1
|
Östman M, Försth P, Hedenqvist P, Engqvist H, Marcelino L, Ytrehus B, Hulsart-Billström G, Pujari-Palmer M, Öhman-Mägi C, Höglund O, Forterre F. Novel Calcium Phosphate Promotes Interbody Bony Fusion in a Porcine Anterior Cervical Discectomy and Fusion Model. Spine (Phila Pa 1976) 2024; 49:1179-1186. [PMID: 38213106 PMCID: PMC11319082 DOI: 10.1097/brs.0000000000004916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
STUDY DESIGN Experimental porcine anterior cervical discectomy and fusion (ACDF) model: a proof-of-concept study. OBJECTIVE The effect of monetite synthetic bone graft (SBG) containing calcium pyrophosphate and β-tricalcium phosphate on cervical spinal fusion in a noninstrumented two-level large animal model. SUMMARY OF BACKGROUND DATA ACDF is the gold standard surgical technique for the treatment of degenerative cervical spinal diseases. However, pseudarthrosis associated with increased patient morbidity occurs in ∼2.6% of the surgeries. SBG may enhance bony fusion and subsequently decrease the risk of pseudarthrosis. Recent studies on monetite-based SBGs for use in large cranial defects in humans have shown promising bone healing results, necessitating further investigation of their use in cervical spinal fusion. MATERIALS AND METHODS Four adult female Danish Göttingen minipigs received partial cervical anterior discectomy and intervertebral defects at an upper and lower level. One defect was filled with SBG, and the other was left empty. Bony fusion was evaluated using computed tomography (CT) at three-month intervals for 12 months. Fifteen months postsurgery, the animals were euthanized for further ex vivo qualitative histopathologic and micro-CT evaluations. Fusion rates were compared using the Fisher exact test at each time point. RESULTS Increased interbody bony fusion rates were observed at SBG levels (4/4) compared with control levels (0/4) evaluated by CT at 6 and 9 months postsurgery ( P =0.029). Fusion was observed at all SBG levels 12 months postsurgery and at only one control level. Histopathologic evaluation confirmed high-quality interbody bony fusion at all SBG levels and fusion by spondylosis at one control level. CONCLUSION This proof-of-concept study provides preliminary evidence of a novel, calcium pyrophosphate-containing, and β-tricalcium phosphate-containing monetite SBG that promotes bony fusion compared with a negative control in a clinically relevant porcine model of ACDF.
Collapse
Affiliation(s)
- Maria Östman
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Försth
- Department of Surgical Sciences, Division of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Patricia Hedenqvist
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Leticia Marcelino
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørnar Ytrehus
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Gry Hulsart-Billström
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Pujari-Palmer
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Division of Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Odd Höglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Franck Forterre
- Department of Clinical Veterinary Medicine, Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
3
|
Pfnür A, Tosin D, Petkov M, Sharon O, Mayer B, Wirtz CR, Knoll A, Pala A. Exploring complications following cranioplasty after decompressive hemicraniectomy: A retrospective bicenter assessment of autologous, PMMA and CAD implants. Neurosurg Rev 2024; 47:72. [PMID: 38285230 PMCID: PMC10824806 DOI: 10.1007/s10143-024-02309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Cranioplasty (CP) after decompressive hemicraniectomy (DHC) is a common neurosurgical procedure with a high complication rate. The best material for the repair of large cranial defects is unclear. The aim of this study was to evaluate different implant materials regarding surgery related complications after CP. Type of materials include the autologous bone flap (ABF), polymethylmethacrylate (PMMA), calcium phosphate reinforced with titanium mesh (CaP-Ti), polyetheretherketone (PEEK) and hydroxyapatite (HA). A retrospective, descriptive, observational bicenter study was performed, medical data of all patients who underwent CP after DHC between January 1st, 2016 and December 31st, 2022 were analyzed. Follow-up was until December 31st, 2023. 139 consecutive patients with a median age of 54 years who received either PMMA (56/139; 40.3%), PEEK (35/139; 25.2%), CaP-Ti (21/139; 15.1%), ABF (25/139; 18.0%) or HA (2/139; 1.4%) cranial implant after DHC were included in the study. Median time from DHC to CP was 117 days and median follow-up period was 43 months. Surgical site infection was the most frequent surgery-related complication (13.7%; 19/139). PEEK implants were mostly affected (28.6%; 10/35), followed by ABF (20%; 5/25), CaP-Ti implants (9.5%; 2/21) and PMMA implants (1.7%, 1/56). Explantation was necessary for 9 PEEK implants (25.7%; 9/35), 6 ABFs (24.0%; 6/25), 3 CaP-Ti implants (14.3%; 3/21) and 4 PMMA implants (7.1%; 4/56). Besides infection, a postoperative hematoma was the most common cause. Median surgical time was 106 min, neither longer surgical time nor use of anticoagulation were significantly related to higher infection rates (p = 0.547; p = 0.152 respectively). Ventriculoperitoneal shunt implantation prior to CP was noted in 33.8% (47/139) and not significantly associated with surgical related complications. Perioperative lumbar drainage, due to bulging brain, inserted in 38 patients (27.3%; 38/139) before surgery was protective when it comes to explantation of the implant (p = 0.035). Based on our results, CP is still related to a relatively high number of infections and further complications. Implant material seems to have a high effect on postoperative infections, since surgical time, anticoagulation therapy and hydrocephalus did not show a statistically significant effect on postoperative complications in this study. PEEK implants and ABFs seem to possess higher risk of postoperative infection. More biocompatible implants such as CaP-Ti might be beneficial. Further, prospective studies are necessary to answer this question.
