilepsy (1/7). The mean overall follow-up period was 15.8 months (median 12, range 3-36). CONCLUSION The intraoperative MRI and awake microsurgical resection approach is feasible with extensive planning and multidisciplinary collaboration, as these methods are complementary and synergic rather than competitive to improve patient oncological outcomes and quality of life.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henri-Arthur Leroy
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Ondine Strachowski
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Benoit Derre
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Claude-Alain Maurage
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Iulia Peciu-Florianu
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Nicolas Reyns
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| |
Collapse
|
2
|
Neurosurgical Clinical Trials for Glioblastoma: Current and Future Directions. Brain Sci 2022; 12:brainsci12060787. [PMID: 35741672 PMCID: PMC9221299 DOI: 10.3390/brainsci12060787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
The mainstays of glioblastoma treatment, maximal safe resection, radiotherapy preserving neurological function, and temozolomide (TMZ) chemotherapy have not changed for the past 17 years despite significant advances in the understanding of the genetics and molecular biology of glioblastoma. This review highlights the neurosurgical foundation for glioblastoma therapy. Here, we review the neurosurgeon’s role in several new and clinically-approved treatments for glioblastoma. We describe delivery techniques such as blood–brain barrier disruption and convection-enhanced delivery (CED) that may be used to deliver therapeutic agents to tumor tissue in higher concentrations than oral or intravenous delivery. We mention pivotal clinical trials of immunotherapy for glioblastoma and explain their outcomes. Finally, we take a glimpse at ongoing clinical trials and promising translational studies to predict ways that new therapies may improve the prognosis of patients with glioblastoma.
Collapse
|
3
|
Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis. Neurosurg Rev 2021; 44:2977-2990. [PMID: 33537890 PMCID: PMC8592967 DOI: 10.1007/s10143-021-01488-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 10/29/2022]
Abstract
Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections.
Collapse
|
4
|
Orillac C, Stummer W, Orringer DA. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2020; 89:727-736. [PMID: 33289518 DOI: 10.1093/neuros/nyaa475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated. Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection. This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.
Collapse
Affiliation(s)
- Cordelia Orillac
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
5
|
Blihar D, Delgado E, Buryak M, Gonzalez M, Waechter R. A systematic review of the neuroanatomy of dissociative identity disorder. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2020. [DOI: 10.1016/j.ejtd.2020.100148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lahiff MN, Ghali MGZ. The Ethical Dilemma in the Surgical Management of Low Grade Gliomas According to the Variable Availability of Resources and Surgeon Experience. Asian J Neurosurg 2020; 15:266-271. [PMID: 32656117 PMCID: PMC7335147 DOI: 10.4103/ajns.ajns_296_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 11/04/2022] Open
Abstract
Low grade gliomas (LGGs) affect young individuals in the prime of life. Management may alternatively include biopsy and observation or surgical resection. Recent evidence strongly favors maximal and supramaximal resection of LGGs in optimizing survival metrics. Awake craniotomy with cortical mapping and electrical stimulation along with other preoperative and intraoperative surgical adjuncts, including intraoperative magnetic resonance and diffusion tensor imaging, facilitates maximization of resection and eschews precipitating neurological deficits. Intraoperative imaging permits additional resection of identified residual to be completed within the same surgical session, improving extent of resection and consequently progression free and overall survival. These resources are available in only a few centers throughout the United States, raising an ethical dilemma as to where patients harboring LGGs should most appropriately be treated.
Collapse
Affiliation(s)
- Marshall Norman Lahiff
- School of Law, University of Miami, Miami, Florida, USA.,Walton Lantaff Schoreder and Carson LLP, Miami, Florida, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, Philadelphia, Pennsylvania, USA.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Krivosheya D, Rao G, Tummala S, Kumar V, Suki D, Bastos DCA, Prabhu SS. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI. J Neurol Surg A Cent Eur Neurosurg 2019; 82:375-380. [PMID: 31659724 DOI: 10.1055/s-0039-1698383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. METHODS A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). RESULTS A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. CONCLUSIONS Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.
