1
|
Hallab NJ, Hallab SR, Alexander A, Pourzal R. Characterization of residual debris on packaged hip arthroplasty stems demonstrates the dominance of less than 10 μm sized particulate: Updated USP788 guidelines for orthopedic implants. J Biomed Mater Res B Appl Biomater 2024; 112:e35387. [PMID: 38340016 DOI: 10.1002/jbm.b.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Past evaluation of particle contamination on packaged implants has typically been conducted using US Pharmacopeia (USP) 788, a 1970s pharmaceutical guideline created to evaluate contaminant particles in injectable fluids and syringes. Our objective was to reestablish relevant acceptance criteria for residual orthopedic and other implant debris, including smaller particles (i.e., <10 μm in diameter). Packaged total hip arthroplasty (THA) titanium (Ti6Al4V)-alloy femoral stems were used (hydroxyapatite [HA]-coated and non-coated stems). Short-term ultrasonication and longer-term 24-hour soak/agitation methods were used to elute surface-bound contaminant particles, and released particles were analyzed via scanning electron microscopy, energy-dispersive x-ray analysis, image analysis, and particle characterization. For HA-coated THA-stems, >99% of eluted particles were calcium phosphate. For plain non-coated THA-stems, >99% of eluted particles were titanium-alloy-based. The number-based median size of particles in both groups was approximately 1.5 μm in diameter despite being composed of different materials. The total volume of particulate removed from HA-coated stems was 0.037 mm3 (671 × 103 particles total), which was approximately >50-fold more volume than that on plain non-coated stems at 0.0006 mm3 (89 × 103 particles total). Only non-coated THA stems passed reestablished USP788 acceptance criteria, compared by using equivalent total volumes of contaminant particulate within new and legacy guideline ranges of >10 and >25 μm ECD, that is, <1.0 × 107 particles for <1 μm diameter in size, <600,000 for <1-10 μm, <6000 for 10-25 μm and <600 for >25 μm. These results fill a knowledge gap on how much residual debris can be expected to exist on packaged implants and can be used as a basis for updating acceptance criteria (i.e., termed USP788-Implant [USP788-I]). Residual implant particulate assessment is critical given the increasing implant complexity and new manufacturing techniques (e.g., additive manufacturing).
Collapse
Affiliation(s)
- Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Salem R Hallab
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Anastasia Alexander
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Hekimoğlu M, Özer H, Kiraz K, Onursal C, Siyahcan F, Özer AF. Surface hardening of Ti-Al-V superalloy spinal implant by using the boronization method. Biomed Mater Eng 2024; 35:39-52. [PMID: 37545207 DOI: 10.3233/bme-230033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND We compared the raw Ti-Al-V super alloy transpedicular implant screws with boronized and surface-hardened transpedicular implant screws. OBJECTIVE To improve patients' postoperative prognosis with the production of harder and less fragile screws. METHODS Surface hardening was achieved by applying green-body encapsulation of the specimen with elemental boron paste which is sintered at elevated temperatures to ensure the boron-metal diffusion. Boron transported into the Ti-Al-V super alloy matrix gradually while suppressing aluminum and a homogeneously boronized surface with a thickness of ∼15 microns was obtained. The uniform external shell was enriched with TiB2, which is one of the hardest ceramics. The Ti-Al-V core material, where boron penetration diminishes, shows cohesive transition and ensures intact core-surface structure. RESULTS Scanning electron microscope images confirmed a complete homogeneous, uniform and non-laminating surface formation. Energy-dispersive X-ray monitored the elemental structural mapping and proved the replacement of the aluminum sites on the surface with boron ending up the TiB2. The procedure was 8.6 fold improved the hardness and the mechanical resistance of the tools. CONCLUSIONS Surface-hardened, boronized pedicular screws can positively affect the prognosis. In vivo studies are needed to prove the safety of use.
