1
|
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100071. [PMID: 36619175 PMCID: PMC9816916 DOI: 10.1016/j.crneur.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits - each requiring fine, tailored modulation - that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
Collapse
Affiliation(s)
- Yuri B. Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sima Mofakham
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Charles B. Mikell
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Petar M. Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Wu CY, Ker MD. From Bioelectronics to Nanobioelectronics: The Biomedical Electronics Translational Research Center [Highlights]. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Holanda VM, Okun MS, Middlebrooks EH, Gungor A, Barry ME, Forder J, Foote KD. Postmortem Dissections of Common Targets for Lesion and Deep Brain Stimulation Surgeries. Neurosurgery 2020; 86:860-872. [PMID: 31504849 DOI: 10.1093/neuros/nyz318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The subthalamic nucleus (STN), globus pallidus internus (GPi), and pedunculopontine nucleus (PPN) are effective targets for deep brain stimulation (DBS) in many pathological conditions. Previous literature has focused on appropriate stimulation targets and their relationships with functional neuroanatomic pathways; however, comprehensive anatomic dissections illustrating these nuclei and their connections are lacking. This information will provide insight into the anatomic basis of stimulation-induced DBS benefits and side effects. OBJECTIVE To combine advanced cadaveric dissection techniques and ultrahigh field magnetic resonance imaging (MRI) to explore the anatomy of the STN, GPi, and PPN with their associated fiber pathways. METHODS A total of 10 cadaveric human brains and 2 hemispheres of a cadaveric head were examined using fiber dissection techniques. The anatomic dissections were compared with 11.1 Tesla (T) structural MRI and 4.7 T MRI fiber tractography. RESULTS The extensive connections of the STN (caudate nucleus, putamen, medial frontal cortex, substantia innominata, substantia nigra, PPN, globus pallidus externus (GPe), GPi, olfactory tubercle, hypothalamus, and mammillary body) were demonstrated. The connections of GPi to the thalamus, substantia nigra, STN, amygdala, putamen, PPN, and GPe were also illustrated. The PPN was shown to connect to the STN and GPi anteriorly, to the cerebellum inferiorly, and to the substantia nigra anteriorly and superiorly. CONCLUSION This study demonstrates connections using combined anatomic microdissections, ultrahigh field MRI, and MRI tractography. The anatomic findings are analyzed in relation to various stimulation-induced clinical effects. Precise knowledge of neuroanatomy, anatomic relationships, and fiber connections of the STN, GPi, PPN will likely enable more effective targeting and improved DBS outcomes.
Collapse
Affiliation(s)
- Vanessa M Holanda
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida.,Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP - A Beneficência Portuguesa de São Paulo, São Paulo SP, Brazil.,Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, Florida
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Abuzer Gungor
- Department of Neurosurgery, Acιbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Margaret E Barry
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - John Forder
- Department of Radiology, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
4
|
Wei H, Zhang C, Wang T, He N, Li D, Zhang Y, Liu C, Yan F, Sun B. Precise targeting of the globus pallidus internus with quantitative susceptibility mapping for deep brain stimulation surgery. J Neurosurg 2020; 133:1605-1611. [PMID: 31604332 DOI: 10.3171/2019.7.jns191254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The goal of this study was to demonstrate the use of quantitative susceptibility mapping (QSM)-based images to precisely localize the globus pallidus internus (GPi) for deep brain stimulation (DBS) planning and to enhance postsurgical visualization of the DBS lead positions. METHODS Presurgical T1-weighted (T1w), T2-weighted (T2w), and QSM images as well as postsurgical CT images were obtained in 29 patients with Parkinson's disease. To enhance the contrast within the GP, a hybrid contrast was created by linearly combining T1w and QSM images. Contrast-to-noise ratios (CNRs) of the GPi on T1w, T2w, QSM, and hybrid images were compared. The CNR differences were tested using the 1-way ANOVA method. The visualization of the DBS lead position was demonstrated by merging the postsurgical CT with presurgical MR images. RESULTS The hybrid images yield the best CNRs for GPi depiction and the visualization of the postsurgical DBS lead position was significantly improved. CONCLUSIONS QSM-based images allow for confident localization of borders of the GPi that is superior to T1w and T2w images. High-contrast hybrid images can be used for precisely directed DBS targeting, e.g., GPi DBS for the treatment of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Hongjiang Wei
- 1Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Chencheng Zhang
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Tao Wang
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Naying He
- 3Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University
| | - Dianyou Li
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yuyao Zhang
- 4School of Information and Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chunlei Liu
- 5Department of Electrical Engineering and Computer Sciences, University of California, Berkeley; and
- 6Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Fuhua Yan
- 3Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University
| | - Bomin Sun
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
5
|
Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus 2019; 45:E14. [PMID: 30064315 DOI: 10.3171/2018.5.focus18168] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.