Collapse
Affiliation(s)
- Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Vinodh Kumar
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dima Suki
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dheigo C A Bastos
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sujit S Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
8
|
The Impact of Intraoperative Magnetic Resonance Imaging on Patient Safety Management During Awake Craniotomy. J Neurosurg Anesthesiol 2019; 31:62-69. [DOI: 10.1097/ana.0000000000000466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Chowdhury T, Singh GP, Zeiler FA, Hailu A, Loewen H, Schaller B, Cappellani RB, West M. Anesthesia for Awake Craniotomy for Brain Tumors in an Intraoperative MRI Suite: Challenges and Evidence. Front Oncol 2018; 8:519. [PMID: 30488018 PMCID: PMC6246734 DOI: 10.3389/fonc.2018.00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Gyaninder P Singh
- Department of Neuroanaesthesiology & Critical Care, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Frederick A Zeiler
- Section-Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.,Clincian Investigator Program, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Abseret Hailu
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hal Loewen
- College of Rehabilitation Sciences, Neil John Maclean Health Science Library, University of Manitoba, Winnipeg, MB, Canada
| | - Bernhard Schaller
- Department of Primary Care, University of Zurich, Zurich, Switzerland
| | - Ronald B Cappellani
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Michael West
- Department of Neuroanaesthesiology & Critical Care, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Chowdhury T, Zeiler FA, Singh GP, Hailu A, Loewen H, Schaller B, Cappellani RB, West M. The Role of Intraoperative MRI in Awake Neurosurgical Procedures: A Systematic Review. Front Oncol 2018; 8:434. [PMID: 30364103 PMCID: PMC6191486 DOI: 10.3389/fonc.2018.00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022] Open
Abstract
Background: Awake craniotomy for brain tumors remains an important tool in the arsenal of the treating neurosurgeon working in eloquent areas of the brain. Furthermore, with the implementation of intraoperative magnetic resonance imaging (I-MRI), one can afford the luxury of imaging to assess surgical resection of the underlying gross imaging defined neuropathology and the surrounding eloquent areas. Ideally, the combination of I-MRI and awake craniotomy could provide the maximal lesion resection with the least morbidity and mortality. However, more resection with the aid of real time imaging and awake craniotomy techniques might give opposite outcome results. The goal of this systematic review.is to identify the available literature on combined I-MRI and awake craniotomy techniques, to better understand the potential morbidity and mortality associated. Methods: MEDLINE, EMBASE, and CENTRAL were searched from inception up to December 2016. A total of 10 articles met inclusion in to the review, with a total of 324 adult patients. Results: All studies showed transient neurological deficits between 2.9 to 76.4%. In regards to persistent morbidity, the mean was ~10% (ranges from zero to 35.3%) with a follow up period between 5 days and 6 months. Conclusion: The preliminary results of this review also suggest this combined technique may impose acceptable post-operative complication profiles and morbidity. However, this is based on low quality evidence, and is therefore questionable. Further, well-designed future trials with the long-term follow-up are needed to provide various aspects of feasibility and outcome data for this approach.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.,Clincian Investigator Program, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Gyaninder P Singh
- Department of Neuroanaesthesiology & Critical Care, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Abseret Hailu
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hal Loewen
- College of Rehabilitation Sciences Librarian, Neil John Maclean Health Science Library, University of Manitoba, Winnipeg, MB, Canada
| | - Bernhard Schaller
- Department of Primary Care, University of Zurich, Zurich, Switzerland
| | - Ronald B Cappellani
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Michael West
