1
|
Basar OY, Mohammed S, Qoronfleh MW, Acar A. Optimizing cancer therapy: a review of the multifaceted effects of metronomic chemotherapy. Front Cell Dev Biol 2024; 12:1369597. [PMID: 38813084 PMCID: PMC11133583 DOI: 10.3389/fcell.2024.1369597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Metronomic chemotherapy (MCT), characterized by the continuous administration of chemotherapeutics at a lower dose without prolonged drug-free periods, has garnered significant attention over the last 2 decades. Extensive evidence from both pre-clinical and clinical settings indicates that MCT induces distinct biological effects than the standard Maximum Tolerated Dose (MTD) chemotherapy. The low toxicity profile, reduced likelihood of inducing acquired therapeutic resistance, and low cost of MCT render it an attractive chemotherapeutic regimen option. One of the most prominent aspects of MCT is its anti-angiogenesis effects. It has been shown to stimulate the expression of anti-angiogenic molecules, thereby inhibiting angiogenesis. In addition, MCT has been shown to decrease the regulatory T-cell population and promote anti-tumor immune response through inducing dendritic cell maturation and increasing the number of cytotoxic T-cells. Combination therapies utilizing MCT along with oncolytic virotherapy, radiotherapy or other chemotherapeutic regimens have been studied extensively. This review provides an overview of the current status of MCT research and the established mechanisms of action of MCT treatment and also offers insights into potential avenues of development for MCT in the future.
Collapse
Affiliation(s)
- Oyku Yagmur Basar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Sawsan Mohammed
- Qatar University, QU Health, College of Medicine, Doha, Qatar
| | - M. Walid Qoronfleh
- Q3 Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
2
|
Ricciardi L, Manini I, Cesselli D, Trungu S, Piazza A, Mangraviti A, Miscusi M, Raco A, Ius T. Carmustine Wafers Implantation in Patients With Newly Diagnosed High Grade Glioma: Is It Still an Option? Front Neurol 2022; 13:884158. [PMID: 35812101 PMCID: PMC9259966 DOI: 10.3389/fneur.2022.884158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundThe implantation protocol for Carmustine Wafers (CWs) in high grade glioma (HGG) was developed to offer a bridge between surgical resection and adjuvant treatments, such as radio- and chemotherapy. In the last years, however, a widespread use of CWs has been limited due to uncertainties regarding efficacy, in addition to increased risk of infection and elevated costs of treatment.ObjectiveThe aims of our study were to investigate the epidemiology of patients that underwent surgery for HGG with CW implantation, in addition to the assessment of related complications, long-term overall survival (OS), and associated prognostic factors.MethodsThree different medical databases were screened for conducting a systematic review of the literature, according to the PRISMA statement guidelines, evaluating the role of BCNU wafer implantation in patients with newly diagnosed HGG. The search query was based on a combination of medical subject headings (MeSH): “high grade glioma” [MeSH] AND “Carmustine” [MeSH] and free text terms: “surgery” OR “BCNU wafer” OR “Gliadel” OR “systemic treatment options” OR “overall survival.”ResultsThe analysis of the meta-data demonstrated that there was a significant advantage in using CWs in newly diagnosed GBM in terms of OS, and a very low heterogeneity among the included studies [mean difference 2.64 (95% CI 0.85, 4.44); p = 0.004; I2149 = 0%]. Conversely, no significant difference between the two treatment groups in terms of PFS wad detected (p = 0.55). The analysis of complications showed a relatively higher rate in Carmustine implanted patients, although this difference was not significant (p = 0.53).ConclusionsThis meta-analysis seems to suggest that CWs implantation plays a significant role in improving the OS, when used in patients with newly diagnosed HGG. To minimize the risk of side effects, however, a carful patient selection based mainly on patient age and tumor volume should be desirable.
Collapse
Affiliation(s)
- Luca Ricciardi
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, Udine, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, Udine, Italy
- Department of Pathology, University Hospital of Udine, Udine, Italy
| | - Sokol Trungu
- UO di Neurochirurgia, Azienda Ospedaliera Cardinal G. Panico, Tricase, Italy
| | - Amedeo Piazza
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Antonella Mangraviti
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Massimo Miscusi
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Antonino Raco
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
- *Correspondence: Tamara Ius
| |
Collapse
|
3
|
Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021; 7:gels7020063. [PMID: 34073626 PMCID: PMC8162335 DOI: 10.3390/gels7020063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood-brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.