Collapse
Affiliation(s)
- Mehdi Hekimoğlu
- Neurosurgery Department, American Hospital, Istanbul, Turkey
| | - Hıdır Özer
- Neurosurgery Department, School of Medicine, Ordu University, Ordu, Turkey
| | - Kamil Kiraz
- PAVTEC - Pavezyum Technical Ceramics, Kocaeli, Turkey
- Chemistry Department, Koc University, Istanbul, Turkey
| | - Ceylan Onursal
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ferit Siyahcan
- Department of Metallurgy and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ali Fahir Özer
- Neurosurgery Department, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
3
|
Kurtz SM, Holyoak DT, Trebše R, Randau TM, Porporati AA, Siskey RL. Ceramic Wear Particles: Can They Be Retrieved In Vivo and Duplicated In Vitro? J Arthroplasty 2023; 38:1869-1876. [PMID: 36966889 DOI: 10.1016/j.arth.2023.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Little is known about retrieved zirconia platelet toughened alumina (ZPTA) wear particles from ceramic-on-ceramic (COC) total hip arthroplasty. Our objectives were to evaluate clinically retrieved wear particles from explanted periprosthetic hip tissues and to analyze the characteristics of in vitro-generated ZPTA wear particles. METHODS Periprosthetic tissue and explants were received for 3 patients who underwent a total hip replacement of ZPTA COC head and liner. Wear particles were isolated and characterized via scanning electron microscopy and energy dispersive spectroscopy. The ZPTA and control (highly cross-linked polyethylene and cobalt chromium alloy) were then generated in vitro using a hip simulator and pin-on-disc testing, respectively. Particles were assessed in accordance with American Society for Testing and Materials F1877. RESULTS Minimal ceramic particles were identified in the retrieved tissue, consistent with the retrieved components demonstrating minimal abrasive wear with material transfer. Average particle diameter from in vitro studies was 292 nm for ZPTA, 190 nm for highly cross-linked polyethylene, and 201 nm for cobalt chromium alloy. CONCLUSION The minimal number of in vivo ZPTA wear particles observed is consistent with the successful tribological history of COC total hip arthroplasties. Due to the relatively few ceramic particles located in the retrieved tissue, in part due to implantation times of 3 to 6 years, a statistical comparison was unable to be made between the in vivo particles and the in vitro-generated ZPTA particles. However, the study provided further insight into the size and morphological characteristics of ZPTA particles generated from clinically relevant in vitro test setups.
Collapse
|
4
|
Arevalo S, Arthurs C, Molina MIE, Pruitt L, Roy A. An overview of the tribological and mechanical properties of PEEK and CFR-PEEK for use in total joint replacements. J Mech Behav Biomed Mater 2023; 145:105974. [PMID: 37429179 DOI: 10.1016/j.jmbbm.2023.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Poly-ether-ether-ketone (PEEK) and PEEK composites are outstanding candidates for biomedical applications, such as orthopedic devices, where biocompatibility and modulus match with surrounding tissue are requisite for long-term success. The mechanical properties can be optimized by incorporating fillers such as continuous and chopped carbon fibers. While much is known about the mechanical and tribological behavior of PEEK composites, there are few articles that summarize the viability of using PEEK reinforced with carbon fibers in orthopedic implants. This paper reviews biocompatibility, tribological, and mechanical studies on PEEK and their composites with carbon fibers, notably PEEK reinforced with polyacrylonitrile (PAN)-based carbon fibers and PEEK reinforced with pitch-based carbon fibers, for application in orthopedics and total joint replacements (TJRs). The main objectives of this review are two-fold. Firstly, this paper aims to assist designers in making informed decisions on the suitability of using PEEK and PEEK composites in orthopedic applications; as it is not well understood how these materials perform on the whole in orthopedics and TJRs. Secondly, this paper aims to serve as a centralized paper in which researchers can gain information on the tribological and mechanical advancements of PEEK and PEEK composites.
Collapse
Affiliation(s)
- Sofia Arevalo
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Claire Arthurs
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Lisa Pruitt
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Anurag Roy
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Mödinger Y, Anttila ED, Baker GM, Gross DC, Porporati AA. Magnetic Resonance Safety Evaluation of a Novel Alumina Matrix Composite Ceramic Knee and Image Artifact Comparison to a Metal Knee Implant of Analogous Design. Arthroplast Today 2023; 22:101170. [PMID: 37521740 PMCID: PMC10374871 DOI: 10.1016/j.artd.