Abernethy LJ, Avula S, Hughes GM, Wright EJ, Mallucci CL. Intra-operative 3-T MRI for paediatric brain tumours: challenges and perspectives.
Pediatr Radiol 2012;
42:147-57. [PMID:
22286342 DOI:
10.1007/s00247-011-2280-3]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 10/14/2022]
Abstract
MRI is the ideal modality for imaging intracranial tumours. Intraoperative MRI (ioMRI) makes it possible to obtain scans during a neurosurgical operation that can aid complete macroscopic tumour resection—a major prognostic factor in the majority of brain tumours in children. Intraoperative MRI can also help limit damage to normal brain tissue. It therefore has the potential to improve the survival of children with brain tumours and to minimise morbidity, including neurological deficits. The use of ioMRI is also likely to reduce the need for second look surgery, and may reduce the need for chemotherapy and radiotherapy. Highfield MRI systems provide better anatomical information and also enable effective utilisation of advanced MRI techniques such as perfusion imaging, diffusion tensor imaging, and magnetic resonance spectroscopy. However, high-field ioMRI facilities require substantial capital investment, and careful planning is required for optimal benefit. Safe ioMRI requires meticulous attention to detail and rigorous application of magnetic field safety precautions. Interpretation of ioMRI can be challenging and requires experience and understanding of artefacts that are common in the intra-operative setting.
Collapse