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Foster CH, Morone PJ, Cohen-Gadol A. Awake craniotomy in glioma surgery: is it necessary? J Neurosurg Sci 2018; 63:162-178. [PMID: 30259721 DOI: 10.23736/s0390-5616.18.04590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The awake craniotomy has evolved from its humble beginnings in ancient cultures to become one of the most eloquent modern neurosurgical procedures. The development of intraoperative mapping techniques like direct electrostimulation of the cortex and subcortical white matter have further argued for its place in the neurosurgeon's armamentarium. Yet the suitability of the awake craniotomy with intraoperative functional mapping (ACWM) to optimize oncofunctional balance after peri-eloquent glioma resection continues to be a topic of active investigation as new methods of intraoperative monitoring and some unfavorable outcome data question its necessity. EVIDENCE ACQUISITION The neurosurgery and anesthesiology literatures were scoured for English-language studies that analyzed or reviewed the ACWM or its components as applied to glioma surgery via the PubMed, ClinicalKey, and OvidMEDLINE® databases or via direct online searches of journal archives. EVIDENCE SYNTHESIS Information on background, conceptualization, standard techniques, and outcomes of the ACWM were provided and compared. We parceled the procedure into its components and qualitatively described positive and negative outcome data for each. Findings were presented in the context of each study without attempt at quantitative analysis or reconciliation of heterogeneity between studies. Certain illustrative studies were highlighted throughout the review. Overarching conclusions were drawn based on level of evidence, expert opinion, and predominate concordance of data across studies in the literature. CONCLUSIONS Most investigators and studies agree that the ACWM is the best currently available approach to optimize oncofunctional balance in this difficult-to-treat patient population. This qualitative review synthesizes the most currently available data on the topic to provide contemporaneous insight into how and why the ACWM has become a favorite operation of neurosurgeons worldwide for the resection of gliomas from eloquent brain.
Collapse
Affiliation(s)
- Chase H Foster
- Department of Neurological Surgery, George Washington University Hospital, Washington D.C., USA -
| | - Peter J Morone
- Department of Neurological Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Aaron Cohen-Gadol
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
12
|
Abstract
A variety of intraoperative MRI (iMRI) systems are in use during transsphenoidal surgery (TSS). The variations in iMRI systems include field strengths, magnet configurations, and room configurations. Most studies report that the primary utility of iMRI during TSS lies in detecting resectable tumor residuals following maximal resection with conventional technique. Stereotaxis, neuronavigation, and complication avoidance/detection are enhanced by iMRI use during TSS. The use of iMRI during TSS can lead to increased extent of resection for large tumors. Improved remission rates from hormone-secreting tumors have also been reported with iMRI use. This article discusses the history, indications, and future directions for iMRI during TSS.
Collapse
Affiliation(s)
- Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892-1414, USA.
| |
Collapse
|
13
|
Safety, Utility, and Clinical Results of Continuous Intraoperative Electrophysiologic Monitoring in 1.5T iMRI-Guided Surgery. World Neurosurg 2017. [PMID: 28624561 DOI: 10.1016/j.wneu.2017.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To show that the combined use of intraoperative high-field MRI (iMRI) and electrophysiologic monitoring (IOM) is feasible, safe, and beneficial for patients. METHODS The setup, surgical, imaging, and clinical results of 110 patients with eloquent intracranial lesions with the combined use of 1.5T iMRI and IOM were analyzed. RESULTS 187 iMRI scans were performed with IOM needles in place, resulting in a total experience of using >4000 electrodes in the iMRI. No complication (ferromagnetic or relevant heating/burning of skin) was caused by the combined use of both technologies. Surgically induced severe postoperative sensorimotor deficits were seen in 11.8%. The surgeon's estimation of a "complete resection" proved to be true postoperatively in 90.3%. If the resection was stopped due to worsening of IOM, postoperative MRI revealed residual disease to be located in direct vicinity of eloquence in 27 of 28 cases, but not in other parts of the resection cavity. Of these patients, only 7% (2 of 28) had relevant new deficits after 3 months. In 82 patients (74.5%), the resection was continued after the iMRI scan, whereas in only 18 patients (16.4%) the resection was already completed at this point. CONCLUSION The combined use of IOM and 1.5T iMRI is feasible and safe. The complementary use of both technologies might result in more radical resections at comparable surgically induced neurologic deficits. If available and indicated, the combined use of IOM and iMRI should be performed on a routine basis.