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Background Image artifacts caused by metal knee implants in 1.5T and 3T magnetic resonance imaging (MRI) systems complicate imaging-based diagnosis of the peri-implant region after total knee arthroplasty. Alternatively, metal-free knee prostheses could effectively minimize MRI safety hazards and offer the potential for higher quality diagnostic images. Methods A novel knee arthroplasty device composed of BIOLOX delta, an alumina matrix composite (AMC) ceramic, was tested in a magnetic resonance (MR) environment. American Society for Testing and Materials test methods were used for evaluating magnetically induced displacement force, magnetically induced torque, radiofrequency-induced heating, and MR image artifact. Results Magnetically induced displacement force and magnetically induced torque results of the AMC ceramic knee indicated that these effects do not pose a known risk in a clinical MR environment, as assessed in a 3T magnetic field. Moreover, minimal radiofrequency-induced heating of the device was observed. In addition, the AMC ceramic knee demonstrated minimal MR image artifacts (7 mm) in comparison to a cobalt-chromium knee (88 mm). The extremely low magnetic susceptibility of AMC (2 ppm) underlines that it is a nonmetallic and nonmagnetic material well suited for the manufacturing of MR Safe orthopaedic implants. Conclusions The AMC ceramic knee is a novel metal-free total knee arthroplasty device that can be regarded as MR Safe, as suggested by the absence of hazards from the exposure of this implant to a MR environment. The AMC ceramic knee presents the advantage of being scanned with superior imaging results in 3T MRI systems compared to alternative metal implants on the market.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Medical Products Division, CeramTec GmbH, Plochingen, Germany
| | | | | | | | - Alessandro A. Porporati
- Medical Products Division, CeramTec GmbH, Plochingen, Germany
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Kandel S, Su S, Hall RM, Tipper JL. An automated system for polymer wear debris analysis in total disc arthroplasty using convolution neural network. Front Bioeng Biotechnol 2023; 11:1108021. [PMID: 37362220 PMCID: PMC10285289 DOI: 10.3389/fbioe.2023.1108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Polymer wear debris is one of the major concerns in total joint replacements due to wear-induced biological reactions which can lead to osteolysis and joint failure. The wear-induced biological reactions depend on the wear volume, shape and size of the wear debris and their volumetric concentration. The study of wear particles is crucial in analysing the failure modes of the total joint replacements to ensure improved designs and materials are introduced for the next generation of devices. Existing methods of wear debris analysis follow a traditional approach of computer-aided manual identification and segmentation of wear debris which encounters problems such as significant manual effort, time consumption, low accuracy due to user errors and biases, and overall lack of insight into the wear regime. Methods: This study proposes an automatic particle segmentation algorithm using adaptive thresholding followed by classification using Convolution Neural Network (CNN) to classify ultra-high molecular weight polyethylene polymer wear debris generated from total disc replacements tested in a spine simulator. A CNN takes object pixels as numeric input and uses convolution operations to create feature maps which are used to classify objects. Results: Classification accuracies of up to 96.49% were achieved for the identification of wear particles. Particle characteristics such as shape, size and area were estimated to generate size and volumetric distribution graphs. Discussion: The use of computer algorithms and CNN facilitates the analysis of a wider range of wear debris with complex characteristics with significantly fewer resources which results in robust size and volume distribution graphs for the estimation of the osteolytic potential of devices using functional biological activity estimates.
Collapse
Affiliation(s)
- Sushil Kandel
- Faculty of Engineering and IT, University of Technology, Sydney, NSW, Australia
| | - Steven Su
- Faculty of Engineering and IT, University of Technology, Sydney, NSW, Australia
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Richard M. Hall
- School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Joanne L. Tipper
- Faculty of Engineering and IT, University of Technology, Sydney, NSW, Australia
- School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Wang H, Wu J, Ma L, Bai Y, Liu J. Theroleofinterleukin-1familyinfibroticdiseases. Cytokine 2023; 165:156161. [PMID: 36921509 DOI: 10.1016/j.cyto.2023.156161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/17/2023]
Abstract
Fibrosis refers to the phenomenon that fibrous connective tissues are increased and parenchymal cells are decreased in organs or tissues such as lung, heart, liver, kidney, skin and so on. It usually occurs at the late stage of repair of chronic or recurrent tissue damage. Fibrotic disease is the main factor for the morbidity and mortality of all tissues and organ systems. Long-term fibrosis can lead to organ and tissue dysfunction and even failure. Interleukin -1 family cytokines are a series of classical inflammatory factors and involved in the occurrence and development process of multiple fibrotic diseases, its biological function, relationship with diseases and application are more and more favored by scientists from various countries. So far, 11 cytokines and 10 receptors of IL-1 family have been identified. In this paper, the cytokines, receptors, signaling pathways and biological functions of IL-1 family are summarized, and the correlation with fibrosis diseases is analyzed.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| | - Ji Wu
- Department of Orthopaedics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 Jiangsu, China.