Collapse
Affiliation(s)
| | | | - Dario J Englot
- 2Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
6
|
de Schlichting E, Coll G, Zaldivar-Jolissaint JF, Coste J, Marques AR, Mulliez A, Durif F, Lemaire JJ. Pulse generator battery life in deep brain stimulation: out with the old… in with the less durable? Acta Neurochir (Wien) 2019; 161:2043-2046. [PMID: 31444678 DOI: 10.1007/s00701-019-04043-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Battery life of the most commonly used implantable pulse generators in deep brain stimulation is limited. Device replacement is costly and may expose patients to additional risks. Driven by the observation that in our experience newer generation devices seemed to need earlier replacement than the older generation, we aimed to retrospectively analyze the battery life of two generations of non-rechargeable devices, manufactured by a single company (Medtronic, USA). METHODS Battery life of 281 devices in 165 patients was taken into account for data analysis. This represented 243 older generation devices (Kinetra and Soletra) and 38 newer generation devices (Activa). RESULTS The battery life of older generation stimulators was 2-fold longer than the newer generation. CONCLUSIONS Newer devices are more versatile than the older generation. Their battery life is however significantly shorter. Development of next-generation devices needs to address this issue in order to limit health risks and reduce financial costs.
Collapse
|
7
|
Tustin K, Elze MC, Lumsden DE, Gimeno H, Kaminska M, Lin JP. Gross motor function outcomes following deep brain stimulation for childhood-onset dystonia: A descriptive report. Eur J Paediatr Neurol 2019; 23:473-483. [PMID: 30846371 DOI: 10.1016/j.ejpn.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
AIM To examine the impact of deep brain stimulation (DBS) on gross motor function in children with dystonic movement disorders. METHOD Prospective audit involving children implanted 2007-2015, followed for up to two years. Outcomes were evaluated across aetiological sub-groups (inherited, acquired, idiopathic) using the GMFM-88 and BFMDRS movement scale (BFM-M). The predictive value of proportion of life lived with dystonia (PLD) and baseline motor capacity were evaluated. RESULTS Data was available for 60 children (median surgery age 10y11mo). Inherited monogenetic dystonias demonstrated a median increase in GMFM-88 scores of 6.9% (p = 0.021) and 14.5% (p = 0.116) at one and two years. Heredodegenerative and idiopathic dystonias showed disparate responses, with non-significant changes seen in GMFM-88 and BFM-M scores, with the exception of improved one-year BFM-M scores in the idiopathic group [median change 5.5, p = 0.021]. Median GMFM-88 and BFM-M change scores were near zero for acquired dystonias, though improvement was noted in 9/18 CP cases with one-year GMFM-88 data. No significant relationship was found between PLD, or baseline GMFM-88, and GMFM-88 change following DBS. CONCLUSION Gross motor response to DBS is similar in profile to literature reporting results using impairment-based dystonia rating scales. Relatively consistent improvements were seen in inherited monogenetic ("primary") dystonias, while highly variable, often disappointing, gross motor responses were found in acquired, heredodegenerative, and idiopathic dystonias. In view of such response variability, alternatives to mean group studies, such as single case experimental designs with multiple replications, are needed to determine the efficacy of DBS in childhood-onset dystonias. Ongoing research is needed to identify factors that predict treatment response.