Collapse
|
14
|
Ghinda D, Zhang N, Lu J, Yao CJ, Yuan S, Wu JS. Contribution of combined intraoperative electrophysiological investigation with 3-T intraoperative MRI for awake cerebral glioma surgery: comprehensive review of the clinical implications and radiological outcomes. Neurosurg Focus 2016; 40:E14. [PMID: 26926054 DOI: 10.3171/2015.12.focus15572] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE This study aimed to assess the clinical efficiency of combined awake craniotomy with 3-T intraoperative MRI (iMRI)-guided resection of gliomas adjacent to eloquent cortex performed at a single center. It also sought to explore the contribution of iMRI to surgeons' learning process of maximal safe resection of gliomas. METHODS All patients who underwent an awake craniotomy and iMRI for resection of eloquent area glioma during the 53 months between January 2011 and June 2015 were included. The cases were analyzed for short- and long-term neurological outcome, progression-free survival (PFS), overall survival (OS), and extent of resection (EOR). The learning curve was assessed after dividing the cohort into Group A (first 27 months) and Group B (last 26 months). Statistical analyses included univariate logistic regression analysis on clinical and radiological variables. Kaplan-Meier and Cox regression models were used for further analysis of OS and PFS. A p value < 0.05 was considered statistically significant. RESULTS One hundred six patients were included in the study. Over an average follow-up period of 24.8 months, short- and long-term worsening of the neurological function was noted in 48 (46.2%) and 9 (8.7%) cases, respectively. The median and mean EOR were 100% and 92%, respectively, and complete radiographic resection was achieved in 64 (60.4%) patients. The rate of gross-total resection (GTR) in the patients with low-grade glioma (89.06% ± 19.6%) was significantly lower than that in patients with high-grade glioma (96.4% ± 9.1%) (p = 0.026). Thirty (28.3%) patients underwent further resection after initial iMRI scanning, with a 10.1% increase of the mean EOR. Multivariate Cox proportional hazards modeling demonstrated that the final EOR was a significant predictor of PFS (HR 0.225, 95% CI 0.070-0.723, p = 0.012). For patients with high-grade glioma, the GTR (p = 0.033), the presence of short-term motor deficit (p = 0.027), and the WHO grade (p = 0.005) were independent prognostic factors of OS. Performing further resection after the iMRI (p = 0.083) and achieving GTR (p = 0.05) demonstrated a PFS benefit trend for the patients affected by a low-grade glioma. Over time, the rate of performing further resection after an iMRI decreased by 26.1% (p = 0.005). A nonsignificant decrease in the rate of short-term (p = 0.101) and long-term (p = 0.132) neurological deficits was equally noted. CONCLUSIONS Combined awake craniotomy and iMRI is a safe and efficient technique allowing maximal safe resection of eloquent area gliomas with possible subsequent OS and PFS benefits. Although there is a learning curve for applying this technique, it can also improve the surgeon's ability in eloquent glioma surgery.
Collapse
Affiliation(s)
- Diana Ghinda
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and.,Department of Neurosurgery, The Ottawa Hospital, University of Ottawa, Ontario, Canada
| | - Nan Zhang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Cheng-Jun Yao
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Shiwen Yuan
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| | - Jin-Song Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; and
| |
Collapse
|
15
|
Chittiboina P, Talagala SL, Merkle H, Sarlls JE, Montgomery BK, Piazza MG, Scott G, Ray-Chaudhury A, Lonser RR, Oldfield EH, Koretsky AP, Butman JA. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery. J Neurosurg 2016; 125:1451-1459. [PMID: 26991390 DOI: 10.3171/2015.11.jns151465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus.
