1
|
Freret ME, Boire A. The anatomic basis of leptomeningeal metastasis. J Exp Med 2024; 221:e20212121. [PMID: 38451255 PMCID: PMC10919154 DOI: 10.1084/jem.20212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/20/2022] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Leptomeningeal metastasis (LM), or spread of cancer to the cerebrospinal fluid (CSF)-filled space surrounding the central nervous system, is a fatal complication of cancer. Entry into this space poses an anatomical challenge for cancer cells; movement of cells between the blood and CSF is tightly regulated by the blood-CSF barriers. Anatomical understanding of the leptomeninges provides a roadmap of corridors for cancer entry. This Review describes the anatomy of the leptomeninges and routes of cancer spread to the CSF. Granular understanding of LM by route of entry may inform strategies for novel diagnostic and preventive strategies as well as therapies.
Collapse
Affiliation(s)
- Morgan E. Freret
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules 2022; 12:biom12060748. [PMID: 35740873 PMCID: PMC9221030 DOI: 10.3390/biom12060748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
There is a growing prevalence of vascular cognitive impairment (VCI) worldwide, and most research has suggested that cerebral small vessel disease (CSVD) is the main contributor to VCI. Several potential physiopathologic mechanisms have been proven to be involved in the process of CSVD, such as blood-brain barrier damage, small vessels stiffening, venous collagenosis, cerebral blood flow reduction, white matter rarefaction, chronic ischaemia, neuroinflammation, myelin damage, and subsequent neurodegeneration. However, there still is a limited overall understanding of the sequence and the relative importance of these mechanisms. The glymphatic system (GS) and meningeal lymphatic vessels (mLVs) are the analogs of the lymphatic system in the central nervous system (CNS). As such, these systems play critical roles in regulating cerebrospinal fluid (CSF) and interstitial fluid (ISF) transport, waste clearance, and, potentially, neuroinflammation. Accumulating evidence has suggested that the glymphatic and meningeal lymphatic vessels played vital roles in animal models of CSVD and patients with CSVD. Given the complexity of CSVD, it was significant to understand the underlying interaction between glymphatic and meningeal lymphatic transport with CSVD. Here, we provide a novel framework based on new advances in main four aspects, including vascular risk factors, potential mechanisms, clinical subtypes, and cognition, which aims to explain how the glymphatic system and meningeal lymphatic vessels contribute to the progression of CSVD and proposes a comprehensive insight into the novel therapeutic strategy of CSVD.
Collapse
|
3
|
[64Cu]Cu-Albumin Clearance Imaging to Evaluate Lymphatic Efflux of Cerebrospinal Space Fluid in Mouse Model. Nucl Med Mol Imaging 2022; 56:137-146. [DOI: 10.1007/s13139-022-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022] Open
|
4
|
Clark IA. Chronic cerebral aspects of long COVID, post-stroke syndromes and similar states share their pathogenesis and perispinal etanercept treatment logic. Pharmacol Res Perspect 2022; 10:e00926. [PMID: 35174650 PMCID: PMC8850677 DOI: 10.1002/prp2.926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The chronic neurological aspects of traumatic brain injury, post-stroke syndromes, long COVID-19, persistent Lyme disease, and influenza encephalopathy having close pathophysiological parallels that warrant being investigated in an integrated manner. A mechanism, common to all, for this persistence of the range of symptoms common to these conditions is described. While TNF maintains cerebral homeostasis, its excessive production through either pathogen-associated molecular patterns or damage-associated molecular patterns activity associates with the persistence of the symptoms common across both infectious and non-infectious conditions. The case is made that this shared chronicity arises from a positive feedback loop causing the persistence of the activation of microglia by the TNF that these cells generate. Lowering this excess TNF is the logical way to reducing this persistent, TNF-maintained, microglial activation. While too large to negotiate the blood-brain barrier effectively, the specific anti-TNF biological, etanercept, shows promise when administered by the perispinal route, which allows it to bypass this obstruction.