Collapse
|
4
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Redjal N, Nahed BV, Dietrich J, Kalkanis SN, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of chemotherapeutic management and antiangiogenic treatment of newly diagnosed glioblastoma in adults. J Neurooncol 2020; 150:165-213. [PMID: 33215343 DOI: 10.1007/s11060-020-03601-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/08/2020] [Indexed: 12/01/2022]
Abstract
QUESTION What is the role of temozolomide in the management of adult patients (aged 65 and under) with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level I: Concurrent and post-irradiation Temozolomide (TMZ) in combination with radiotherapy and post-radiotherapy as described by Stupp et al. is recommended to improve both PFS and OS in adult patients with newly diagnosed GBM. There is no evidence that alterations in the dosing regimen have additional beneficial effect. QUESTION Is there benefit to adjuvant temozolomide treatment in elderly patients (> 65 years old?). TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level III: Adjuvant TMZ treatment is suggested as a treatment option to improve PFS and OS in adult patients (over 70 years of age) with newly diagnosed GBM. QUESTION What is the role of local regional chemotherapy with BCNU biodegradable polymeric wafers in adult patients with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level III: There is insufficient evidence for the use of BCNU wafers following resection in patients with newly diagnosed glioblastoma who undergo the Stupp protocol after surgery. Further studies of higher quality are suggested to understand the role of BCNU wafer and other locoregional therapy in the setting of Stupp Protocol. QUESTION What is the role of bevacizumab in the adult patient with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level I: Bevacizumab in general is not recommended in the initial treatment of adult patients with newly diagnosed GBM. It continues to be strongly recommended that patients with newly diagnosed GBM be enrolled in properly designed clinical trials to assess the benefit of novel chemotherapeutic agents compared to standard therapy.
Collapse
Affiliation(s)
- Navid Redjal
- Department of Neurosurgery, Capital Health Institute for Neurosciences, Capital Health Institute for Neurosciences, Two Capital Way, Pennington, NJ, 08534, USA.
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Wichmann V, Eigeliene N, Saarenheimo J, Jekunen A. Recent clinical evidence on metronomic dosing in controlled clinical trials: a systematic literature review. Acta Oncol 2020; 59:775-785. [PMID: 32275176 DOI: 10.1080/0284186x.2020.1744719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Metronomic dosing is used to give continuous chemotherapy at low doses. The low doses have minimal side effects and may enable cancer treatment to be remodeled toward the management of chronic disease.Methods: We searched PubMed database to obtain relevant clinical trials studying metronomic chemotherapy (MCT). Our main focus was to find controlled phase II and phase III trials.Results: This systematic review summarizes the results of 91 clinical reports focusing on randomized phase II and phase III clinical studies between 2012 and 2018. During that time, nine randomized phase II and 10 randomized phase III studies were published. In the majority of the studies, MCT was well tolerated, and major side effects were rarely seen. Altogether, 4 phase III studies and 4 randomized phase II studies presented positive results and some clinical benefit.Discussion: Most of the studies did not show significantly improved overall survival or progression-free survival. Typically, the metronomic dosing was explored in a maintenance setup and was added to other agents given within normal high doses, whereas no trial was performed challenging metronomic dosing and best supportive care in later treatment lines. Therefore, there is no definite evidence on the efficacy of single metronomic dosing and firm evidence of metronomic dosing is still missing. There is a need for further confirmation of the usefulness of this approach in clinical practice.