Collapse
Affiliation(s)
- Kylee Tustin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom.
| | | | - Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Hortensia Gimeno
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom; King's College London, Institute of Psychiatry, Psychology and Neurosciences, Psychology Department, London, SE5 8AF, United Kingdom
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| |
Collapse
|
8
|
Pleger B. Invasive and Non-invasive Stimulation of the Obese Human Brain. Front Neurosci 2018; 12:884. [PMID: 30555295 PMCID: PMC6281888 DOI: 10.3389/fnins.2018.00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 01/18/2023] Open
Abstract
Accumulating evidence suggests that non-invasive and invasive brain stimulation may reduce food craving and calorie consumption rendering these techniques potential treatment options for obesity. Non-invasive transcranial direct current stimulation (tDCS) or repetitive transcranial magnet stimulation (rTMS) are used to modulate activity in superficially located executive control regions, such as the dorsolateral prefrontal cortex (DLPFC). Modulation of the DLPFC’s activity may alter executive functioning and food reward processing in interconnected dopamine-rich regions such as the striatum or orbitofrontal cortex. Modulation of reward processing can also be achieved by invasive deep brain stimulation (DBS) targeting the nucleus accumbens. Another target for DBS is the lateral hypothalamic area potentially leading to improved energy expenditure. To date, available evidence is, however, restricted to few exceptional cases of morbid obesity. The vagal nerve plays a crucial role in signaling the homeostatic demand to the brain. Invasive or non-invasive vagal nerve stimulation (VNS) is thus assumed to reduce appetite, rendering VNS another possible treatment option for obesity. Based on currently available evidence, the U.S. Food and Drug Administration recently approved VNS for the treatment of obesity. This review summarizes scientific evidence regarding these techniques’ efficacy in modulating food craving and calorie intake. It is time for large controlled clinical trials that are necessary to translate currently available research discoveries into patient care.
Collapse
Affiliation(s)
- Burkhard Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Centre, Leipzig, Germany.,BMBF nutriCARD, Center of Veterinary Public Health, University of Leipzig, Leipzig, Germany.,Collaborative Research Centre 1052 "Obesity Mechanisms", University Hospital Leipzig, Leipzig, Germany.,Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Oterdoom DLM, van Dijk G, Verhagen MHP, Jiawan VCR, Drost G, Emous M, van Beek AP, van Dijk JMC. Therapeutic potential of deep brain stimulation of the nucleus accumbens in morbid obesity. Neurosurg Focus 2018; 45:E10. [DOI: 10.3171/2018.4.focus18148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVEMorbid obesity is a growing problem worldwide. The current treatment options have limitations regarding effectiveness and complication rates. New treatment modalities are therefore warranted. One of the options is deep brain stimulation (DBS) of the nucleus accumbens (NAC). This review aims to summarize the current knowledge on NAC-DBS for the treatment of morbid obesity.METHODSStudies were obtained from multiple electronic bibliographic databases, supplemented with searches of reference lists. All animal and human studies reporting on the effects of NAC-DBS on body weight in morbidly obese patients were included. Articles found during the search were screened by 2 reviewers, and when deemed applicable, the relevant data were extracted.RESULTSFive relevant animal experimental papers were identified, pointing toward a beneficial effect of high-frequency stimulation of the lateral shell of the NAC. Three human case reports show a beneficial effect of NAC-DBS on body weight in morbidly obese patients.CONCLUSIONSThe available literature supports NAC-DBS to treat morbid obesity. The number of well-conducted animal studies, however, is very limited. Also, the optimal anatomical position of the DBS electrode within the NAC, as well as the optimal stimulation parameters, has not yet been established. These matters need to be addressed before this strategy can be considered for human clinical trials.