| | - Yunfeng Bai
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| |
Collapse
|
8
|
Vanaclocha-Saiz A, Vanaclocha V, Atienza C, Jorda-Gomez P, Primo-Capella V, Barrios C, Vanaclocha L. Bionate Biocompatibility: In Vivo Study in Rabbits. ACS OMEGA 2022; 7:29647-29654. [PMID: 36061708 PMCID: PMC9435029 DOI: 10.1021/acsomega.2c01690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Response to foreign materials includes local tissue reaction, osteolysis, implant loosening, and migration to lymph nodes and organs. Bionate 80A human explants show minor wear and slight local tissue reaction, but we do not know the response at the spinal cord, nerve roots, lymph nodes, or distant organs. This study aims to figure out reactions against Bionate 80A when implanted at the spinal epidural space of 24 20-week-old New Zealand white rabbits. In one group of 12 rabbits, we implanted Bionate 80A on the spinal epidural space, and another group of 12 rabbits was used as the control group. We studied tissues, organs, and tissue damage markers on blood biochemistry, urine tests, and necropsy. The animals' clinical parameters and weight showed no statistically significant differences. At 3 months, the basophils increased slightly in the implant group, platelets decreased in all, and at 6 months, implanted animals showed slight eosinophilia, but none of these changes was statistically significant. External, organ, and spinal tissue examination showed neither toxic reaction, inflammatory changes, or noticeable differences between groups or survival periods. Under microscopic examination, the Bionate 80A particles induced a chronic granulomatous response always outside the dura mater, with giant multinucleated cells holding phagocytized particles and no particle migration to lymph nodes or organs. Thus, it was concluded that Bionate particles, when implanted in the rabbit lumbar epidural space, do not generate a significant reaction limited to the surrounding soft tissues with giant multinucleated cells. In addition, the particles did not cross the dura mater or migrate to lymph nodes or organs.
Collapse
Affiliation(s)
- Amparo Vanaclocha-Saiz
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia 46022, Spain
| | | | - Carlos Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia 46022, Spain
| | - Pablo Jorda-Gomez
- Hospital General Universitario de Castellón, Castellón de la Plana 12004, Spain
| | - Víctor Primo-Capella
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia 46022, Spain
| | - Carlos Barrios
- Catholic University of Valencia, Saint Vincent Martyr, Valencia 46001, Spain
| | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany
| |
Collapse
|
9
|
Fu L, Jafari H, Gießl M, Yerneni SS, Sun M, Wang Z, Liu T, Kapil K, Cheng BC, Yu A, Averick SE, Matyjaszewski K. Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles. POLYM ADVAN TECHNOL 2021; 32:3948-3954. [PMID: 34924736 PMCID: PMC8680496 DOI: 10.1002/pat.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Poly(ether ether ketone) (PEEK) is a semi-crystalline thermoplastic with excellent mechanical and chemical properties. PEEK exhibits a high degree of resistance to thermal, chemical, and bio-degradation. PEEK is used as biomaterial in the field of orthopaedic and dental implants; however, due to its intrinsic hydrophobicity and inert surface, PEEK does not effectively support bone growth. Therefore, new methods to modify PEEK's surface to improve osseointegration are key to next generation polymer implant materials. Unfortunately, PEEK is a challenging material to both modify and subsequently characterize thus stymieing efforts to improve PEEK osseointegration. In this manuscript, we demonstrate how surface-initiated atom transfer radical polymerization (SI-ATRP) can be used to modify novel PEEK microparticles (PMP). The hard core-soft shell microparticles were synthesized and characterized by DLS, ATR-IR, XPS and TEM, indicating the grafted materials increased solubility and stability in a range of solvents. The discovered surface grafted PMP can be used as compatibilizers for the polymer-tissue interface.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Michael Gießl
- Department of Chemistry, University of Konstanz, Universitatsstraße 10, D-78457 Konstanz, Germany
| | | | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Boyle C. Cheng
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Alexander Yu
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah E. Averick
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
10
|
Hallab NJ, Samelko L, Hammond D. Particulate Debris Released From Breast Implant Surfaces Is Highly Dependent on Implant Type. Aesthet Surg J 2021; 41:NP782-NP793. [PMID: 33564817 DOI: 10.1093/asj/sjab051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although breast implants (BIs) have never been safer, factors such as implant debris may influence complications such as chronic inflammation and illness such as ALCL (anaplastic large cell lymphoma). Do different types of BIs produce differential particulate debris? OBJECTIVES The aim of this study was to quantify, investigate, and characterize the size, amount, and material type of both loosely bound and adherent surface particles on 5 different surface types of commercial BIs. METHODS Surface particles from BIs of 5 surface types (n = 5/group), Biocell, Microcell, Siltex, Smooth, SmoothSilk, and Traditional-Smooth, were: (1) removed by a rinsing procedure and (2) removed with ultrapure adhesive carbon tabs. Particles were characterized (ASTM 1877-16) by scanning electron microscopy and energy-dispersive X-ray chemical analysis. RESULTS Particles rinsed from Biocell, Microcell and Siltex were <1 μm in diameter whereas SmoothSilk and Traditional-Smooth surfaces had median sizes >1 μm (range, 0.4-2.7 μm). The total mass of particles rinsed from the surfaces indicated Biocell had >5-fold more particulate compared with all other implants, and >30-fold more than SmoothSilk or Traditional-Smooth implants (>100-fold more for post-rinse adhesion analysis). Energy-dispersive X-ray analysis indicated that the particulate material for Biocell, Microcell, and Siltex was silicone (>50%), whereas particulates from SmoothSilk and Traditional-Smooth implants were predominantly carbon-based polymers, eg, polycarbonate-urethane, consistent with packaging (and were detected on all implant types). Generally, SmoothSilk and Traditional-Smooth implant groups released >10-fold fewer particles than Biocell, Microcell, and Siltex surfaces. Pilot ex vivo tissue analysis supported these findings. CONCLUSIONS Particulate debris released from BIs are highly dependent on the type of implant surface and are a likely key determinant of in vivo performance. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | - Lauryn Samelko