Collapse
Affiliation(s)
- Ian Albert Clark
- Research School of BiologyAustralian National UniversityCanberraACTAustralia
| |
Collapse
|
5
|
Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C, Wada A, Someya Y, Tamura Y, Kawamori R, Watada H, Naganawa S, Aoki S. An Investigation of Water Diffusivity Changes along the Perivascular Space in Elderly Subjects with Hypertension. AJNR Am J Neuroradiol 2022; 43:48-55. [PMID: 34794943 PMCID: PMC8757561 DOI: 10.3174/ajnr.a7334] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Hypertension may be related to alterations of the glymphatic system, a waste metabolite drainage system in the brain. We aimed to investigate analysis along the perivascular space index changes in elderly subjects with hypertension. MATERIALS AND METHODS Diffusion-weighted images were acquired from 126 subjects, including 63 subjects with hypertension (25 men and 38 women; mean age, 72.45 years) and 63 age- and sex-matched controls (25 men and 38 women; mean age, 72.16 years). We calculated the analysis along the perivascular space index as a ratio of the mean of x-axis diffusivities in the projection and association areas to the mean of y-axis diffusivity in the projection area and z-axis diffusivity in the association area. The left, right, and mean analysis along the perivascular space indices of both hemispheres were compared between the hypertension and control groups using a Mann-Whitney U test. The Spearman correlation coefficient was used to assess the correlation between the left, right, and mean ALPS indices and blood pressure and pulse pressure. RESULTS The left (P = .011) and mean (P = .024) analysis along the perivascular space indices of the hypertension group were significantly lower than that of the control group. The left, right, and mean analysis along the perivascular space indices of all subjects were significantly negatively correlated with blood pressure values (r = -0.200 to -0.278, P = .002-0.046) and pulse pressure values (r = -0.221 to -0.245, P = .006-0.013). CONCLUSIONS Our results are consistent with a model in which hypertension causes glymphatic dysfunction.
Collapse
Affiliation(s)
- J. Kikuta
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - K. Kamagata
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - K. Takabayashi
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - T. Taoka
- Department of Innovative Biomedical Visualization (T.T.), Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - H. Yokota
- Department of Diagnostic Radiology and Radiation Oncology (H.Y.), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - C. Andica
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - A. Wada
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - Y. Someya
- Sportology Center (Y.S., Y.T., R.K., H.W.)
| | - Y. Tamura
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - R. Kawamori
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - H. Watada
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - S. Naganawa
- Department of Radiology (S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - S. Aoki
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| |
Collapse
|
6
|
Bilateral hyperplasia of choroid plexus with severe CSF production: a case report and review of the glymphatic system. Childs Nerv Syst 2021; 37:3521-3529. [PMID: 34410450 DOI: 10.1007/s00381-021-05325-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND An important feature of hydrocephalus is the alteration of the cerebral spinal fluid (CSF) homeostasis. New insights in the understanding of production, secretion, and absorption of CSF, along with the discovery of the glymphatic system (GS), can be useful for a better understanding and treatment of hydrocephalus in disorders with CSF overproduction. CASE DESCRIPTION A 1-year-old patient was diagnosed with communicating hydrocephalus; ventricle peritoneal shunt (VPS) is installed and ascites developed. VPS is exposed, yielding volumes of 1000-1200ml/day CSF per day. MRI is performed showing generalized choroidal plexus hyperplasia. Bilateral endoscopic coagulation of thechoroid plexus was performed in 2 stages (CPC) however the high rate of CSF production persisted, needing a bilateral plexectomy through septostomy, which finally decreased the CSF outflow. DISCUSSION New knowledge about the CSF physiology will help to propose better treatment depending on the cause of the hydrocephalus. The GS is becoming an additional reason to better study and develop new therapies focused of the modulation of alternative CSF reabsorption. CONCLUSION Despite the current knowledge about hydrocephalus, we remain without a complete understanding of the pathophysiology of this condition. GS could be more important than conventional concept of reabsorption of CSF in the arachnoid villi, therefore GS could be a new key point, which will guide future investigations.