Collapse
Affiliation(s)
- Viktor Wichmann
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
| | | | - Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
- Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Uysal-Onganer P, MacLatchy A, Mahmoud R, Kraev I, Thompson PR, Inal JM, Lange S. Peptidylarginine Deiminase Isozyme-Specific PAD2, PAD3 and PAD4 Inhibitors Differentially Modulate Extracellular Vesicle Signatures and Cell Invasion in Two Glioblastoma Multiforme Cell Lines. Int J Mol Sci 2020; 21:ijms21041495. [PMID: 32098295 PMCID: PMC7073130 DOI: 10.3390/ijms21041495] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive adult brain tumour with poor prognosis. Roles for peptidylarginine deiminases (PADs) in GBM have recently been highlighted. Here, two GBM cell lines were treated with PAD2, PAD3 and PAD4 isozyme-specific inhibitors. Effects were assessed on extracellular vesicle (EV) signatures, including EV-microRNA cargo (miR21, miR126 and miR210), and on changes in cellular protein expression relevant for mitochondrial housekeeping (prohibitin (PHB)) and cancer progression (stromal interaction molecule 1 (STIM-1) and moesin), as well as assessing cell invasion. Overall, GBM cell-line specific differences for the three PAD isozyme-specific inhibitors were observed on modulation of EV-signatures, PHB, STIM-1 and moesin protein levels, as well as on cell invasion. The PAD3 inhibitor was most effective in modulating EVs to anti-oncogenic signatures (reduced miR21 and miR210, and elevated miR126), to reduce cell invasion and to modulate protein expression of pro-GBM proteins in LN229 cells, while the PAD2 and PAD4 inhibitors were more effective in LN18 cells. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins relating to cancer, metabolism and inflammation differed between the two GBM cell lines. Our findings highlight roles for the different PAD isozymes in the heterogeneity of GBM tumours and the potential for tailored PAD-isozyme specific treatment.
Collapse
Affiliation(s)
- Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Amy MacLatchy
- School of Life Sciences, University of Westminster, London W1W 6UW, UK; (A.M.); (R.M.)
| | - Rayan Mahmoud
- School of Life Sciences, University of Westminster, London W1W 6UW, UK; (A.M.); (R.M.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Jameel M. Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000 (ext. 64832)
| |
Collapse
|
8
|
Comorbid Medical Conditions as Predictors of Overall Survival in Glioblastoma Patients. Sci Rep 2019; 9:20018. [PMID: 31882968 PMCID: PMC6934684 DOI: 10.1038/s41598-019-56574-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive central nervous system tumor with a poor prognosis. This study was conducted to determine any comorbid medical conditions that are associated with survival in GBM. Data were collected from medical records of all patients who presented to VCU Medical Center with GBM between January 2005 and February 2015. Patients who underwent surgery/biopsy were considered for inclusion. Cox proportional hazards regression modeling was performed to assess the relationship between survival and sex, race, and comorbid medical conditions. 163 patients met inclusion criteria. Comorbidities associated with survival on individual-characteristic analysis included: history of asthma (Hazard Ratio [HR]: 2.63; 95% Confidence Interval [CI]: 1.24–5.58; p = 0.01), hypercholesterolemia (HR: 1.95; 95% CI: 1.09–3.50; p = 0.02), and incontinence (HR: 2.29; 95% CI: 0.95–5.57; p = 0.07). History of asthma (HR: 2.22; 95% CI: 1.02–4.83; p = 0.04) and hypercholesterolemia (HR: 1.99; 95% CI: 1.11–3.56; p = 0.02) were associated with shorter survival on multivariable analysis. Surgical patients with GBM who had a prior history of asthma or hypercholesterolemia had significantly higher relative risk for mortality on individual-characteristic and multivariable analyses.