Collapse
Affiliation(s)
| | - Gertjan van Dijk
- 2Department of Behavioral Neurosciences, University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), Cluster Neurobiology, Groningen
| | - Martijn H. P. Verhagen
- Departments of 1Neurosurgery,
- 3Department of Neurosurgery, Noordwest Ziekenhuisgroep, Alkmaar; and
| | | | | | - Marloes Emous
- 6Department of Bariatric and Metabolic Surgery, Medical Center Leeuwarden, The Netherlands
| | - André P. van Beek
- 7Endocrinology, University of Groningen, University Medical Center Groningen
| | | |
Collapse
|
10
|
Cognitive and neuromodulation strategies for unhealthy eating and obesity: Systematic review and discussion of neurocognitive mechanisms. Neurosci Biobehav Rev 2018; 87:161-191. [DOI: 10.1016/j.neubiorev.2018.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
|
11
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
12
|
Lozano AM, Hutchison WD, Kalia SK. What Have We Learned About Movement Disorders from Functional Neurosurgery? Annu Rev Neurosci 2017; 40:453-477. [DOI: 10.1146/annurev-neuro-070815-013906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - William D. Hutchison
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
13
|
Robertson JLB, Cox BT, Jaros J, Treeby BE. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1726. [PMID: 28372121 DOI: 10.1121/1.4976339] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.
Collapse
Affiliation(s)
- James L B Robertson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ben T Cox
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
14
|
High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction. Brain Res 2017; 1661:67-78. [PMID: 28213155 DOI: 10.1016/j.brainres.2017.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 01/30/2023]
Abstract
Deep brain stimulation (DBS) is effective for treating neurological disorders in clinic. However, the therapeutic mechanisms of high-frequency stimulation (HFS) of DBS have not yet been elucidated. Previous studies have suggested that HFS-induced changes in axon conduction could have important contributions to the DBS effects and desiderate further studies. To investigate the effects of prolonged HFS of afferent axons on the firing of downstream neurons, HFS trains of 100 and 200Hz were applied on the Schaffer collaterals of the hippocampal CA1 region in anaesthetized rats. Single unit activity of putative pyramidal cells and interneurons in the downstream region was analyzed during the late periods of prolonged HFS when the axonal conduction was blocked. The results show that the firing rates of both pyramidal cells and interneurons increased rather than decreased during the period of axon block. However, the firing rates were far smaller than the stimulation frequency of HFS. In addition, the firing pattern of pyramidal cells changed from typical bursts during baseline recordings into regular single spikes during HFS periods. Furthermore, the HFS produced asynchronous firing in the downstream neurons in contrast to the synchronous firing induced by single pulses. Presumably, the HFS-induced block of axonal conduction was not complete. During the period of partial block, individual axons could recover intermittently and independently, and drive the downstream neurons to fire in an asynchronous pattern. This axonal mechanism of HFS provides a novel explanation for how DBS could replace an original pattern of neuronal activity by a HFS-modulated asynchronous firing in the target region thereby generating the therapeutic effects of DBS.
Collapse
|
15
|
Sahyouni R, Chang DT, Moshtaghi O, Mahmoodi A, Djalilian HR, Lin HW. Functional and Histological Effects of Chronic Neural Electrode Implantation. Laryngoscope Investig Otolaryngol 2017; 2:80-93. [PMID: 28894826 PMCID: PMC5527370 DOI: 10.1002/lio2.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Objectives Permanent injury to the cranial nerves can often result in a substantial reduction in quality of life. Novel and innovative interventions can help restore form and function in nerve paralysis, with bioelectric interfaces among the more promising of these approaches. The foreign body response is an important consideration for any bioelectric device as it influences the function and effectiveness of the implant. The purpose of this review is to describe tissue and functional effects of chronic neural implantation among the different categories of neural implants and highlight advances in peripheral and cranial nerve stimulation. Data Sources: PubMed, IEEE, and Web of Science literature search. Review Methods: A review of the current literature was conducted to examine functional and histologic effects of bioelectric interfaces for neural implants. Results Bioelectric devices can be characterized as intraneural, epineural, perineural, intranuclear, or cortical depending on their placement relative to nerves and neuronal cell bodies. Such devices include nerve‐specific stimulators, neuroprosthetics, brainstem implants, and deep brain stimulators. Regardless of electrode location and interface type, acute and chronic histological, macroscopic and functional changes can occur as a result of both passive and active tissue responses to the bioelectric implant. Conclusion A variety of chronically implantable electrodes have been developed to treat disorders of the peripheral and cranial nerves, to varying degrees of efficacy. Consideration and mitigation of detrimental effects at the neural interface with further optimization of functional nerve stimulation will facilitate the development of these technologies and translation to the clinic. Level of Evidence 3.