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | | |
Collapse
|
11
|
Porporati AA, Piconi C, Mettang M, Deisinger U, Reinhardt C, Pitto R. Ceramics for artificial joints: The relevance of material biocompatibility. BIOCERAMICS 2021:263-295. [DOI: 10.1016/b978-0-08-102999-2.00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hallab NJ, Jacobs JJ. Orthopedic Applications. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Lee H, Phillips JB, Hall RM, Tipper JL. Neural cell responses to wear debris from metal-on-metal total disc replacements. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:2701-2712. [PMID: 31664570 DOI: 10.1007/s00586-019-06177-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Total disc replacements, comprising all-metal articulations, are compromised by wear and particle production. Metallic wear debris and ions trigger a range of biological responses including inflammation, genotoxicity, cytotoxicity, hypersensitivity and pseudotumour formation, therefore we hypothesise that, due to proximity to the spinal cord, glial cells may be adversely affected. METHODS Clinically relevant cobalt chrome (CoCr) and stainless steel (SS) wear particles were generated using a six-station pin-on-plate wear simulator. The effects of metallic particles (0.5-50 μm3 debris per cell) and metal ions on glial cell viability, cellular activity (glial fibrillary acidic protein (GFAP) expression) and DNA integrity were investigated in 2D and 3D culture using live/dead, immunocytochemistry and a comet assay, respectively. RESULTS CoCr wear particles and ions caused significant reductions in glial cell viability in both 2D and 3D culture systems. Stainless steel particles did not affect glial cell viability or astrocyte activation. In contrast, ions released from SS caused significant reductions in glial cell viability, an effect that was especially noticeable when astrocytes were cultured in isolation without microglia. DNA damage was observed in both cell types and with both biomaterials tested. CoCr wear particles had a dose-dependent effect on astrocyte activation, measured through expression of GFAP. CONCLUSIONS The results from this study suggest that microglia influence the effects that metal particles have on astrocytes, that SS ions and particles play a role in the adverse effects observed and that SS is a less toxic biomaterial than CoCr alloy for use in spinal devices. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- H Lee
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - J B Phillips
- UCL Centre for Nerve Engineering, UCL School of Pharmacy, University College London, London, UK
| | - R M Hall
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanne L Tipper
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK. .,School of Biomedical Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
14
|
Hallab NJ, Samelko L, Hammond D. The Inflammatory Effects of Breast Implant Particulate Shedding: Comparison With Orthopedic Implants. Aesthet Surg J 2019; 39:S36-S48. [PMID: 30715176 PMCID: PMC6355107 DOI: 10.1093/asj/sjy335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Currently, there is a dearth of information regarding the degree of particle shedding from breast implants (BIs) and what are the general biological consequences of BI debris. Thus, it is unclear to what degree BI debris compromises the long-term biological performance of BIs. For orthopedic implants, it is well established that the severity of biological reactivity to implant debris governs long-term clinical performance. Orthopedic implant particulate debris is generally in the range of 0.01 to 100 μm in diameter. Implant debris-induced bioreactivity/inflammation is mostly a peri-implant phenomenon caused by local innate immune cells (eg, macrophages) that produce proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and prostaglandin 2 (PGE2). In orthopedics, there have been few systemic concerns associated with polymeric implant debris (like silicone) other than documented dissemination to remote organs (eg, liver, spleen, etc.) with no known associated pathogenicity. This is not true of metal implant debris where normal (well-functioning) implants can induce systemic reactions such as delayed type hypersensitivity. Diagnostic analysis of orthopedic tissues has focused on innate (macrophage mediated) and adaptive (lymphocyte-mediated hypersensitivity) immune responses. Orthopedic implant debris-associated lymphocyte cancers have not been reported in over 40 years of orthopedic literature. Adaptive immune responses such as hypersensitivity reactions to orthopedic implant debris have been dominated by certain implant types that produce specific kinds of debris (eg, metal-on-metal total joint prostheses). Orthopedic hypersensitivity responses and atypical BI bioreactivity such as BI-associated anaplastic large cell lymphoma share crossover markers for diagnosis. Differentiating normal innate immune reactivity to particles from anaplastic large cell lymphoma reactions from delayed type hypersensitivity reactions to BI-associated implant debris remains unclear but vital to patients and surgeons.