Collapse
|
9
|
Ius T, Cesselli D, Isola M, Toniato G, Pauletto G, Sciacca G, Fabbro S, Pegolo E, Rizzato S, Beltrami AP, di Loreto C, Skrap M. Combining Clinical and Molecular Data to Predict the Benefits of Carmustine Wafers in Newly Diagnosed High-Grade Gliomas. Curr Treat Options Neurol 2018; 20:3. [PMID: 29476361 DOI: 10.1007/s11940-018-0489-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study was to retrospectively evaluate the use of carmustine wafers (CWs) in the management of high-grade gliomas (HGGs). The data from our monoinstitutional series was compared with studies reported in the literature. Special emphasis was placed on the evaluation of side effects and the analysis of extent of resection and molecular profile as risk factors. RECENT FINDINGS The implantation of CWs into the resection cavity during HGG treatment to deliver localized chemotherapy, followed by the Stupp protocol, remains debated in a clinical setting, largely due to the lack of appropriate phase III studies. Given the high expense and poorly characterized side effects associated with CW treatment, identification of patients most likely to benefit from this therapy could be clinically relevant. CWs may represent an effective and safe first-line treatment for patients with HGG that exhibit complete tumor resection and harboring a methylated MGMT promoter. Our investigation showed a much larger group of patients exhibiting long-term survival (> = 36 months), strongly supporting a potential survival benefit conferred via CW treatment. The pre-surgical definition of the MGMT promoter status could be of clinical use in identifying "good responders" to CW implantation.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | | | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Toniato
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sciacca
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Sara Fabbro
- Department of Medicine, University of Udine, Udine, Italy
| | - Enrico Pegolo
- Department of Medicine, University of Udine, Udine, Italy
| | - Simona Rizzato
- Department of Oncology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Carla di Loreto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Pathology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
10
|
Roux A, Caire F, Guyotat J, Menei P, Metellus P, Pallud J. Carmustine wafer implantation for high-grade gliomas: Evidence-based safety efficacy and practical recommendations from the Neuro-oncology Club of the French Society of Neurosurgery. Neurochirurgie 2017; 63:433-443. [PMID: 29122306 DOI: 10.1016/j.neuchi.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence that carmustine wafer implantation during surgery is an effective therapeutic adjunct to the standard combined radio-chemotherapy regimen using temozolomide in newly diagnosed and recurrent high-grade glioma patient management with a statistically significant survival benefit demonstrated across several randomized clinical trials, as well as prospective and retrospective studies (grade A recommendation). Compelling clinical data also support the safety of carmustine wafer implantation (grade A recommendation) in these patients and suggest that observed adverse events can be avoided in experienced neurosurgeon hands. Furthermore, carmustine wafer implantation does not seem to impact negatively on the quality of life and the completion of adjuvant oncological treatments (grade C recommendation). Moreover, emerging findings support the potential of high-grade gliomas molecular status, especially the O(6)-Methylguanine-DNA Methyltransferase promoter methylation status, in predicting the efficacy of such a surgical strategy, especially at recurrence (grade B recommendation). Finally, carmustine wafer implantation appears to be cost-effective in high-grade glioma patients when performed by an experienced team and when total or subtotal resection can be achieved. Altogether, these data underline the current need for a new randomized clinical trial to assess the impact of a maximal safe resection with carmustine wafer implantation followed by the standard combined chemoradiation protocol stratified by molecular status in high-grade glioma patients.
Collapse
Affiliation(s)
- A Roux
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France
| | - F Caire
- Department of Neurosurgery, CHU de Limoges, Limoges, France
| | - J Guyotat
- Lyon Civil Hospitals, Pierre Wertheimer Neurological and Neurosurgical Hospital, Service of Neurosurgery D, Lyon, France
| | - P Menei
- Department of Neurosurgery, CHU d'Angers, Angers, France; Inserm 1232/CRCINA, France
| | - P Metellus
- Department of Neurosurgery, Clairval Private Hospital, Marseille, France
| | - J Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France.