Collapse
Affiliation(s)
- A Pfnür
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - D Tosin
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - M Petkov
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - O Sharon
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - B Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Schwabstraße 13, 89075, Ulm, Germany
| | - C R Wirtz
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| | - A Knoll
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - A Pala
- Department of Neurosurgery, University of Ulm, Lindenallee 2, 89312, Günzburg, Germany
| |
Collapse
|
4
|
Analysis of PMMA versus CaP titanium-enhanced implants for cranioplasty after decompressive craniectomy: a retrospective observational cohort study. Neurosurg Rev 2022; 45:3647-3655. [PMID: 36222944 DOI: 10.1007/s10143-022-01874-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 10/17/2022]
Abstract
Numerous materials of implants used for cranioplasty after decompressive craniectomy (DC) have been investigated to meet certain demanded key features, such as stability, applicability, and biocompatibility. We aimed to evaluate the feasibility and safety of biocompatible calcium-phosphate (CaP) implants for cranioplasty compared to polymethylmethacrylate (PMMA) implants. In this retrospective observational cohort study, the medical records of all patients who underwent cranioplasty between January 1st, 2015, and January 1st, 2022, were reviewed. Demographic, clinical, and diagnostic data were collected. Eighty-two consecutive patients with a mean age of 52 years (range 22-72 years) who received either a PMMA (43/82; 52.4%) or CaP (39/82; 47.6%) cranial implant after DC were included in the study. Indications for DC were equally distributed in both groups. Time from DC to cranioplasty was 143.8 ± 17.5 days (PMMA) versus 98.5 ± 10.4 days (CaP). The mean follow-up period was 34.9 ± 27.1 months. Postoperative complications occurred in 13 patients with PMMA and 6 in those with CaP implants (13/43 [30.2%] vs. 6/39 [15.4%]; p = 0.115). Revision surgery with implant removal was necessary for 9 PMMA patients and in 1 with a CaP implant (9/43 [20.9%] vs. 1/39 [2.6%]; p = 0.0336); 6 PMMA implants were removed due to surgical site infection (SSI) (PMMA 6/43 [14%] vs. CaP 0/39 [0%]; p = 0.012). In this study, a biocompatible CaP implant seems to be superior to a PMMA implant in terms of SSI and postoperative complications. The absence of SSI supports the idea of the biocompatible implant material with its ability for osseointegration.
Collapse
|
5
|
Masson-Meyers DS, Bertassoni LE, Tayebi L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect Tissue Res 2022; 63:514-529. [PMID: 35132918 PMCID: PMC9357199 DOI: 10.1080/03008207.2022.2035375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Collapse
Affiliation(s)
| | - Luiz E. Bertassoni
- School of Dentistry, Oregon Health and Science University. Portland, OR 97201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
6
|
Billström GH, Lopes VR, Illies C, Gallinetti S, Åberg J, Engqvist H, Aparicio C, Larsson S, Linder LKB, Birgersson U. Guiding bone formation using semi-onlay calcium phosphate implants in an ovine calvarial model. J Tissue Eng Regen Med 2022; 16:435-447. [PMID: 35195935 PMCID: PMC9303616 DOI: 10.1002/term.3288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 01/29/2022] [Indexed: 11/14/2022]
Abstract
The restoration of cranio‐maxillofacial deformities often requires complex reconstructive surgery in a challenging anatomical region, with abnormal soft tissue structures and bony deficits. In this proof‐of‐concept, the possibility of vertical bone augmentation was explored by suspending hemispherically shaped titanium‐reinforced porous calcium phosphate (CaP) implants (n = 12) over the frontal bone in a sheep model (n = 6). The animals were euthanized after week 13 and the specimens were subject to micro‐computed tomography (μCT) and comprehensive histological analysis. Histology showed that the space between implant and the recipient bone was filled with a higher percentage of newly formed bone (NFB) versus soft tissue with a median of 53% and 47%, respectively. Similar results were obtained from the μ‐CT analysis, with a median of 56% NFB and 44% soft tissue filling the void. Noteworthy, significantly higher bone‐implant contact was found for the CaP (78%, range 14%–94%) versus the Titanium (29%, range 0%–75%) portion of the implant exposed to the surrounding bone. The histological analysis indicates that the CaP replacement by bone is driven by macrophages over time, emphasized by material‐filled macrophages found in close vicinity to the CaP with only a small number of single osteoclasts found actively remodeling the NFB. This study shows that CaP based implants can be assembled with the help of additive manufacturing to guide vertical bone formation without decortification or administration of growth factors. Furthermore, it highlights the potential disadvantage of a seamless fit between the implant and the recipient's bone.
Collapse
Affiliation(s)
- Gry Hulsart Billström
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, Uppsala, Sweden
| | - Viviana R Lopes
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Christopher Illies
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gallinetti
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Jonas Åberg
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden.,OssDsign, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Conrado Aparicio
- Faculty of Odontology, International University of Catalonia, Barcelona, Spain
| | - Sune Larsson
- Department of Surgical Sciences, Orthopaedics, Uppsala University, Uppsala, Sweden
| | | | - Ulrik Birgersson
- Department of Clinical Neuroscience, Neurosurgical Section, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institute, Huddinge, Sweden.,OssDsign, Uppsala, Sweden
| |
Collapse
|
7
|
Depboylu FN, Korkusuz P, Yasa E, Korkusuz F. Smart Bioceramics for Orthopedic Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:157-186. [DOI: 10.1007/978-981-16-7439-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Malmberg P, Lopes VR, Billström GH, Gallinetti S, Illies C, Linder LKB, Birgersson U. Targeted ToF-SIMS Analysis of Macrophage Content from a Human Cranial Triphasic Calcium Phosphate Implant. ACS APPLIED BIO MATERIALS 2021; 4:6791-6798. [PMID: 35006979 DOI: 10.1021/acsabm.1c00513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophages play a key role in determining the fate of implanted biomaterials, especially for biomaterials such as calcium phosphates (CaPs) where these cells play a vital role in material resorption and osteogenesis, as shown in different models, including clinical samples. Although substantial consideration is given to the design and validation of different CaPs, relatively little is known about their material-cell interaction. Specifically, the intracellular content of different CaP phases remains to be assessed, even though CaP-filled macrophages have been observed in several studies. In this study, 2D/3D ToF-SIMS imaging and multivariate analysis were directly applied on the histology samples of an explant to reveal the content of macrophages. The cellular content of the macrophages was analyzed to distinguish three CaP phases, monetite, beta-tricalcium phosphate, and pyrophosphate, which are all part of the monetite-based CaP implant composition under study. ToF-SIMS combined with histology revealed that the content of the identified macrophages was most similar to that of the pyrophosphate phase. This study is the first to uncover distinct CaP phases in macrophages from a human multiphasic CaP explant by targeted direct cell content analysis. The uncovering of pyrophosphate as the main phase found inside the macrophages is of great importance to understand the impact of the selected material in the process of biomaterial-instructed osteogenesis.