Collapse
Affiliation(s)
- Ronald Sahyouni
- Department of Biomedical Engineering, University of California Irvine U.S.A
| | - David T Chang
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A.,Division of Otolaryngology-Head &Neck Surgery, Irvine, California, Children's Hospital of Orange County Orange California U.S.A
| | - Omid Moshtaghi
- School of Medicine, University of California Irvine U.S.A
| | - Amin Mahmoodi
- Department of Biomedical Engineering, University of California Irvine U.S.A
| | - Hamid R Djalilian
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A
| | - Harrison W Lin
- Department of Otolaryngology-Head & Neck Surgery, University of California Irvine U.S.A
| |
Collapse
|
16
|
Sharim J, Yazdi D, Baohan A, Behnke E, Pouratian N. Modeling Laterality of the Globus Pallidus Internus in Patients With Parkinson's Disease. Neuromodulation 2016; 20:238-242. [PMID: 27465487 DOI: 10.1111/ner.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/26/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Neurosurgical interventions such as deep brain stimulation surgery of the globus pallidus internus (GPi) play an important role in the treatment of medically refractory Parkinson's disease (PD), and require high targeting accuracy. Variability in the laterality of the GPi across patients with PD has not been well characterized. The aim of this report is to identify factors that may contribute to differences in position of the motor region of GPi. MATERIALS AND METHODS The charts and operative reports of 101 PD patients following deep brain stimulation surgery (70 males, aged 11-78 years) representing 201 GPi were retrospectively reviewed. Data extracted for each subject include age, gender, anterior and posterior commissures (AC-PC) distance, and third ventricular width. Multiple linear regression, stepwise regression, and relative importance of regressors analysis were performed to assess the predictive ability of these variables on GPi laterality. RESULTS Multiple linear regression for target vs. third ventricular width, gender, AC-PC distance, and age were significant for normalized linear regression coefficients of 0.333 (p < 0.0001), 0.206 (p = 0.00219), 0.168 (p = 0.0119), and 0.159 (p = 0.0136), respectively. Third ventricular width, gender, AC-PC distance, and age each account for 44.06% (21.38-65.69%, 95% CI), 20.82% (10.51-35.88%), 21.46% (8.28-37.05%), and 13.66% (2.62-28.64%) of the R2 value, respectively. Effect size calculation was significant for a change in the GPi laterality of 0.19 mm per mm of ventricular width, 0.11 mm per mm of AC-PC distance, 0.017 mm per year in age, and 0.54 mm increase for male gender. CONCLUSION This variability highlights the limitations of indirect targeting alone, and argues for the continued use of MRI as well as intraoperative physiological testing to account for such factors that contribute to patient-specific variability in GPi localization.
Collapse
Affiliation(s)
- Justin Sharim
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel Yazdi
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Amy Baohan
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eric Behnke
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Bioengineering, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Hana A, Hana A, Dooms G, Boecher-Schwarz H, Hertel F. Depiction of dentatorubrothalamic tract fibers in patients with Parkinson's disease and multiple sclerosis in deep brain stimulation. BMC Res Notes 2016; 9:345. [PMID: 27431652 PMCID: PMC4950228 DOI: 10.1186/s13104-016-2162-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We wanted to depict fibers of the dentatorubrothalamic tract in patients with Parkinson's disease and multiple sclerosis in order to use this knowledge for clinical routine and to show its relation to the corticospinal tract for deep brain stimulation. Fibers of these white matter tracts were depicted between February 2014 and February 2015 in nine patients of all ages. There were seven men and two women. The mean age was 60 years. We used a 3DT1 sequence for the navigation. Additional scanning time was less than 9 min. Both tracts were portrayed in all patients. RESULTS We were able to successfully portray these white matter tracts in all patients. We visualized the medial and lateral parts of the corticospinal tract by using a region of interest which covered the whole motor cortex. Furthermore we segmented the motor cortex. The fibers ran from this area of the brain through the internal capsule and they could be followed until their entry in the brainstem. The dentatorubrothalamic tract was smaller than the corticospinal tract. It was situated medio-posteriorly of the corticospinal tract. After decussation to the contralateral red nucleus it was localised next to the midline when it entered the motor cortex. From the thalamus on, it proceeds medially and posteriorly of the corticospinal tract further to the motor cortex. Depiction of the whole tract is essential for the differentiation of the dentatorubrothalamic tract with the corticospinal tract. CONCLUSIONS The depiction of the dentatorubrothalamic tract might be useful for neurosurgeons when deep brain stimulation is planned. Knowing its relation to other white matter tracts can help physicians like neurosurgeons or neurologists avoid side effects and deal with patients with DBS. The position of the electrode might be crucial for a satisfactory outcome.