| | | |
Collapse
|
11
|
Roux A, Peeters S, Zanello M, Bou Nassif R, Abi Lahoud G, Dezamis E, Parraga E, Lechapt-Zalcmann E, Dhermain F, Dumont S, Louvel G, Chretien F, Sauvageon X, Devaux B, Oppenheim C, Pallud J. Extent of resection and Carmustine wafer implantation safely improve survival in patients with a newly diagnosed glioblastoma: a single center experience of the current practice. J Neurooncol 2017; 135:83-92. [PMID: 28669011 DOI: 10.1007/s11060-017-2551-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
For newly diagnosed glioblastomas treated with resection in association with the standard combined chemoradiotherapy, the impact of Carmustine wafer implantation remains debated regarding postoperative infections, quality of life, and feasibility of adjuvant oncological treatments. To assess together safety, tolerance and efficacy of Carmustine wafer implantation and of extent of resection for glioblastoma patients in real-life experience. Observational retrospective monocentric study including 340 consecutive adult patients with a newly diagnosed supratentorial glioblastoma who underwent surgical resection with (n = 123) or without (n = 217) Carmustine wafer implantation as first-line oncological treatment. Carmustine wafer implantation and extent of resection did not significantly increase postoperative complications, including postoperative infections (p = 0.269, and p = 0.446, respectively). Carmustine wafer implantation and extent of resection did not significantly increase adverse events during adjuvant oncological therapies (p = 0.968, and p = 0.571, respectively). Carmustine wafer implantation did not significantly alter the early postoperative Karnofsky performance status (p = 0.402) or the Karnofsky performance status after oncological treatment (p = 0.636) but a subtotal or total surgical resection significantly improved those scores (p < 0.001, and p < 0.001, respectively). Carmustine wafer implantation, subtotal and total resection, and standard combined chemoradiotherapy were independently associated with longer event-free survival (adjusted Hazard Ratio (aHR), 0.74 [95% CI 0.55-0.99], p = 0.043; aHR, 0.70 [95% CI 0.54-0.91], p = 0.009; aHR, 0.40 [95% CI 0.29-0.55], p < 0.001, respectively) and with longer overall survival (aHR, 0.69 [95% CI 0.49-0.96], p = 0.029; aHR, 0.52 [95% CI 0.38-0.70], p < 0.001; aHR, 0.58 [95% CI 0.42-0.81], p = 0.002, respectively). Carmustine wafer implantation in combination with maximal resection, followed by standard combined chemoradiotherapy is safe, efficient, and well-tolerated in newly diagnosed supratentorial glioblastomas in adults.
Collapse
Affiliation(s)
- Alexandre Roux
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Sophie Peeters
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc Zanello
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Rabih Bou Nassif
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Georges Abi Lahoud
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Inserm, U894, Centre Psychiatrie et Neurosciences, Paris, France
| | - Eduardo Parraga
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Lechapt-Zalcmann
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | - Frédéric Dhermain
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Sarah Dumont
- Department of Neurooncology, Gustave Roussy, Villejuif, France
| | - Guillaume Louvel
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Fabrice Chretien
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | - Xavier Sauvageon
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Department of Neuro-Anaesthesia and Neuro-Intensive Care, Sainte-Anne Hospital, Paris, France
| | - Bertrand Devaux
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Catherine Oppenheim
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Inserm, U894, Centre Psychiatrie et Neurosciences, Paris, France.,Department of Neuroradiology, Sainte-Anne Hospital, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, Service de Neurochirurgie, Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, France. .,Inserm, U894, Centre Psychiatrie et Neurosciences, Paris, France.
| |
Collapse
|
12
|
Kleinberg L. Polifeprosan 20, 3.85% carmustine slow release wafer in malignant glioma: patient selection and perspectives on a low-burden therapy. Patient Prefer Adherence 2016; 10:2397-2406. [PMID: 27920506 PMCID: PMC5125766 DOI: 10.2147/ppa.s93020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polifeprosan 20 with carmustine (GLIADEL®) polymer implant wafer is a biodegradable compound containing 3.85% carmustine (BCNU, bischloroethylnitrosourea) implanted in the brain at the time of planned tumor surgery, which then slowly degrades to release the BCNU chemotherapy directly into the brain thereby bypassing the blood-brain barrier. Carmustine implant wafers were demonstrated to improve survival in randomized placebo-controlled trials in patients undergoing a near total resection of newly diagnosed or recurrent malignant glioma. Based on these trials and other supporting data, carmustine wafer therapy was approved for use for newly diagnosed and recurrent malignant glioma in the United States and the European Union. Adverse events are uncommon, and as this therapy is placed at the time of surgery, it does not add to patient treatment burden. Nevertheless, this therapy appears to be underutilized. This article reviews the evidence for a favorable therapeutic ratio for the patient and the potential barriers. Consideration of these issues is important for optimal use of this therapeutic approach and may be important as this technology and other local therapies are further developed in the future.