Collapse
Affiliation(s)
- Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Viviana R Lopes
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Gry Hulsart Billström
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sara Gallinetti
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, 75121 Uppsala, Sweden
| | - Christopher Illies
- Department of Clinical Pathology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Lars Kihlström Burenstam Linder
- Department of Clinical Neuroscience, Neurosurgical Section, Karolinska University Hospital and Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ulrik Birgersson
- Department of Clinical Neuroscience, Neurosurgical Section, Karolinska University Hospital and Karolinska Institute, 171 76 Stockholm, Sweden.,Division of Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, 14152 Huddinge, Sweden
| |
Collapse
|
9
|
Lewin S, Kihlström Burenstam Linder L, Birgersson U, Gallinetti S, Åberg J, Engqvist H, Persson C, Öhman-Mägi C. Monetite-based composite cranial implants demonstrate long-term clinical volumetric balance by concomitant bone formation and degradation. Acta Biomater 2021; 128:502-513. [PMID: 33857696 DOI: 10.1016/j.actbio.2021.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The use of calcium phosphates (CaPs) as synthetic bone substitutes should ideally result in a volumetric balance with concomitant bone formation and degradation. Clinical data on such properties is nevertheless lacking, especially for monetite-based CaPs. However, a monetite-based composite implant has recently shown promising cranial reconstructions, with both CaP degradation and bone formation. In this study, the volumetric change at the implant site was quantified longitudinally by clinical computed tomography (CT). The retrospective CT datasets had been acquired postoperatively (n = 10), in 1-year (n = 9) and 3-year (n = 5) follow-ups. In the 1-year follow-up, the total volumetric change at the implant site was -8 ± 8%. A volumetric increase (bone formation) was found in the implant-bone interface, and a volumetric decrease was observed in the central region (CaP degradation). In the subjects with 2- or 3-year follow-ups, the rate of volumetric decrease slowed down or plateaued. The reported degradation rate is lower than previous clinical studies on monetite, likely due to the presence of pyrophosphate in the monetite-based CaP-formulation. A 31-months retrieval specimen analysis demonstrated that parts of the CaP had been remodeled into bone. The CaP phase composition remained stable, with 6% transformation into hydroxyapatite. In conclusion, this study demonstrates successful bone-bonding between the CaP-material and the recipient bone, as well as a long-term volumetric balance in cranial defects repaired with the monetite-based composite implant, which motivates further clinical use. The developed methods could be used in future studies for correlating spatiotemporal information regarding bone regeneration and CaP degradation to e.g. patient demographics. STATEMENT OF SIGNIFICANCE: In bone defect reconstructions, the use of calcium phosphate (CaP) bioceramics ideally results in a volumetric balance between bone formation and CaP degradation. Clinical data on the volumetric balance is nevertheless lacking, especially for monetite-based CaPs. Here, this concept is investigated for a composite cranial implant. The implant volumes were quantified from clinical CT-data: postoperatively, one year and three years postoperatively. In total, -8 ± 8% (n = 9) volumetric change was observed after one year. But the change plateaued, with only 2% additional decrease at the 3-year follow-up (n = 5), indicating a lower CaP degradation rate. Osseointegration was seen at the bone-implant interface, with a 9 ± 7% volumetric change after one year. This study presented the first quantitative spatiotemporal CT analysis of monetite-based CaPs.
Collapse
Affiliation(s)
- Susanne Lewin
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| | - Lars Kihlström Burenstam Linder
- Department of Neurosurgery, Clinical Neurosciences, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Birgersson
- Department of Neurosurgery, Clinical Neurosciences, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institutet, Huddinge, Sweden; OssDsign, Uppsala, Sweden
| | - Sara Gallinetti
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden; OssDsign, Uppsala, Sweden
| | - Jonas Åberg
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden; OssDsign, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Cecilia Persson
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Sundblom J, Xheka F, Casar-Borota O, Ryttlefors M. Bone formation in custom-made cranioplasty: evidence of early and sustained bone development in bioceramic calcium phosphate implants. Patient series. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 1:CASE20133. [PMID: 35855216 PMCID: PMC9245784 DOI: 10.3171/case20133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Implant failure (IF) rates in cranioplasty remain high despite efforts to reduce the incidence. New biomaterials may be part of the solution for this problem. Formation of autologous bone in implants may reduce rates of infection and subsequent failure. OBSERVATIONS Four patients with calcium phosphate implants supported by titanium mesh and undergoing surgery for reasons unrelated to IF were included in this series. Samples from the implants were microscopically examined. Pathological studies proved the formation of autologous bone in the calcium phosphate implants. LESSONS Bone and blood vessel formation in the implants and diminished foreign body reaction to autologous bone may reduce the rates of IF.
Collapse
Affiliation(s)
| | - Fabjola Xheka
- Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden; and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olivera Casar-Borota
- Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden; and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
11
|
Mellgren T, Trbakovic A, Thor A, Ekman S, Ley C, Öhman-Mägi C, Johansson PH, Jensen-Waern M, Hedenqvist P. Guided bone tissue regeneration using a hollow calcium phosphate based implant in a critical size rabbit radius defect. Biomed Mater 2021; 16. [PMID: 33477115 DOI: 10.1088/1748-605x/abde6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/21/2021] [Indexed: 11/11/2022]
Abstract
Long bone fractures are common and sometimes difficult to treat. Autologous bone (AB), bovine bone and calcium phosphates are used to stimulate bone growth with varying results. In the present study, a calcium phosphate cement (CPC) that previously showed promising grafting capabilities was evaluated for the first time in a long bone defect. A radius defect of 20 mm was created in twenty rabbits. The defect was filled by either a hollow CPC implant that had been previously manufactured as a replica of a rabbit radius through indirect 3D printing, or by particulate AB as control. Defect filling and bone formation was evaluated after 12 weeks by combining micro computed tomography (μCT) and scoring of 3D images, together with histomorphometry and histology. The μCT and histomorphometric evaluations showed a similar amount of filling of the defect (combining graft and bone) between the CPC and AB group, but the scoring of 3D images showed that the filling in the CPC group was significantly larger. Histologically the AB graft could not be distinguished from the new bone. The AB treated defects were found to be composed of more bone than the CPC group, including reorganised cancellous and cortical bone. Both the CPC and AB material was associated with new bone formation, also in the middle of the defect, which could result in closing of the otherwise critically sized gap. This study shows the potential for an indirectly 3D printed implant in guided bone regeneration in critically sized long bone defects.