Collapse
|
7
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
8
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
9
|
A Neurologist's Guide to TNF Biology and to the Principles behind the Therapeutic Removal of Excess TNF in Disease. Neural Plast 2015. [PMID: 26221543 PMCID: PMC4510439 DOI: 10.1155/2015/358263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.
Collapse
|
10
|
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res 2015; 40:2583-99. [PMID: 25947369 DOI: 10.1007/s11064-015-1581-6] [Citation(s) in RCA: 1079] [Impact Index Per Article: 119.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
The glymphatic system is a recently discovered macroscopic waste clearance system that utilizes a unique system of perivascular tunnels, formed by astroglial cells, to promote efficient elimination of soluble proteins and metabolites from the central nervous system. Besides waste elimination, the glymphatic system also facilitates brain-wide distribution of several compounds, including glucose, lipids, amino acids, growth factors, and neuromodulators. Intriguingly, the glymphatic system function mainly during sleep and is largely disengaged during wakefulness. The biological need for sleep across all species may therefore reflect that the brain must enter a state of activity that enables elimination of potentially neurotoxic waste products, including β-amyloid. Since the concept of the glymphatic system is relatively new, we will here review its basic structural elements, organization, regulation, and functions. We will also discuss recent studies indicating that glymphatic function is suppressed in various diseases and that failure of glymphatic function in turn might contribute to pathology in neurodegenerative disorders, traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Nadia Aalling Jessen
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA.
| | - Anne Sofie Finmann Munk
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| | - Iben Lundgaard
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| |
Collapse
|
11
|
Chen L, Elias G, Yostos MP, Stimec B, Fasel J, Murphy K. Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption. Neuroradiology 2014; 57:139-47. [DOI: 10.1007/s00234-014-1461-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/30/2014] [Indexed: 11/30/2022]
|
12
|
Kneissl S, Breit S, Willmitzer F, Thalhammer J, Dengg S. DISPERSAL PATTERN OF INJECTATE FOLLOWING CT-GUIDED PERINEURAL INFILTRATION IN THE CANINE THORACOLUMBAR SPINE: A CADAVER STUDY. Vet Radiol Ultrasound 2014; 56:212-9. [DOI: 10.1111/vru.12212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sibylle Kneissl
- Department for Companion Animals and Horses; University of Veterinary Medicine; Vienna 1210 Vienna Austria
| | - Sabine Breit
- Department of Pathobiology; University of Veterinary Medicine; Vienna 1210 Vienna Austria
| | - Florian Willmitzer
- Department for Companion Animals and Horses; University of Veterinary Medicine; Vienna 1210 Vienna Austria
| | - Johann Thalhammer
- Department for Companion Animals and Horses; University of Veterinary Medicine; Vienna 1210 Vienna Austria
| | - Sabine Dengg
- Department for Companion Animals and Horses; University of Veterinary Medicine; Vienna 1210 Vienna Austria
| |
Collapse
|
13
|
Zivadinov R, Chung CP. Potential involvement of the extracranial venous system in central nervous system disorders and aging. BMC Med 2013; 11:260. [PMID: 24344742 PMCID: PMC3866257 DOI: 10.1186/1741-7015-11-260] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/22/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The role of the extracranial venous system in the pathology of central nervous system (CNS) disorders and aging is largely unknown. It is acknowledged that the development of the venous system is subject to many variations and that these variations do not necessarily represent pathological findings. The idea has been changing with regards to the extracranial venous system. DISCUSSION A range of extracranial venous abnormalities have recently been reported, which could be classified as structural/morphological, hemodynamic/functional and those determined only by the composite criteria and use of multimodal imaging. The presence of these abnormalities usually disrupts normal blood flow and is associated with the development of prominent collateral circulation. The etiology of these abnormalities may be related to embryologic developmental arrest, aging or other comorbidities. Several CNS disorders have been linked to the presence and severity of jugular venous reflux. Another composite criteria-based vascular condition named chronic cerebrospinal venous insufficiency (CCSVI) was recently introduced. CCSVI is characterized by abnormalities of the main extracranial cerebrospinal venous outflow routes that may interfere with normal venous outflow. SUMMARY Additional research is needed to better define the role of the extracranial venous system in relation to CNS disorders and aging. The use of endovascular treatment for the correction of these extracranial venous abnormalities should be discouraged, until potential benefit is demonstrated in properly-designed, blinded, randomized and controlled clinical trials.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | | |
Collapse
|
14
|
Dolic K, Siddiqui AH, Karmon Y, Marr K, Zivadinov R. The role of noninvasive and invasive diagnostic imaging techniques for detection of extra-cranial venous system anomalies and developmental variants. BMC Med 2013; 11:155. [PMID: 23806142 PMCID: PMC3699429 DOI: 10.1186/1741-7015-11-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023] Open
Abstract
The extra-cranial venous system is complex and not well studied in comparison to the peripheral venous system. A newly proposed vascular condition, named chronic cerebrospinal venous insufficiency (CCSVI), described initially in patients with multiple sclerosis (MS) has triggered intense interest in better understanding of the role of extra-cranial venous anomalies and developmental variants. So far, there is no established diagnostic imaging modality, non-invasive or invasive, that can serve as the "gold standard" for detection of these venous anomalies. However, consensus guidelines and standardized imaging protocols are emerging. Most likely, a multimodal imaging approach will ultimately be the most comprehensive means for screening, diagnostic and monitoring purposes. Further research is needed to determine the spectrum of extra-cranial venous pathology and to compare the imaging findings with pathological examinations. The ability to define and reliably detect noninvasively these anomalies is an essential step toward establishing their incidence and prevalence. The role for these anomalies in causing significant hemodynamic consequences for the intra-cranial venous drainage in MS patients and other neurologic disorders, and in aging, remains unproven.
Collapse
Affiliation(s)
- Kresimir Dolic
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, 100 High St, Buffalo, NY 14203, USA
| | | | | | | | | |
Collapse
|
15
|
de Lange ECM. Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn 2013; 40:315-26. [PMID: 23400635 PMCID: PMC3663203 DOI: 10.1007/s10928-013-9301-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/30/2013] [Indexed: 01/19/2023]
Abstract
Human cerebrospinal fluid (CSF) sampling is of high value as the only general applicable methodology to obtain information on free drug concentrations in individual human brain. As the ultimate interest is in the free drug concentration at the CNS target site, the question is what CSF concentrations may tell us in that respect. Studies have been performed in rats and other animals for which concentrations in brain extracellular fluid (brain ECF) as a target site for many drugs, have been compared to (cisterna magna) CSF concentrations, at presumed steady state conditions,. The data indicated that CSF drug concentrations provided a rather good indication of, but not a reliable measure for predicting brain ECF concentrations. Furthermore, comparing rat with human CSF concentrations, human CSF concentrations tend to be higher and display much more variability. However, this comparison of CSF concentrations cannot be a direct one, as humans probably had a disease for which CSF was collected in the first place, while the rats were healthy. In order to be able to more accurately predict human brain ECF concentrations, understanding of the complexity of the CNS in terms of intrabrain pharmacokinetic relationships and the influence of CNS disorders on brain pharmacokinetics needs to be increased. This can be achieved by expanding a currently existing preclinically derived physiologically based pharmacokinetic model for brain distribution. This model has been shown to successfully predict data obtained for human lumbar CSF concentrations of acetaminophen which renders trust in the model prediction of human brain ECF concentrations. This model should further evolute by inclusion of influences of drug properties, fluid flows, transporter functionalities and different disease conditions. Finally the model should include measures of target site engagement and CNS effects, to ultimately learn about concentrations that best predict particular target site concentrations, via human CSF concentrations.
Collapse
|