Collapse
Affiliation(s)
- Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
- Correspondence: Lawrence Kleinberg, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA, Email
| |
Collapse
|
13
|
Wait SD, Prabhu RS, Burri SH, Atkins TG, Asher AL. Polymeric drug delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii9-ii23. [PMID: 25746091 DOI: 10.1093/neuonc/nou360] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) remains an almost universally fatal diagnosis. The current therapeutic mainstay consists of maximal safe surgical resection followed by radiation therapy (RT) with concomitant temozolomide (TMZ), followed by monthly TMZ (the "Stupp regimen"). Several chemotherapeutic agents have been shown to have modest efficacy in the treatment of high-grade glioma (HGG), but blood-brain barrier impermeability remains a major delivery obstacle. Polymeric drug-delivery systems, developed to allow controlled local release of biologically active substances for a variety of conditions, can achieve high local concentrations of active agents while limiting systemic toxicities. Polymerically delivered carmustine (BCNU) wafers, placed on the surface of the tumor-resection cavity, can potentially provide immediate chemotherapy to residual tumor cells during the standard delay between surgery and chemoradiotherapy. BCNU wafer implantation as monochemotherapy (with RT) in newly diagnosed HGG has been investigated in 2 phase III studies that reported significant increases in median overall survival. A number of studies have investigated the tumoricidal synergies of combination chemotherapy with BCNU wafers in newly diagnosed or recurrent HGG, and a primary research focus has been the integration of BCNU wafers into multimodality therapy with the standard Stupp regimen. Overall, the results of these studies have been encouraging in terms of safety and efficacy. However, the data must be qualified by the nature of the studies conducted. Currently, there are no phase III studies of BCNU wafers with the standard Stupp regimen. We review the rationale, biochemistry, pharmacokinetics, and research history (including toxicity profile) of this modality.
Collapse
Affiliation(s)
- Scott D Wait
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Roshan S Prabhu
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Stuart H Burri
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Tyler G Atkins
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Anthony L Asher
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| |
Collapse
|
14
|
Kang JH, Adamson C. Novel chemotherapeutics and other therapies for treating high-grade glioma. Expert Opin Investig Drugs 2015; 24:1361-79. [PMID: 26289791 DOI: 10.1517/13543784.2015.1048332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Despite extensive research, high-grade glioma (HGG) remains a dire diagnosis with no change in the standard of care in almost a decade. However, recent advancements uncovering molecular biomarkers of brain tumors and tumor-specific antigens targeted by immunotherapies provide opportunities for novel personalized treatment regimens to improve survival. AREAS COVERED In this review, the authors provide a comprehensive overview of recent therapeutic advancements in HGG. Furthermore, they describe new molecular biomarkers and molecular classifications, in addition to updated research on bevacizumab, targeted molecular therapies, immunotherapy and alternative delivery methods that overcome the blood-brain barrier to reach the target tumor tissue. Challenges regarding each therapy are also outlined. The authors also provide some insight into a novel non-chemotherapeutic treatment for malignant glioma, NovoTTFA, as well as a summary of current treatment options for recurrence. EXPERT OPINION Current research for treating malignant gliomas are paving the path to personalized therapy, including immunotherapy, that involve integrated genomic and histolopathologic data, as well as a multi-modal treatment regimen. Immunotherapy will potentially be the next addition to the current standard of care, specialized to the antigens presented on the tumors. The results of the current trials of multi-antigen vaccines are eagerly anticipated.
Collapse
Affiliation(s)
- Jennifer H Kang
- a 1 Duke University School of Medicine , Box 3807, Durham, NC, USA
| | - Cory Adamson
- b 2 Director, Molecular Neuro-oncology Lab, Duke Medical Center , DUMC Box 3807, Durham, NC, USA.,c 3 Chief of Neurosurgery, Durham VA Medical Center , 508 Fulton Street, Durham, NC, USA +1 919 698 3152 ; .,d 4 Duke Medical Center , DUMC Box 3807, Durham, NC, USA
| |
Collapse
|
15
|
Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 2015; 6:353-69. [PMID: 25853310 DOI: 10.4155/tde.14.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.