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Lauryn Samelko
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | | |
Collapse
|
15
|
Torstrick FB, Klosterhoff BS, Westerlund LE, Foley KT, Gochuico J, Lee CSD, Gall K, Safranski DL. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. Spine J 2018; 18:857-865. [PMID: 29366985 DOI: 10.1016/j.spinee.2018.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/01/2017] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. PURPOSE The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. STUDY DESIGN/SETTING A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. METHODS Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. RESULTS Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation demonstrated that the porous structure maintained a high porosity (>65%) following impaction that would be available for bone ingrowth, and exhibited minimal changes to pore size and depth. SEM and energy dispersive X-ray spectroscopy analysis of titanium-coated devices demonstrated substantial titanium coating loss after impaction that was corroborated with a decrease in surface roughness. Smooth PEEK showed minimal signs of damage using SEM, but demonstrated a decrease in surface roughness. CONCLUSION Although recent surface modifications to interbody fusion devices are beneficial for osseointegration, they may be susceptible to damage and wear during impaction. The current study found porous PEEK devices to show minimal damage during simulated cervical impaction, whereas titanium-coated PEEK devices lost substantial titanium coverage.
Collapse
Affiliation(s)
- F Brennan Torstrick
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332
| | - Brett S Klosterhoff
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332
| | - L Erik Westerlund
- St. Francis Spine Center, St. Francis Hospital, 2300 Manchester Expressway, Columbus, GA 31904
| | - Kevin T Foley
- Neurologic & Spine Institute, Semmes-Murphey Clinic, 6325 Humphreys Blvd, Memphis, TN 38120; Department of Neurosurgery, University of Tennessee Health Science Center, 847 Monroe Ave Suite 427, Memphis, TN 38163
| | - Joanna Gochuico
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332; Vertera, Inc, 739 Trabert Ave NW Suite B, Atlanta, GA 30318
| | | | - Ken Gall
- Vertera, Inc, 739 Trabert Ave NW Suite B, Atlanta, GA 30318; Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708; MedShape, Inc., 1575 Northside Dr NW Suite 440, Atlanta, GA 30318
| | - David L Safranski
- Vertera, Inc, 739 Trabert Ave NW Suite B, Atlanta, GA 30318; MedShape, Inc., 1575 Northside Dr NW Suite 440, Atlanta, GA 30318.
| |
Collapse
|
16
|
Landgraeber S, Samelko L, McAllister K, Putz S, Jacobs JJ, Hallab NJ. CoCrMo alloy vs. UHMWPE Particulate Implant Debris Induces Sex Dependent Aseptic Osteolysis Responses In Vivo using a Murine Model. Open Orthop J 2018; 12:115-124. [PMID: 29785221 PMCID: PMC5897965 DOI: 10.2174/1874325001812010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background: The rate of revision for some designs of total hip replacements due to idiopathic aseptic loosening has been reported as higher for women. However, whether this is environmental or inherently sex-related is not clear. Objective: Can particle induced osteolysis be sex dependent? And if so, is this dependent on the type of implant debris (e.g. metal vs polymer)? The objective of this study was to test for material dependent inflammatory osteolysis that may be linked to sex using CoCrMo and implant grade conventional polyethylene (UHMWPE), using an in vivo murine calvaria model. Methods: Healthy 12 week old female and male C57BL/6J mice were treated with UHMWPE (1.0um ECD) or CoCrMo particles (0.9um ECD) or received sham surgery. Bone resorption was assessed by micro-computed tomography, histology and histomorphometry on day 12 post challenge. Results: Female mice that received CoCrMo particles showed significantly more inflammatory osteolysis and bone destruction compared to the females who received UHMWPE implant debris. Moreover, females challenged with CoCrMo particles exhibited 120% more inflammatory bone loss compared to males (p<0.01) challenged with CoCrMo implant debris (but this was not the case for UHMWPE particles). Conclusion: We demonstrated sex-specific differences in the amount of osteolysis resulting from CoCrMo particle challenge. This suggests osteo-immune responses to metal debris are preferentially higher in female compared to male mice, and supports the contention that there may be inherent sex related susceptibility to some types of implant debris.