Collapse
Affiliation(s)
- Torbjörn Mellgren
- Department of Engineering Sciences, Uppsala University, PO Box 534, Uppsala, 75121, SWEDEN
| | - Amela Trbakovic
- Surgical Sciences, Plastic & Oral Maxillofacial Surgery, Uppsala University, Käkkirurgiska kliniken, Akademiska sjukhuset ingång 79, Uppsala, 751 85, SWEDEN
| | - Andreas Thor
- Surgical Sciences, Plastic & Oral Maxillofacial Surgery, Uppsala University, Käkkirurgiska kliniken, Akademiska sjukhuset ingång 79, Uppsala, 751 85, SWEDEN
| | - Stina Ekman
- Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7028, Uppsala, 750 07, SWEDEN
| | - Cecilia Ley
- Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7028, Uppsala, 750 07, SWEDEN
| | | | - Petra Hammarström Johansson
- Prosthodontics, Institution for odontology, Sahlgrenska Academy at University of Gothenburg , Medicinaregaran 12, 413 90 Göteborg, Sweden, Gothenburg, 413 90, SWEDEN
| | - Marianne Jensen-Waern
- Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, Uppsala, 750 07, SWEDEN
| | - Patricia Hedenqvist
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, SWEDEN
| |
Collapse
|
12
|
Gallinetti S, Burenstam Linder LK, Åberg J, Illies C, Engqvist H, Birgersson U. Titanium reinforced calcium phosphate improves bone formation and osteointegration in ovine calvaria defects: a comparative 52-weeks study. Biomed Mater 2020; 16. [PMID: 33181501 DOI: 10.1088/1748-605x/abca12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/12/2020] [Indexed: 11/12/2022]
Abstract
In a 52-week ovine calvaria implantation model, the restoration of cranial defects with a bare titanium mesh (Ti-mesh) and a titanium mesh embedded in a calcium phosphate (CaP-Ti) were evaluated in seven animals. During the study, no major clinical abnormalities were observed, and all sheep presented a normal neurologic assessment. Blood and CSF analysis, made at termination, did not show any abnormalities. No indentation of the soft tissue was observed for either test article; however, the Ti-mesh burr-hole covers were associated with filling of the calvarial defect by fibrous tissue mainly. Some bone formation was observed at the bottom of the created defect, but no significant bone was formed in the proximity of the implant. The defect sites implanted with CaP-Ti were characterized by a moderate degradation of the calcium phosphate that was replaced by mature bone tissue. Calcium-phosphate-filled macrophages were observed in all animals, indicating that they might play a vital role in osteogenesis. The newly formed bone was present, especially at the bony edges of the defect and on the dura side. Integration of the titanium mesh in a calcium phosphate improved bone formation and osteointegration in comparison to a bare titanium mesh.
Collapse
Affiliation(s)
| | - Lars Kihlstrom Burenstam Linder
- Neurosurgery, Clinical Neuroscience Research Centre, Karolinska University Hospital, Eugeniav 3 Solna, Dartford, DA1 2EN, SWEDEN
| | - Jonas Åberg
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, SWEDEN
| | - Christopher Illies
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala Universitet, Uppsala, SWEDEN
| | - Ulrik Birgersson
- Clintec, Karolinska institutet Department of Clinical Sciences Intervention and Technology, Huddinge, SWEDEN
| |
Collapse
|
13
|
Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:313-329. [PMID: 32940150 DOI: 10.1089/ten.teb.2020.0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.
Collapse
Affiliation(s)
- Eun-Jin Lee
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| | - Mahim Jain
- Kennedy Krieger Institute, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella Alimperti
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| |
Collapse
|
14
|
In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A 2020; 117:26660-26671. [PMID: 33046631 PMCID: PMC7604495 DOI: 10.1073/pnas.2007635117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Large cranial reconstructions are increasingly performed worldwide and still represent a substantial clinical challenge. The gold standard, autologous bone, has limited availability and high donor-site morbidity. Current alloplastic materials are associated with high complication and failure rates. This study shows the capacity of a customized, purely synthetic, 3D-manufactured bioceramic implant to regenerate and restore large cranial defects with mature, well-vascularized bone, with a morphology, ultrastructure, and composition similar to those of native skull bone. This approach triggers the regenerative potential of host tissue by tailoring the implant composition and design. The regeneration of large defects using purely synthetic material without adjunct cell therapy or growth factors represents a major advancement for rehabilitating patients in need of large cranial reconstructions. The repair of large cranial defects with bone is a major clinical challenge that necessitates novel materials and engineering solutions. Three-dimensionally (3D) printed bioceramic (BioCer) implants consisting of additively manufactured titanium frames enveloped with CaP BioCer or titanium control implants with similar designs were implanted in the ovine skull and at s.c. sites and retrieved after 12 and 3 mo, respectively. Samples were collected for morphological, ultrastructural, and compositional analyses using histology, electron microscopy, and Raman spectroscopy. Here, we show that BioCer implants provide osteoinductive and microarchitectural cues that promote in situ bone regeneration at locations distant from existing host bone, whereas bone regeneration with inert titanium implants was confined to ingrowth from the defect boundaries. The BioCer implant promoted bone regeneration at nonosseous sites, and bone bonding to the implant was demonstrated at the ultrastructural level. BioCer transformed to carbonated apatite in vivo, and the regenerated bone displayed a molecular composition indistinguishable from that of native bone. Proof-of-principle that this approach may represent a shift from mere reconstruction to in situ regeneration was provided by a retrieved human specimen, showing that the BioCer was transformed into well-vascularized osteonal bone, with a morphology, ultrastructure, and composition similar to those of native human skull bone.
Collapse
|
15
|
Lewin S, Fleps I, Neuhaus D, Öhman-Mägi C, Ferguson SJ, Persson C, Helgason B. Implicit and explicit finite element models predict the mechanical response of calcium phosphate-titanium cranial implants. J Mech Behav Biomed Mater 2020; 112:104085. [PMID: 33080431 DOI: 10.1016/j.jmbbm.2020.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
The structural integrity of cranial implants is of great clinical importance, as they aim to provide cerebral protection after neurosurgery or trauma. With the increased use of patient-specific implants, the mechanical response of each implant cannot be characterized experimentally in a practical way. However, computational models provide an excellent possibility for efficiently predicting the mechanical response of patient-specific implants. This study developed finite element models (FEMs) of titanium-reinforced calcium phosphate (CaP-Ti) implants. The models were validated with previously obtained experimental data for two different CaP-Ti implant designs (D1 and D2), in which generically shaped implant specimens were loaded in compression at either quasi-static (1 mm/min) or impact (5 kg, 1.52 m/s) loading rates. The FEMs showed agreement with experimental data in the force-displacement response for both implant designs. The implicit FEMs predicted the peak load with an underestimation for D1 (9%) and an overestimation for D2 (11%). Furthermore, the shape of the force-displacement curves were well predicted. In the explicit FEMs, the first part of the force-displacement response showed 5% difference for D1 and 2% difference for D2, with respect to the experimentally derived peak loads. The explicit FEMs efficiently predicted the maximum displacements with 1% and 4% difference for D1 and D2, respectively. Compared to the CaP-Ti implant, an average parietal cranial bone FEM showed a stiffer response, greater energy absorption and less deformation under the same impact conditions. The framework developed for modelling the CaP-Ti implants has a potential for modelling CaP materials in other composite implants in future studies since it only used literature based input and matched boundary conditions. Furthermore, the developed FEMs make an important contribution to future evaluations of patient-specific CaP-Ti cranial implant designs in various loading scenarios.