Collapse
Affiliation(s)
- Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | | | - Hellmut Merkle
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke; and
| | | | - Blake K Montgomery
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Martin G Piazza
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Gretchen Scott
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Russell R Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke.,Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Edward H Oldfield
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke.,Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke; and
| | - John A Butman
- Radiology and Imaging Sciences, the National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Incekara F, Olubiyi O, Ozdemir A, Lee T, Rigolo L, Golby A. The Value of Pre- and Intraoperative Adjuncts on the Extent of Resection of Hemispheric Low-Grade Gliomas: A Retrospective Analysis. J Neurol Surg A Cent Eur Neurosurg 2015. [PMID: 26216736 DOI: 10.1055/s-0035-1551830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND To achieve maximal resection with minimal risk of postoperative neurologic morbidity, different neurosurgical adjuncts are being used during low-grade glioma (LGG) surgery. OBJECTIVES To investigate the effect of pre- and intraoperative adjuncts on the extent of resection (EOR) of hemispheric LGGs. METHODS Medical records were reviewed to identify patients of any sex, ≥ 18 years of age, who underwent LGG surgery at X Hospital between January 2005 and July 2013. Patients were divided into eight subgroups based on the use of various combinations of a neuronavigation system alone (NN), functional MRI-diffusion tensor imaging (fMRI-DTI) guided neuronavigation (FD), intraoperative MRI (MR), and direct electrical stimulation (DES). Initial and residual tumors were measured, and mean EOR was compared between groups. RESULTS Of all 128 patients, gross total resection was achieved in 23.4%. Overall mean EOR was 81.3% ± 20.5%. Using DES in combination with fMRI-DTI (mean EOR: 86.7% ± 12.4%) on eloquent tumors improved mean EOR significantly after adjustment for potential confounders when compared with NN alone (mean EOR: 76.4% ± 25.5%; p = 0.001). CONCLUSIONS Using DES in combination with fMRI and DTI significantly improves EOR when LGGs are located in eloquent areas compared with craniotomies in which only NN was used.
Collapse
Affiliation(s)
- Fatih Incekara
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Olutayo Olubiyi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Aysegul Ozdemir
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Tom Lee
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Laura Rigolo
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Maldaun MVC, Khawja SN, Levine NB, Rao G, Lang FF, Weinberg JS, Tummala S, Cowles CE, Ferson D, Nguyen AT, Sawaya R, Suki D, Prabhu SS. Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases. J Neurosurg 2014; 121:810-7. [PMID: 25105702 DOI: 10.3171/2014.6.jns132285] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The object of this study was to describe the experience of combining awake craniotomy techniques with high-field (1.5 T) intraoperative MRI (iMRI) for tumors adjacent to eloquent cortex. METHODS From a prospective database the authors obtained and evaluated the records of all patients who had undergone awake craniotomy procedures with cortical and subcortical mapping in the iMRI suite. The integration of these two modalities was assessed with respect to safety, operative times, workflow, extent of resection (EOR), and neurological outcome. RESULTS Between February 2010 and December 2011, 42 awake craniotomy procedures using iMRI were performed in 41 patients for the removal of intraaxial tumors. There were 31 left-sided and 11 right-sided tumors. In half of the cases (21 [50%] of 42), the patient was kept awake for both motor and speech mapping. The mean duration of surgery overall was 7.3 hours (range 4.0-13.9 hours). The median EOR overall was 90%, and gross-total resection (EOR ≥ 95%) was achieved in 17 cases (40.5%). After viewing the first MR images after initial resection, further resection was performed in 17 cases (40.5%); the mean EOR in these cases increased from 56% to 67% after further resection. No deficits were observed preoperatively in 33 cases (78.5%), and worsening neurological deficits were noted immediately after surgery in 11 cases (26.2%). At 1 month after surgery, however, worsened neurological function was observed in only 1 case (2.3%). CONCLUSIONS There was a learning curve with regard to patient positioning and setup times, although it did not adversely affect patient outcomes. Awake craniotomy can be safely performed in a high-field (1.5 T) iMRI suite to maximize tumor resection in eloquent brain areas with an acceptable morbidity profile at 1 month.