Collapse
Affiliation(s)
- Stefan Landgraeber
- Department of Orthopaedics, University Hospital Essen, University of Duisburg-Essen, Hufelandstrabe 55, 45122 Essen, Germany
| | - Lauryn Samelko
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, U.S.A
| | - Kyron McAllister
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, U.S.A
| | - Sebastian Putz
- Department of Orthopaedics, University Hospital Essen, University of Duisburg-Essen, Hufelandstrabe 55, 45122 Essen, Germany
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, U.S.A
| | - Nadim James Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, U.S.A
| |
Collapse
|
17
|
Metals in Spine. World Neurosurg 2017; 100:619-627. [DOI: 10.1016/j.wneu.2016.12.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/06/2023]
|
18
|
The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review. Clin Orthop Relat Res 2016; 474:2394-2404. [PMID: 27432420 PMCID: PMC5052196 DOI: 10.1007/s11999-016-4976-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of < 1 µm. This systematic review aimed to identify the current evidence for the biologic response to PEEK-based wear debris from total joint arthroplasties. QUESTIONS/PURPOSES (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? METHODS Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. RESULTS In the four studies that quantified PEEK-based particles produced using hip, knee, and spinal joint replacement simulators, the mean particle size was 0.23 µm to 2.0 µm. The absolute range reported was approximately 0.01 µm to 50 µm. Rod-like carbon particulates and granular-shaped PEEK particles were identified in human tissue by histologic analysis. Ten studies, including six animal models (rat, mouse, and rabbit), three cell line experiments, and two human tissue retreival studies, investigated the biologic response to PEEK-based particles. Qualitative histologic assessments showed immunologic cell infiltration to be similar for PEEK particles when compared with UHMWPE particles in all six of the animal studies identified. However, increased inflammatory cytokine release (such as tumor necrosis factor-α) was identified in only one in vitro study, but without substantial suppression in macrophage viability. Only one study tested the effects of particle size on cytotoxicity and found the largest unfilled PEEK particles (approximately 13 µm) to have a toxic effect; UHMWPE particles in the same size range showed a similar cytotoxic effect. CONCLUSIONS Wear particles produced by PEEK-based bearings were, in almost all cases, in the phagocytozable size range (0.1-10 µm). The studies that evaluated the biologic response to PEEK-based particles generally found cytotoxicity to be within acceptable limits relative to the UHMWPE control, but inconsistent when inflammatory cytokine release was considered. CLINICAL RELEVANCE To translate new and advanced materials into clinical use more quickly, the clinical relevance and validity of preclinical tests need to be improved. To achieve this for PEEK-based devices, human tissue retrieval studies including subsequent particle isolation and characterization analyses are required. In vitro cell studies using isolated wear particles from tissue or validated joint replacement simulators, instead of manufactured particles, are also required.
Collapse
|
19
|
Seo JY, Ha KY, Kim YH, Ahn JH. Foreign Body Reaction after Implantation of a Device for Intervertebral Assisted Motion. J Korean Neurosurg Soc 2016; 59:647-649. [PMID: 27847581 PMCID: PMC5106367 DOI: 10.3340/jkns.2016.59.6.647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 11/27/2022] Open
Abstract
The device for intervertebral assisted motion (DIAM) is a dynamic implant that consists of a silicone bumper enveloped by a polyethylene terephthalate (PET) fiber sack. Silicone and PET were used because of their biological inertness, but repetitive motion of the spine can cause wear on the implant nonetheless. The purpose of this study is to report a case of foreign body reaction (FBR) against a DIAM. A 72-year-old female patient presented with lower back pain and both legs radiating pain. She had undergone DIAM implantation at L4-5 for spinal stenosis 5 years previously. The intervertebral disc space of L4-5, where the DIAM was inserted, had collapsed and degenerative scoliosis had developed due to left-side collapse. MRI showed L3-4 thecal sac compression and left L4-5 foraminal stenosis. The patient underwent removal of the DIAM and instrumented fusion from L3 to L5. During surgery, fluid and granulation tissue were evident around the DIAM. Histopathology showed scattered wear debris from the DIAM causing chronic inflammation due to the resulting FBR. A FBR due to wear debris of a DIAM can induce a hypersensitivity reaction and bone resorption around the implant, causing it to loosen.