Collapse
Affiliation(s)
- Susanne Lewin
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.
| | - Ingmar Fleps
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | | - Cecilia Persson
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
16
|
Establishment and Characteristic Analysis of a Dog Model for Autologous Homologous Cranioplasty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5324719. [PMID: 32596324 PMCID: PMC7273410 DOI: 10.1155/2020/5324719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Objective The aim of this study is to establish a large animal (dog) model that can be referred clinically for autologous homologous cranioplasty. Methods Our large skull defect dog model was established by emulating the decompressive craniectomy with 22 adult beagle dogs. The autologous bones were taken out from the dogs and divided into two groups, the freeze-drying (FD) group and the single freezing (SF) group. They were then stored in the bone bank at -20°C after being irradiated with 25 KGy. Three months later, the bones were reimplanted. After operation, we closely watch the experimental objects for four more months examining the infection and survival of the bone graft. Results Through macroscopic observation, it was found that, among 44 cranial flaps (bilateral) from the rest of the 22 dogs, grade A cranial flaps accounted for 86.4% (19/22) in the SF group and only 31.8% (7/22) in the FD group. Although osteogenic osteoclast, Harvard tube, neovascularization, and angiogenic factors were found through the pathological results, including an electron microscope and calmodulin tracer, it could be verified by using X-CT and micro-CT that early bone resorption could be still found even in grade A bone flap. Conclusion By using the common clinical method to preserve the cranial flaps, we established an experimental dog model of autologous cranioplasty for a large area of cranial defect. It was proved that this model could reproduce the infections and bone resorption which typically happened in clinical autologous homologous cranioplasty. As a conclusion, the established model can be used as an effective experimental tool for further research to improve the success rate of autologous homologous cranioplasty.
Collapse
|
17
|
Bloom O, Goddard N, Yannoulias B, Eccles S. The successful use of a bespoke OssDsign cranial plate to reconstruct an occipital defect following excision of a recurrent epithelioid sarcoma. JPRAS Open 2020; 24:71-76. [PMID: 32426442 PMCID: PMC7225370 DOI: 10.1016/j.jpra.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
A cranioplasty has a number of known associated complications including infection for non-biological implants and bone flap resorption where autologous grafts are used. In recent years, bioactive ceramic cranial implants have been developed as a new reconstructive option. The OssDsign cranial plate (OssDsign AB, Uppsala, Sweden) was first introduced in 2010 and consists of an interconnected mosaic of hydroxyapatite tiles mounted onto a 3D-printed titanium mesh. Each tile is composed of a monetite, beta-calcium pyrophosphate, beta-tricalcium phosphate and brushite compound designed to mimic the process of coupled bone formation once implanted. This case presents a patient's journey from diagnosis of an epithelioid sarcoma over the posterior scalp and its management in the following 7 years. Initial excision of the lesion was reconstructed with a tissue expander and local rotational flap. Recurrence of the disease 3 years later was treated with a course of radical radiotherapy. Persistent osteomyelitis over the next 3 years resulted in chronic ulceration and exposed bone in the treated area. As the first part of a 3-stage treatment plan, two separate tissue expanders became infected. The multidisciplinary team therefore chose to use a bespoke OssDsign cranial plate combined with a deep inferior epigastric perforator (DIEP) free flap to provide a definitive single operative solution. The advantages over other reconstruction options include that the plate can be removed should further excision be required, greater potential for long-term integration with surrounding tissues and the ability to be soaked in antibiotic to reduce the risk of infection.
Collapse
Affiliation(s)
- Oliver Bloom
- Correspondence to: 34 Lilac Court, Cambridge, CB1 7AY, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Mahato A, Sandy Z, Bysakh S, Hupa L, Das I, Bhattacharjee P, Kundu B, De G, Nandi SK, Vallittu P, Balla VK, Bhattacharya M. Development of nano-porous hydroxyapatite coated e-glass for potential bone-tissue engineering application: An in vitro approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110764. [PMID: 32279774 DOI: 10.1016/j.msec.2020.110764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023]
Abstract
To reconstruct the defects caused by craniectomies autologous, bone grafting was usually used, but they failed most commonly due to bone resorption, infections and donor-site morbidity. In the present investigation, an effort has been made for the first time to check the feasibility and advantage of using hydroxyapatite (HAp) coated e-glass as component of bone implants. Sol-gel synthesized coatings were found to be purely hydroxyapatite from XRD with graded and interconnected pores all over the surface observable in TEM. The interconnected porous nature of ceramics are found to increase bioactivity by acting to up-regulate the process of osseointegration through enhanced nutrient transfer and induction of angiogenesis. From TEM studies and nano indentation studies, we have shown that pores were considered to be appropriate for nutrient supply without compromising the strength of sample while in contact with physiological fluid. After SBF immersion test, porous surface was found to be useful for nucleation of apatite crystals, hence increasing the feasibility and bioactivity of sample. However, our quasi-dynamic study showed less crystallization but had significant formation of apatite layer. Overall, the in vitro analyses show that HAp coated e-glass leads to significant improvement of implant properties in terms of biocompatibility, cell viability and proliferation, osteoinductivity and osteoconductivity. HAp coating of e-glass can potentially be utilized in fabricating durable and strong bioactive non-metallic implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Arnab Mahato
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Zhang Sandy
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Leena Hupa
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Indranee Das
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | | - Biswanath Kundu
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India.