Collapse
|
16
|
Burri SH, Prabhu RS, Sumrall AL, Brick W, Blaker BD, Heideman BE, Boltes P, Kelly R, Symanowski JT, Wiggins WF, Ashby L, Norton HJ, Judy K, Asher AL. BCNU wafer placement with temozolomide (TMZ) in the immediate postoperative period after tumor resection followed by radiation therapy with TMZ in patients with newly diagnosed high grade glioma: final results of a prospective, multi-institutional, phase II trial. J Neurooncol 2015; 123:259-66. [DOI: 10.1007/s11060-015-1793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/25/2015] [Indexed: 12/20/2022]
|
17
|
Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol 2015; 122:367-82. [PMID: 25630625 PMCID: PMC4368843 DOI: 10.1007/s11060-015-1724-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
Carmustine wafers (CW; Gliadel(®) wafers) are approved to treat newly-diagnosed high-grade glioma (HGG) and recurrent glioblastoma. Widespread use has been limited for several reasons, including concern that their use may preclude enrollment in subsequent clinical trials due to uncertainty about confounding of results and potential toxicities. This meta-analysis estimated survival following treatment with CW for HGG. A literature search identified relevant studies. Overall survival (OS), median survival, and adverse events (AEs) were summarized. Analysis of variance evaluated effects of treatment (CW vs non-CW) and diagnosis (new vs recurrent) on median survival. The analysis included 62 publications, which reported data for 60 studies (CW: n = 3,162; non-CW: n = 1,736). For newly-diagnosed HGG, 1-year OS was 67 % with CW and 48 % without; 2-year OS was 26 and 15 %, respectively; median survival was 16.4 ± 21.6 months and 13.1 ± 29.9 months, respectively. For recurrent HGG, 1-year OS was 37 % with CW and 34 % without; 2-year OS was 15 and 12 %, respectively; median survival was 9.7 ± 20.9 months and 8.6 ± 22.6 months, respectively. Effects of treatment (longer median survival with CW than without; P = 0.043) and diagnosis (longer median survival for newly-diagnosed HGG than recurrent; P < 0.001) on median survival were significant, with no significant treatment-by-diagnosis interaction (P = 0.620). The most common AE associated with wafer removal was surgical site infection (SSI); the most common AEs for repeat surgery were mass effect, SSI, hydrocephalus, cysts in resection cavity, acute hematoma, wound healing complications, and brain necrosis. These data may be useful in the context of utilizing CW in HGG management, and in designing future clinical trials to allow CW-treated patients to participate in experimental protocols.
Collapse
Affiliation(s)
- Sajeel A. Chowdhary
- Department of Neuro-Oncology, Florida Hospital Cancer Institute, 2501 N. Orange Avenue, Suite 286, Orlando, FL 32804 USA
| | - Timothy Ryken
- Department of Neurosurgery, Iowa Spine and Brain Institute, 2710 St. Francis Drive, Waterloo, IA 50702 USA
| | - Herbert B. Newton
- Departments of Neurology, Neurosurgery, and Oncology, Wexner Medical Center at the Ohio State University and James Cancer Hospital, M410-B Starling-Loving Hall, 320 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
18
|
Pavlov V, Page P, Abi-Lahoud G, Nataf F, Dezamis E, Robin A, Varlet P, Turak B, Dhermain F, Domont J, Louvel G, Souillard-Scemama R, Parraga E, Meder JF, Chrétien F, Devaux B, Pallud J. Combining intraoperative carmustine wafers and Stupp regimen in multimodal first-line treatment of primary glioblastomas. Br J Neurosurg 2015; 29:524-31. [PMID: 25724425 DOI: 10.3109/02688697.2015.1012051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The study investigated if intraoperative use of carmustine wafers, particularly in combination with Stupp regimen, is a viable and safe first-line treatment option of glioblastomas. METHODS Eighty-three consecutive adult patients (50 men; mean age 60 years) with newly diagnosed supratentorial primary glioblastomas that underwent surgical resection with intraoperative carmustine wafers implantation (n = 7.1 ± 1.7) were retrospectively studied. RESULTS The median overall survival (OS) was 15.8 months with 56 patients dying over the course of the study. There was no significant association between the number of implanted carmustine wafers and complication rates (four surgical site infections, one death). The OS was significantly longer in Stupp regimen patients (19.5 months) as compared with patients with other postoperative treatments (13 months; p = 0.002). In addition patients with eight or more implanted carmustine wafers survived longer (24.5 months) than patients with seven or less implanted wafers (13 months; p = 0.021). Finally, regardless of the number of carmustine wafers, median OS was significantly longer in patients with a subtotal or total resection (21.5 months) than in patients with a partial resection (13 months; p = 0.011). CONCLUSIONS The intraoperative use of carmustine wafers in combination with Stupp regimen is a viable first-line treatment option of glioblastomas. The prognostic value of this treatment association should be evaluated in a multicenter trial, ideally in a randomized and placebo-controlled one.