Collapse
Affiliation(s)
- Jun-Yeong Seo
- Department of Orthopaedic Surgery, Jeju National University Hospital, School of Medicine, Jeju National University, Jeju, Korea
| | - Kee-Yong Ha
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hoon Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joo-Hyun Ahn
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
20
|
|
21
|
Morton JM, Rahn KA, Shugart RM, Wojdyla JM. Does mechanical filtration of intraoperative cell salvage effectively remove titanium debris generated during instrumented spinal surgery? An in vitro analysis. Spine J 2014; 14:3011-7. [PMID: 25011093 DOI: 10.1016/j.spinee.2014.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Instrumented fusion of the spine is a surgery commonly performed to stabilize vertebrae causing pain and to correct anatomic deformities. Such surgery can create substantial blood loss. Autotransfusion is a means to limit homologous blood transfusion in this setting. However, a dilemma is created when the high-speed drill used for bone removal comes in contact with implanted titanium spinal hardware. A clinician at this point is forced to decide between two options: to discontinue autotransfusion to avoid the potential transfusion of titanium fragments while risking blood loss and the need for homologous transfusion or to continue autotransfusion while risking transfusion of titanium fragments back into circulation. PURPOSE To conclusively identify whether titanium fragments created by a high-speed drill are able to pass through standard autotransfusion microaggregate blood filters. STUDY DESIGN A positive and negatively controlled experiment with blinded sample analysis. OUTCOMES MEASURES The presence or absence of titanium alloy on a filter with detection by energy-dispersive X-ray spectroscopy (EDX). METHODS A mock autotransfusion setup was devised for in vitro filtering. Six investigational and two control experiments were conducted. Titanium fragments generated by a high-speed drill were aspirated with saline and filtered with standard autotransfusion reservoirs and microaggregate blood filters. A final filter with a 1-μm pore size was placed distal to the blood filters. After filtration was complete, this final filter was analyzed using EDX. RESULTS The presence of titanium was confirmed by EDX on five of six investigational filters. The positive and negative control filters were analyzed by EDX and tested positive and negative, respectively, for titanium. CONCLUSIONS Standard 40 μm reservoir and blood microaggregate filters do not eliminate the smallest fragments of titanium generated by contact between a high-speed drill and a titanium hardware. The mass of titanium able to elude filtration is very small. The impact of transfusing blood contaminated with such a small mass of titanium is not known.
Collapse
Affiliation(s)
- John M Morton
- Lutheran Medical Group, 7910 W. Jefferson Ave., Suite 102, Fort Wayne, IN, 46804 USA.
| | - Kevin A Rahn
- Fort Wayne Orthopedics, 7601 W Jefferson Blvd, Fort Wayne, IN 46804 USA
| | - Robert M Shugart
- Fort Wayne Orthopedics, 7601 W Jefferson Blvd, Fort Wayne, IN 46804 USA
| | - Jacob M Wojdyla
- Rush University, College of Health Sciences, Department of Perfusion Technology. Armour Academic Center, 600 S. Paulina Street, Suite 1021, Chicago, IL 60612 USA
| |
Collapse
|
22
|
Bailey RA, Duncan JW, Tran AT, Abraham JL. Mega-granuloma After Using the Universal Clamp for Adolescent Idiopathic Scoliosis: What Is It and Can It Be Prevented? Spine Deform 2014; 2:392-398. [PMID: 27927338 DOI: 10.1016/j.jspd.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022]
Abstract
STUDY DESIGN Clinical case series. OBJECTIVE To characterize the postoperative course and histopathology of peri-implant tissue of adolescent idiopathic scoliosis patients who experienced postoperative development of an aseptic soft tissue reaction, with granulomas adjacent to the sublaminar polyethylene terephthalate strap-titanium clamp used in Zimmer's Universal Clamp (UC) spinal fixation system after spinal surgery. BACKGROUND SUMMARY The UC was designed for use with spinal deformity procedures in place of pedicle screws, hooks, or sublaminar wiring in fusion constructs. Recent studies of the UC lack emphasis on implant-related postoperative complications. METHODS A total of 26 consecutive patients who underwent spinal deformity correction for scoliosis were reviewed for implant-related postoperative complications. Histology, scanning electron microscopy with energy-dispersive X-ray spectroscopy, fractional culture/biopsy, and Gram stain examination of the peri-implant tissue of patients with complications was performed. RESULTS The authors reviewed 26 cases for correction of scoliosis. Two patients with adolescent idiopathic scoliosis who used the UC experienced implant-related complications with development of an aseptic soft tissue reaction with granulomas adjacent to the sublaminar polyethylene terephthalate straps-titanium clamp mechanism of the UC 8 months after AIS correction surgery. There were no signs or symptoms of wound infection. Gram stain revealed no organisms. There were many neutrophils and the surface of the wound revealed rare Staphylococcus aureus but the deep portions of the wounds were negative for organisms. Histopathology revealed extensive granulation tissue and histiocytes with engulfed birefringent particles or debris, and scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis revealed macrophages containing many particles identified as titanium. CONCLUSIONS adolescent idiopathic scoliosis patients who use the novel UC construct may develop postoperative foreign-body reaction.
Collapse
Affiliation(s)
| | - Jan William Duncan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 711 West College Street, Suite 625, Los Angeles, CA 90012, USA
| | - Alan T Tran
- Department of Plastic and Reconstructive Surgery, White Memorial Medical Center, 1720 East Cesar Chavez Avenue, Los Angeles, CA 90033, USA
| | - Jerrold L Abraham
- Department of Pathology, College of Medicine, State University of New York, Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|