| | - Goutam De
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences (WBUAFS), Kolkata, India
| | - Pekka Vallittu
- Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Vamsi K Balla
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | |
Collapse
|
19
|
Lewin S, Åberg J, Neuhaus D, Engqvist H, Ferguson SJ, Öhman-Mägi C, Helgason B, Persson C. Mechanical behaviour of composite calcium phosphate-titanium cranial implants: Effects of loading rate and design. J Mech Behav Biomed Mater 2020; 104:103701. [PMID: 32174441 DOI: 10.1016/j.jmbbm.2020.103701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 11/28/2022]
Abstract
Cranial implants are used to repair bone defects following neurosurgery or trauma. At present, there is a lack of data on their mechanical response, particularly in impact loading. The aim of the present study was to assess the mechanical response of a recently developed composite calcium phosphate-titanium (CaP-Ti) implant at quasi-static and impact loading rates. Two different designs were tested, referred to as Design 1 (D1) and Design 2 (D2). The titanium structures in the implant specimens were additively manufactured by a powder-bed fusion process and subsequently embedded in a self-setting CaP material. D1 was conceptually representative of the clinically used implants. In D2, the titanium structure was simplified in terms of geometry in order to facilitate the manufacturing. The mechanical response of the implants was evaluated in quasi-static compression, and in impact using a drop-tower. Similar peak loads were obtained for the two designs, at the two loading rates: 808 ± 29 N and 852 ± 34 for D1, and 840 ± 40 N and 814 ± 13 for D2. A strain rate dependency was demonstrated for both designs, with a higher stiffness in the impact test. Furthermore, the titanium in the implant fractured in the quasi-static test (to failure) but not in the impact test (to 5.75 J) for D1. For D2, the displacement at peak load was significantly lower in the impact test than in the quasi-static test. The main difference between the designs was seen in the quasi-static test results where the deformation zones, i.e. notches in the titanium structure between the CaP tiles, in D1 likely resulted in a localization of the deformation, compared to in D2 (which did not have deformation zones). In the impact test, the only significant difference between the designs was a higher maximum displacement of D2 than of D1. In comparison with other reported mechanical tests on osteoconductive ceramic-based cranial implants, the CaP-Ti implant demonstrates the highest reported strength in quasi-static compression. In conclusion, the titanium structure seems to make the CaP-Ti implant capable of cerebral protection in impact situations like the one tested in this study.
Collapse
Affiliation(s)
- Susanne Lewin
- Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| | - Jonas Åberg
- Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Håkan Engqvist
- Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Caroline Öhman-Mägi
- Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Cecilia Persson
- Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Bone Morphogenetic Protein-9-Stimulated Adipocyte-Derived Mesenchymal Progenitors Entrapped in a Thermoresponsive Nanocomposite Scaffold Facilitate Cranial Defect Repair. J Craniofac Surg 2020; 30:1915-1919. [PMID: 30896511 DOI: 10.1097/scs.0000000000005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Due to availability and ease of harvest, adipose tissue is a favorable source of progenitor cells in regenerative medicine, but has yet to be optimized for osteogenic differentiation. The purpose of this study was to test cranial bone healing in a surgical defect model utilizing bone morphogenetic protein-9 (BMP-9) transduced immortalized murine adipocyte (iMAD) progenitor cells in a citrate-based, phase-changing, poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN)-gelatin scaffold. Mesenchymal progenitor iMAD cells were transduced with adenovirus expressing either BMP-9 or green fluorescent protein control. Twelve mice underwent craniectomy to achieve a critical-sized cranial defect. The iMAD cells were mixed with the PPCN-gelatin scaffold and injected into the defects. MicroCT imaging was performed in 2-week intervals for 12 weeks to track defect healing. Histologic analysis was performed on skull sections harvested after the final imaging at 12 weeks to assess quality and maturity of newly formed bone. Both the BMP-9 group and control group had similar initial defect sizes (P = 0.21). At each time point, the BMP-9 group demonstrated smaller defect size, higher percentage defect healed, and larger percentage defect change over time. At the end of the 12-week period, the BMP-9 group demonstrated mean defect closure of 27.39%, while the control group showed only a 9.89% defect closure (P < 0.05). The BMP-9-transduced iMADs combined with a PPCN-gelatin scaffold promote in vivo osteogenesis and exhibited significantly greater osteogenesis compared to control. Adipose-derived iMADs are a promising source of mesenchymal stem cells for further studies in regenerative medicine, specifically bone engineering with the aim of potential craniofacial applications.
Collapse
|
21
|
Sundblom J, Nowinski D, Casar-Borota O, Ryttlefors M. Removal of giant intraosseous meningioma followed by cranioplasty using a custom-made bioceramic implant: case report. J Neurosurg 2019; 131:735-739. [PMID: 30215553 DOI: 10.3171/2018.4.jns1850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
Intraosseous meningioma of the chordoid type is a rare clinical entity. Radical surgical removal and subsequent cranioplasty is the treatment of choice. Here, the authors report a severe case involving more than 70% of the calvarial surface area, which was removed and repaired using a prefabricated custom-made, titanium-reinforced, bioceramic implant and bone-cutting guides. Tumor removal and good esthetic outcome were achieved, along with a 17.1% increase of intracranial volume. Bioceramic implants have shown promising initial results and may represent an important new tool in the surgeon's armamentarium.
Collapse
Affiliation(s)
- Jimmy Sundblom
- 1Department of Neuroscience, Neurosurgery, Uppsala University Hospital
| | - Daniel Nowinski
- 2Department of Surgical Sciences, Plastic Surgery, Uppsala University Hospital
| | - Olivera Casar-Borota
- 3Department of Immunology, Genetics and Pathology, Uppsala University; and
- 4Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Ryttlefors
- 1Department of Neuroscience, Neurosurgery, Uppsala University Hospital
| |
Collapse
|
22
|
Geven MA, Grijpma DW. Additive manufacturing of composite structures for the restoration of bone tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab201f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Luo J, Engqvist H, Persson C. A ready-to-use acidic, brushite-forming calcium phosphate cement. Acta Biomater 2018; 81:304-314. [PMID: 30291976 DOI: 10.1016/j.actbio.2018.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Premixed calcium phosphate cements have been developed to simplify the usage of traditional calcium phosphate cements and reduce the influence of the setting reaction on the delivery process. However, difficulties in achieving a good cohesion, adequate shelf life and sufficient mechanical properties have so far impeded their use in clinical applications, especially for the more degradable acidic calcium phosphate cements. In this study, a brushite cement was developed from a series of ready-to-use calcium phosphate pastes. The brushite cement paste was formed via mixing of a monocalcium phosphate monohydrate (MCPM) paste and a β-tricalcium phosphate (β-TCP) paste with good injectability and adequate shelf life. The MCPM paste was based on a water-immiscible liquid with two surfactants and the β-TCP paste on a sodium hyaluronate aqueous solution. The effect of citric acid as a retardant was assessed. Formulations with suitable amounts of citric acid showed good cohesion and mechanical performance with potential for future clinical applications. STATEMENT OF SIGNIFICANCE: Acidic calcium phosphate cements have attracted extensive attention as bone substitute materials due to their ability to resorb faster than basic calcium phosphate cements in vivo. However, traditionally, short working times and low mechanical strength have limited their clinical application. Premixed cements could simplify the clinical use as well as improve property reproducibility, but short shelf lives, low cohesion and low mechanical properties have restricted the development. In this study, an injectable ready-to-use two-phase system consisting of an MCPM paste and a β-TCP paste was developed based on acidic cement. It shows good cohesion, compressive strength and adequate shelf life, which has the potential to be used in a dual chamber system for simplified and fast filling of bone defects in a minimally invasive manner. This will reduce surgery time, decrease the risk of contamination and ensure repeatable results.