Collapse
|
18
|
D'Andrea G, Angelini A, Foresti C, Familiari P, Caroli E, Frati A. Platinum-iridium subdermal magnetic resonance imaging-compatible needle electrodes are suitable for intraoperative neurophysiological monitoring during image-guided surgery with high-field intraoperative magnetic resonance imaging: an experimental study. Neurosurgery 2014; 10 Suppl 3:387-92; discussion 392. [PMID: 24871141 DOI: 10.1227/neu.0000000000000432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neurosurgery aims to achieve maximal tumor resection while preserving neurological function. Tools such as neuronavigation, high-field intraoperative magnetic resonance imaging (iMRI), and intraoperative neurophysiological monitoring (IOM) have consistently helped to achieve this goal, but integration has often been difficult. Surgery of eloquent areas requires IOM, which in an operating theater equipped with high-field (1.5-T) iMRI could present several issues. OBJECTIVE To identify the electrodes types more suitable for IOM in a high-field iMRI operating theater by performing an experimental study on phantoms, to report our experience with platinum-iridium (Pt/Ir) electrodes during surgery, and to prove that integration between IOM with Pt/Ir electrodes and high-field iMRI is safe and reliable. METHODS Electrodes of different materials (gold, Pt/Ir, and stainless steel) were tested on jelly phantom and apples to evaluate their safety and compatibility. Subsequently, electrodes were tested on 5 healthy volunteers before being used on patients. RESULTS None of the different electrodes presented thermal instability, and no damage to the volunteers' skin occurred. Stainless steel electrodes caused severe imaging distortion. Gold electrodes had no distortion, but their high cost makes their use in routine surgery unaffordable. Pt/Ir electrodes are significantly less expensive than gold electrodes and were completely safe, compatible, and suitable for use in an operating theater with high-field iMRI, providing excellent IOM and mild interference that did not affect the quality of intraoperative imaging. CONCLUSION We suggest the use of Pt/Ir electrodes for IOM in 1.5-T iMRI suites. ABBREVIATIONS DTI, diffusion tensor imagingiMRI, intraoperative magnetic resonance imagingIOM, intraoperative neurophysiological monitoring.
Collapse
Affiliation(s)
- Giancarlo D'Andrea
- *Neurosurgery, Department of NESMOS, Faculty of Medicine and Psychology and §Neurosurgery, IRCCS Neuromed Pozzilli (Is), University of Rome-Sapienza, Rome, Italy; ‡Department of Neurology, Unit of Neurophysiopathology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Tuominen J, Yrjänä S, Ukkonen A, Koivukangas J. Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery. Acta Neurochir (Wien) 2013; 155:1805-12. [PMID: 23955509 DOI: 10.1007/s00701-013-1837-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/01/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Results of awake craniotomy are compared to results of resections done under general anesthesia in patients operated with IMRI control. We hypothesized that stimulation of the cortex and white matter during awake surgery supplements IMRI control allowing for safer resection of eloquent brain area tumors. METHODS The study group consisted of 20 consecutive patients undergoing awake craniotomy with IMRI control. Resection outcome of these patients was compared to a control group of 20 patients operated in the same IMRI suite but under general anesthesia without cortical stimulation. The control group was composed of those patients whose age, sex, tumor location, recurrence and histology best matched to patients in study group. RESULTS Cortical stimulation identified functional cortex in eight patients (40 %). Postoperatively the neurological condition in 16 patients (80 %) in the study group was unchanged or improved compared with 13 patients (65 %) in the control group. In both groups, three patients (15 %) had transient impairment symptoms. There was one patient (5 %) with permanent neurological impairment in the study group compared to four patients (20 %) in the control group. These differences between groups were not statistically significant. There was no surgical mortality in either group and the overall infection rate was 5 %. Mean operation time was 4 h 45 min in the study group and 3 h 15 min in the control group. CONCLUSIONS The study consisted of a limited patient series, but it implies that awake craniotomy with bipolar cortical stimulation may help to reduce the risk of postoperative impairment following resection of tumors located in or near speech and motor areas also under IMRI control.