Collapse
Affiliation(s)
- Ardian Hana
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| | - Anisa Hana
- />Internal Medicine Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Georges Dooms
- />Service of Neuroradiology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Hans Boecher-Schwarz
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| | - Frank Hertel
- />National Service of Neurosurgery, Centre Hospitalier de Luxembourg, Rue Barblé 25, 1210 Luxembourg, Luxembourg
| |
Collapse
|
18
|
Sahyouni R, Bhatt J, Djalilian HR, Tang WC, Middlebrooks JC, Lin HW. Selective stimulation of facial muscles with a penetrating electrode array in the feline model. Laryngoscope 2016; 127:460-465. [PMID: 27312936 DOI: 10.1002/lary.26078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/13/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVES/HYPOTHESIS Permanent facial nerve injury is a difficult challenge for both patients and physicians given its potential for debilitating functional, cosmetic, and psychological sequelae. Although current surgical interventions have provided considerable advancements in facial nerve rehabilitation, they often fail to fully address all impairments. We aim to introduce an alternative approach to facial nerve rehabilitation. STUDY DESIGN Acute experiments in animals with normal facial function. METHODS The study included three anesthetized cats. Four facial muscles (levator auris longus, orbicularis oculi, nasalis, and orbicularis oris) were monitored with a standard electromyographic (EMG) facial nerve monitoring system with needle electrodes. The main trunk of the facial nerve was exposed, and a 16-channel penetrating electrode array was placed into the nerve. Electrical current pulses were delivered to each stimulating electrode individually. Elicited EMG voltage outputs were recorded for each muscle. RESULTS Stimulation through individual channels selectively activated restricted nerve populations, resulting in selective contraction of individual muscles. Increasing stimulation current levels resulted in increasing EMG voltage responses. Typically, selective activation of two or more distinct muscles was successfully achieved via a single placement of the multi-channel electrode array by selection of appropriate stimulation channels. CONCLUSION We have established in the animal model the ability of a penetrating electrode array to selectively stimulate restricted fiber populations within the facial nerve and to selectively elicit contractions in specific muscles and regions of the face. These results show promise for the development of a facial nerve implant system. LEVEL OF EVIDENCE N/A.Laryngoscope, 2016 127:460-465, 2017.
Collapse
Affiliation(s)
- Ronald Sahyouni
- Medical Scientist Training Program, University of California, Irvine, Irvine, California, U.S.A
| | - Jay Bhatt
- Department of Otolaryngology-Head & Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Hamid R Djalilian
- Department of Otolaryngology-Head & Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - William C Tang
- School of Medicine, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, U.S.A
| | - John C Middlebrooks
- Department of Otolaryngology-Head & Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| | - Harrison W Lin
- Department of Otolaryngology-Head & Neck Surgery, University of California, Irvine, Irvine, California, U.S.A
| |
Collapse
|
19
|
Dupré DA, Tomycz N, Oh MY, Whiting D. Deep brain stimulation for obesity: past, present, and future targets. Neurosurg Focus 2016; 38:E7. [PMID: 26030707 DOI: 10.3171/2015.3.focus1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.