Collapse
|
24
|
Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, Kang BJ, Kim K. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules 2018; 19:4239-4249. [DOI: 10.1021/acs.biomac.8b01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sungjun Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mani Gajendiran
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Minhyuk Yoon
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Mintai P. Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|
25
|
Trbakovic A, Hedenqvist P, Mellgren T, Ley C, Hilborn J, Ossipov D, Ekman S, Johansson CB, Jensen-Waern M, Thor A. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model. J Dent 2018; 70:31-39. [PMID: 29258851 DOI: 10.1016/j.jdent.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. MATERIAL AND METHODS Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. RESULTS Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CONCLUSION CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. CLINICAL SIGNIFICANCE The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area.
Collapse
Affiliation(s)
- Amela Trbakovic
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, 751 85 Uppsala, Sweden.
| | - Patricia Hedenqvist
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| | - Torbjörn Mellgren
- Polymer Chemistry, Department of Chemistry, Ångströms Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Cecilia Ley
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, PO Box 7028, 750 07 Uppsala, Sweden.
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry, Ångströms Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Dmitri Ossipov
- Polymer Chemistry, Department of Chemistry, Ångströms Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden
| | - Stina Ekman
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, PO Box 7028, 750 07 Uppsala, Sweden.
| | - Carina B Johansson
- University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Department of Prosthodontics, Dental Materials Science, P.O. Box 450, 405 30 Gothenburg, Sweden.
| | - Marianne Jensen-Waern
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, PO Box 7054, 750 07 Uppsala, Sweden.
| | - Andreas Thor
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
26
|
Ajaxon I, Holmberg A, Öhman-Mägi C, Persson C. Fatigue performance of a high-strength, degradable calcium phosphate bone cement. J Mech Behav Biomed Mater 2018; 79:46-52. [DOI: 10.1016/j.jmbbm.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
|
27
|
Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique. J Mech Behav Biomed Mater 2017; 74:428-437. [DOI: 10.1016/j.jmbbm.2017.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022]
|
28
|
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1255. [PMID: 28458969 PMCID: PMC5404440 DOI: 10.1097/gox.0000000000001255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). METHODS Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92-94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. RESULTS BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. CONCLUSIONS BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site.
Collapse
|
29
|
Ajaxon I, Öhman Mägi C, Persson C. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:41. [PMID: 28144853 PMCID: PMC5285421 DOI: 10.1007/s10856-017-5851-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Calcium phosphate cements (CPCs) are synthetic bone grafting materials that can be used in fracture stabilization and to fill bone voids after, e.g., bone tumour excision. Currently there are several calcium phosphate-based formulations available, but their use is partly limited by a lack of knowledge of their mechanical properties, in particular their resistance to mechanical loading over longer periods of time. Furthermore, depending on, e.g., setting conditions, the end product of acidic CPCs may be mainly brushite or monetite, which have been found to behave differently under quasi-static loading. The objectives of this study were to evaluate the compressive fatigue properties of acidic CPCs, as well as the effect of phase composition on these properties. Hence, brushite cements stored for different lengths of time and with different amounts of monetite were investigated under quasi-static and dynamic compression. Both storage and brushite-to-monetite phase transformation was found to have a pronounced effect both on quasi-static compressive strength and fatigue performance of the cements, whereby a substantial phase transformation gave rise to a lower mechanical resistance. The brushite cements investigated in this study had the potential to survive 5 million cycles at a maximum compressive stress of 13 MPa. Given the limited amount of published data on fatigue properties of CPCs, this study provides an important insight into the compressive fatigue behaviour of such materials.
Collapse
Affiliation(s)
- Ingrid Ajaxon
- Materials in Medicine, Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, The Ångström Laboratory, Box 534, SE-751 21, Uppsala, Sweden
| | - Caroline Öhman Mägi
- Materials in Medicine, Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, The Ångström Laboratory, Box 534, SE-751 21, Uppsala, Sweden
| | - Cecilia Persson
- Materials in Medicine, Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, The Ångström Laboratory, Box 534, SE-751 21, Uppsala, Sweden.
| |
Collapse
|
30
|
Pujari-Palmer M, Pujari-Palmer S, Lu X, Lind T, Melhus H, Engstrand T, Karlsson-Ott M, Engqvist H. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts. PLoS One 2016; 11:e0163530. [PMID: 27701417 PMCID: PMC5049792 DOI: 10.1371/journal.pone.0163530] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression.