Collapse
Affiliation(s)
- Juho Tuominen
- Department of Neurosurgery, Oulu University Hospital, University of Oulu, Oulu, Finland,
| | | | | | | |
Collapse
|
20
|
Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J Clin Neurosci 2013; 20:1280-7. [PMID: 23850046 DOI: 10.1016/j.jocn.2012.10.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022]
Abstract
The use of both awake surgery and intraoperative MRI (iMRI) has been reported to optimize the maximal safe resection of gliomas. However, there has been little research into combining these two demanding procedures. We report our unique experience with, and methodology of, awake surgery in a movable iMRI system, and we quantitatively evaluate the contribution of the combination on the extent of resection (EOR) and functional outcome of patients with gliomas involving language areas. From March 2011 to November 2011, 30 consecutive patients who underwent awake surgery with iMRI guidance were prospectively investigated. The EOR was assessed by volumetric analysis. Language assessment was conducted before surgery and 1 week, 1 month, 3 months and 6 months after surgery using the Aphasia Battery of Chinese. Awake language mapping integrated with 3.0 Tesla iMRI was safely performed for all patients. An additional resection was conducted in 11 of 30 patients (36.7%) after iMRI. The median EOR significantly increased from 92.5% (range, 75.1-97.0%) to 100% (range, 92.6-100%) as a result of iMRI (p<0.01). Gross total resection was achieved in 18 patients (60.0%), and in seven of those patients (23.3%), the gross total resection could be attributed to iMRI. A total of 12 patients (40.0%) suffered from transient language deficits; however, only one (3.3%) patient developed a permanent deficit. This study demonstrates the potential utility of combining awake craniotomy with iMRI; it is safe and reliable to perform awake surgery using a movable iMRI.
Collapse
|
21
|
"Awake" intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy? NEUROIMAGE-CLINICAL 2012; 2:132-42. [PMID: 24179766 PMCID: PMC3777788 DOI: 10.1016/j.nicl.2012.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/04/2022]
Abstract
As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided.
Collapse
|
22
|
Liang D, Schulder M. The role of intraoperative magnetic resonance imaging in glioma surgery. Surg Neurol Int 2012; 3:S320-7. [PMID: 23230537 PMCID: PMC3514913 DOI: 10.4103/2152-7806.103029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/04/2012] [Indexed: 11/04/2022] Open
Abstract
For patients with gliomas, the goal of surgery is to maximize the extent of tumor resection while avoiding injury to functional tissue. The hope is to improve patients' survival and maintain the highest quality of life as possible. However, because of the infiltrative nature of gliomas these two goals often oppose each other so a compromise must be met. Many tools have been developed to help with this challenge of glioma surgery. Over the past two decades, intraoperative-magnetic resonance imaging (iMRI) has emerged as an increasingly important modality to enhance surgical safety while providing the surgeon with updated information to guide their resection. Here the authors review the studies that demonstrate a positive correlation between extent of resection (EOR) and overall survival (OS), although the data is clearer in patients with low-grade gliomas (LGG) and still somewhat controversial in those with higher-grade tumors. We will then review some of the studies that support the role of iMRI and how it has impacted glioma surgery by increasing the EOR. The value of iMRI usage in regards to overall patient outcome can be extrapolated through its effect on EOR. Overall, available data support the safe use of iMRI and as an effective adjunct in glioma surgery.
Collapse
Affiliation(s)
- Danny Liang
- Department of Neurological Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | | |
Collapse
|
23
|
Leuthardt EC, Lim CCH, Shah MN, Evans JA, Rich KM, Dacey RG, Tempelhoff R, Chicoine MR. Use of Movable High-Field-Strength Intraoperative Magnetic Resonance Imaging With Awake Craniotomies for Resection of Gliomas: Preliminary Experience. Neurosurgery 2011; 69:194-205; discussion 205-6. [DOI: 10.1227/neu.0b013e31821d0e4c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Awake craniotomy with electrocortical mapping and intraoperative magnetic resonance imaging (iMRI) are established techniques for maximizing tumor resection and preserving function, but there has been little experience combining these methodologies.