Collapse
Affiliation(s)
- Vladislav Pavlov
- a Department of Neurosurgery , Sainte-Anne Hospital , Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rhun EL, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 2015; 6:S9-S44. [PMID: 25722939 PMCID: PMC4338495 DOI: 10.4103/2152-7806.151331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neuro-oncology, Roger Salengro Hospital, University Hospital, Lille, and Neurology, Department of Medical Oncology, Oscar Lambret Center, Lille, France, Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Lille 1 University, Villeneuve D’Ascq, France
| | - Sophie Taillibert
- Neurology, Mazarin and Radiation Oncology, Pitié Salpétrière Hospital, University Pierre et Marie Curie, Paris VI, Paris, France
| | - Marc C. Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Bregy A, Shah AH, Diaz MV, Pierce HE, Ames PL, Diaz D, Komotar RJ. The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther 2014; 13:1453-61. [PMID: 24236823 DOI: 10.1586/14737140.2013.840090] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor. Standard treatment includes surgery, radiation and chemotherapy. Prognosis is dismal with an average survival of approximately 1 year. Gliadel wafers are one treatment option, working as a source for local chemotherapy delivery. Their use is controversial with questionable survival benefit and potential side effects. We reviewed the literature in an effort to clarify their role in the treatment of high-grade gliomas. A systematic PubMed search was performed using the keywords 'Gliadel', 'carmustine' or 'BCNU wafers' in newly diagnosed high-grade glioma patients. Treatment regimen, and median survival were analyzed. Adverse event ratio was calculated by computing the number of adverse events in a study per patient receiving carmustine wafers. Nineteen studies with 795 patients were included in our review. Survival was 8.7-22.6 months with a mean overall survival (OS) of 16.2 months (control survival is approximately 14 months with surgery and adjuvant chemoradiotherapy). Adverse event ratio using Gliadel wafersin control group. Complication rate was 42.7%. Gliadel wafers may marginally increase survival and local control in newly diagnosed GBM patients but are associated with a high complication rate; therefore, we do not recommend using Gliadel wafers in patients with GBM. Further research may be warranted once a safer alternative to Gliadel wafers has been introduced.
Collapse
Affiliation(s)
- Amade Bregy
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|
22
|
Dejaegher J, Van Gool S, De Vleeschouwer S. Dendritic cell vaccination for glioblastoma multiforme: review with focus on predictive factors for treatment response. Immunotargets Ther 2014; 3:55-66. [PMID: 27471700 PMCID: PMC4918234 DOI: 10.2147/itt.s40121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive type of primary brain cancer. Since median overall survival with multimodal standard therapy is only 15 months, there is a clear need for additional effective and long-lasting treatments. Dendritic cell (DC) vaccination is an experimental immunotherapy being tested in several Phase I and Phase II clinical trials. In these trials, safety and feasibility have been proven, and promising clinical results have been reported. On the other hand, it is becoming clear that not every GBM patient will benefit from this highly personalized treatment. Defining the subgroup of patients likely to respond to DC vaccination will position this option correctly amongst other new GBM treatment modalities, and pave the way to incorporation in standard therapy. This review provides an overview of GBM treatment options and focuses on the currently known prognostic and predictive factors for response to DC vaccination. In this way, it will provide the clinician with the theoretical background to refer patients who might benefit from this treatment.
Collapse
Affiliation(s)
| | - Stefaan Van Gool
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|