Collapse
Affiliation(s)
- Michael Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Shiuli Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Xi Lu
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Stockholm Craniofacial Centre, Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Materials Chemistry, Polymer section, Uppsala University, Uppsala, Sweden
| | - Marjam Karlsson-Ott
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Hakan Engqvist
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Carprofen neither reduces postoperative facial expression scores in rabbits treated with buprenorphine nor alters long term bone formation after maxillary sinus grafting. Res Vet Sci 2016; 107:123-131. [PMID: 27473985 DOI: 10.1016/j.rvsc.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 05/10/2016] [Accepted: 05/22/2016] [Indexed: 11/24/2022]
Abstract
In connection with bilateral maxillary sinus augmentation, the acute effects of the nonsteroidal anti-inflammatory drug carprofen on facial expressions and long-term effects on bone formation were evaluated in 18 male New Zealand White rabbits. A 10×10mm bone window was drilled in the maxilla, the sinus membrane elevated and a titanium mini-implant inserted. One of two test materials was randomly inserted unilaterally and bovine bone chips (control) on the contralateral side in the created space. Rabbits were randomly allocated to receive buprenorphine plus carprofen (n=9) or buprenorphine plus saline (n=9) postoperatively. Buprenorphine was administered subcutaneously every 6h for 3days in a tapered dose (0.05-0.01mg/kg) and carprofen (5mg/kg) or saline administered subcutaneously 1h before, and daily for 4days postoperatively. To assess pain, clinical examination, body weight recording and scoring of facial expressions from photos taken before, and 6-13h after surgery were performed. Twelve weeks after surgery the rabbits were euthanized and sections of maxillary bones and sinuses were analysed with histomorphometry and by qualitative histology. Carprofen had no effect on mean facial expression scores, which increased from 0.0 to 3.6 (carprofen) and 4.3 (saline), of a maximum of 8.0. Neither did carprofen have an effect on bone formation or implant incorporation, whereas the test materials had. In conclusion, treatment with 5mg/kg carprofen once daily for 5days did not reduce facial expression scores after maxillary sinus augmentation in buprenorphine treated rabbits and did not affect long term bone formation.
Collapse
|
32
|
Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016; 3:56-71. [PMID: 27239485 PMCID: PMC4880030 DOI: 10.1016/j.gendis.2015.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials.
Collapse
Affiliation(s)
- Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| | - Zach J. Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Bonda DJ, Manjila S, Selman WR, Dean D. The Recent Revolution in the Design and Manufacture of Cranial Implants: Modern Advancements and Future Directions. Neurosurgery 2015; 77:814-24; discussion 824. [PMID: 26171578 PMCID: PMC4615389 DOI: 10.1227/neu.0000000000000899] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Large format (i.e., >25 cm) cranioplasty is a challenging procedure not only from a cosmesis standpoint, but also in terms of ensuring that the patient's brain will be well-protected from direct trauma. Until recently, when a patient's own cranial flap was unavailable, these goals were unattainable. Recent advances in implant computer-aided design and 3-dimensional (3-D) printing are leveraging other advances in regenerative medicine. It is now possible to 3-D-print patient-specific implants from a variety of polymer, ceramic, or metal components. A skull template may be used to design the external shape of an implant that will become well integrated in the skull, while also providing beneficial distribution of mechanical force in the event of trauma. Furthermore, an internal pore geometry can be utilized to facilitate the seeding of banked allograft cells. Implants may be cultured in a bioreactor along with recombinant growth factors to produce implants coated with bone progenitor cells and extracellular matrix that appear to the body as a graft, albeit a tissue-engineered graft. The growth factors would be left behind in the bioreactor and the graft would resorb as new host bone invades the space and is remodeled into strong bone. As we describe in this review, such advancements will lead to optimal replacement of cranial defects that are both patient-specific and regenerative.
Collapse
Affiliation(s)
- David J. Bonda
- Department of Neurological Surgery, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Sunil Manjila
- Department of Neurological Surgery, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Warren R. Selman
- Department of Neurological Surgery, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, 460 West 12th Ave., 10th Floor, Rm. 1004, Columbus, OH 43210
| |
Collapse
|
34
|
Bioceramic Implant Induces Bone Healing of Cranial Defects. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e491. [PMID: 26495204 PMCID: PMC4560224 DOI: 10.1097/gox.0000000000000467] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/01/2015] [Indexed: 11/27/2022]
Abstract
Autologous bone or inert alloplastic materials used in cranial reconstructions are techniques that are associated with resorption, infection, and implant exposure. As an alternative, a calcium phosphate–based implant was developed and previously shown to potentially stimulate bone growth. We here uncover evidence of induced bone formation in 2 patients. Histological examination 9 months postoperatively showed multinuclear cells in the central defect zone and bone ingrowth in the bone-implant border zone. An increased expression of bone-associated markers was detected. The other patient was investigated 50 months postoperatively. Histological examination revealed ceramic materials covered by vascularized compact bone. The bone regenerative effect induced by the implant may potentially improve long-term clinical outcome compared with conventional techniques, which needs to be verified in a clinical study.
Collapse
|
35
|
Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes. Acta Neurochir (Wien) 2015; 157:681-7. [PMID: 25663141 DOI: 10.1007/s00701-015-2363-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/22/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND In children, approximately half of cryopreserved allograft bone flaps fail due to infection and resorption. Synthetic materials offer a solution for allograft bone flap resorption. Fibre-reinforced composite with a bioactive glass particulate filling is a new synthetic material for bone reconstruction. Bioactive glass is capable of chemically bonding with bone and is osteoinductive, osteoconductive and bacteriostatic. Fibre-reinforced composite allows for fabricating thin (0.8 mm) margins for implant, which are designed as onlays on the existing bone. Bioactive glass is dissolved over time, whereas the fibre-reinforced composite serves as a biostable part of the implant, and these have been tested in preclinical and adult clinical trials. In this study, we tested the safety and other required properties of this composite material in large skull bone reconstruction with children. METHOD Eight cranioplasties were performed on seven patients, aged 2.5-16 years and having large (>16 cm(2)) skull bone defects. The implant used in this study was a patient-specific, glass-fibre-reinforced composite, which contained a bioactive glass particulate compound, S53P4. RESULTS During follow-up (average 35.1 months), one minor complication was observed and three patients needed revision surgery. Two surgical site infections were observed. After treatment of complications, a good functional and cosmetic outcome was observed in all patients. The implants had an onlay design and fitted the defect well. In clinical and imaging examinations, the implants were in the original position with no signs of implant migration, degradation or mechanical breakage. CONCLUSIONS Here, we found that early cranioplasty outcomes with the fibre-reinforced composite implant were promising. However, a longer follow-up time and a larger group of patients are needed to draw firmer conclusions regarding the long-term benefits of the proposed novel biomaterial and implant design. The glass-fibre-reinforced composite implant incorporated by particles of bioactive glass may offer an original, non-metallic and bioactive alternative for reconstruction of large skull bone defects in a paediatric population.
Collapse
|
36
|
Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, Paik KJ, Longaker MT, Wan DC. Biomaterials for craniofacial bone engineering. J Dent Res 2014; 93:1187-95. [PMID: 25139365 DOI: 10.1177/0022034514547271] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell-based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development.
Collapse
Affiliation(s)
- R Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - A McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - D Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - G G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - K Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - E R Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - K J Paik
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - M T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - D C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|