OBJECTIVE:
To report our experience of combining awake craniotomy and iMRI with a 1.5-T movable iMRI for resection of gliomas in close proximity to eloquent cortex.
METHODS:
Twelve patients (9 male and 3 female patients; age, 32-60 years; mean, 41 years) undergoing awake craniotomy and iMRI for glioma resections were identified from a prospective database. Assessments were made of how these 2 modalities were integrated and what impact this strategy had on safety, surgical decision making, workflow, operative time, extent of tumor resection, and outcome.
RESULTS:
Twelve craniotomies were safely performed in an operating room equipped with a movable 1.5-T iMRI. The extent of resection was limited because of proximity to eloquent areas in 5 cases: language areas in 3 patients and motor areas in 2 patients. Additional tumor was identified and resected after iMRI in 6 patients. Average operating room time was 7.9 hours (range, 5.9-9.7 hours). Compared with preoperative neurological function, immediate postoperative function was stable/improved in 7 and worse in 5; after 30 days, it was stable/improved in 11 and worse in 1.
CONCLUSION:
Awake craniotomy and iMRI with a movable high-field-strength device can be performed safely to maximize resection of tumors near eloquent language areas.
Collapse
Affiliation(s)
- Eric C Leuthardt
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
- Departments of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chris C H Lim
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Manish N Shah
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
| | - John A Evans
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
| | - Keith M Rich
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
| | - Ralph G Dacey
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
| | - Rene Tempelhoff
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
- Department of Anesthesia, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- Departments of Neurological Surgery, Washington University, St. Louis, Missouri
| |
Collapse
|
24
|
Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg 2010; 114:719-26. [PMID: 20964594 DOI: 10.3171/2010.9.jns10481] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The object of this study was to describe the utility and safety of using a single probe for combined intraoperative navigation and subcortical mapping in an intraoperative MR (iMR) imaging environment during brain tumor resection. METHODS The authors retrospectively reviewed those patients who underwent resection in the iMR imaging environment, as well as functional electrophysiological monitoring with continuous motor evoked potential (MEP) and direct subcortical mapping combined with diffusion tensor imaging tractography. RESULTS As a navigational tool the monopolar probe used was safe and accurate. Positive subcortical fiber MEPs were obtained in 10 (83%) of the 12 cases. In 10 patients in whom subcortical MEPs were recorded, the mean stimulus intensity was 10.4 ± 5.2 mA and the mean distance from the probe tip to the corticospinal tract (CST) was 7.4 ± 4.5 mm. There was a trend toward worsening neurological deficits if the distance to the CST was short, and a small minimum stimulation threshold was recorded indicating close proximity of the CST to the resection margins. Gross-total resection (95%-100% tumor removal) was achieved in 11 cases (92%), whereas 1 patient (8%) had at least a 90% tumor resection. At the end of 3 months, 2 patients (17%) had persistent neurological deficits. CONCLUSIONS The monopolar probe can be safely implemented in an iMR imaging environment both for navigation and stimulation purposes during the resection of intrinsic brain tumors. In this study there was a trend toward worsening neurological deficits if the distance from the probe to the CST was short (< 5 mm) indicating close proximity of the resection cavity to the CST. This technology can be used in the iMR imaging environment as a surgical adjunct to minimize adverse neurological outcomes.
Collapse
Affiliation(s)
- Sujit S Prabhu
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
25
|
Parney IF, Goerss SJ, McGee K, Huston J, Perkins WJ, Meyer FB. Awake Craniotomy, Electrophysiologic Mapping, and Tumor Resection With High-Field Intraoperative MRI. World Neurosurg 2010; 73:547-51. [DOI: 10.1016/j.wneu.2010.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/30/2010] [Indexed: 11/30/2022]
|