Collapse
Affiliation(s)
- Derrick A Dupré
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Nestor Tomycz
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael Y Oh
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Donald Whiting
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Yu Y, Feng Z, Cao J, Guo Z, Wang Z, Hu N, Wei X. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region. J Integr Neurosci 2016; 15:1-17. [DOI: 10.1142/s0219635216500011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Youngerman BE, Chan AK, Mikell CB, McKhann GM, Sheth SA. A decade of emerging indications: deep brain stimulation in the United States. J Neurosurg 2016; 125:461-71. [PMID: 26722851 DOI: 10.3171/2015.7.jns142599] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an emerging treatment option for an expanding set of neurological and psychiatric diseases. Despite growing enthusiasm, the patterns and implications of this rapid adoption are largely unknown. National trends in DBS surgery performed for all indications between 2002 and 2011 are reported. METHODS Using a national database of hospital discharges, admissions for DBS for 14 indications were identified and categorized as either FDA approved, humanitarian device exempt (HDE), or emerging. Trends over time were examined, differences were analyzed by univariate analyses, and outcomes were analyzed by hierarchical regression analyses. RESULTS Between 2002 and 2011, there were an estimated 30,490 discharges following DBS for approved indications, 1647 for HDE indications, and 2014 for emerging indications. The volume for HDE and emerging indications grew at 36.1% annually in comparison with 7.0% for approved indications. DBS for emerging indications occurred at hospitals with more neurosurgeons and neurologists locally, but not necessarily at those with the highest DBS caseloads. Patients treated for HDE and emerging indications were younger with lower comorbidity scores. HDE and emerging indications were associated with greater rates of reported complications, longer lengths of stay, and greater total costs. CONCLUSIONS DBS for HDE and emerging indications underwent rapid growth in the last decade, and it is not exclusively the most experienced DBS practitioners leading the charge to treat the newest indications. Surgeons may be selecting younger and healthier patients for their early experiences. Differences in reported complication rates warrant further attention and additional costs should be anticipated as surgeons gain experience with new patient populations and targets.
Collapse
Affiliation(s)
- Brett E Youngerman
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Andrew K Chan
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Charles B Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Sameer A Sheth
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
22
|
Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 2016; 158:171-80; discussion 180. [PMID: 26611690 DOI: 10.1007/s00701-015-2646-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dystonia has been treated well using deep brain stimulation at the globus pallidus internus (GPi DBS). Dystonia can be categorized as two basic types of movement, phasic-type and tonic-type. Cervical dystonia is the most common type of focal dystonia, and sequential differences in clinical outcomes between phasic-type and tonic-type cervical dystonia have not been reported. METHODS This study included a retrospective cohort of 30 patients with primary cervical dystonia who underwent GPi DBS. Age, disease duration, dystonia direction, movement types, employment status, relevant life events, and neuropsychological examinations were analyzed with respect to clinical outcomes following GPi DBS. RESULTS The only significant factor affecting clinical outcomes was movement type (phasic or tonic). Sequential changes in clinical outcomes showed significant differences between phasic- and tonic-type cervical dystonia. A delayed benefit was found in both phasic- and tonic-type dystonia. CONCLUSIONS The clinical outcome of phasic-type cervical dystonia is more favorable than that of tonic-type cervical dystonia following GPi DBS.
Collapse
|
23
|
Chassain C, Melon C, Salin P, Vitale F, Couraud S, Durif F, Kerkerian-Le Goff L, Gubellini P. Metabolic, synaptic and behavioral impact of 5-week chronic deep brain stimulation in hemiparkinsonian rats. J Neurochem 2015; 136:1004-16. [PMID: 26576509 DOI: 10.1111/jnc.13438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023]
Abstract
The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.
Collapse
Affiliation(s)
- Carine Chassain
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Christophe Melon
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Pascal Salin
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Flora Vitale
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Sébastien Couraud
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Franck Durif
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Lydia Kerkerian-Le Goff
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Paolo Gubellini
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
24
|
Abstract
Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of "biofield" interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or "subtle" processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine.
Collapse
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Arts and Sciences, National Institute of Biostructures and Biosystems, Bologna, Italy; and Consciousness and Healing Initiative, San Diego, California (Dr Muehsam)
| | - Gaétan Chevalier
- Developmental and Cell Biology Department, University of California Irvine, Irvine (Dr Chevalier)
| | - Tiffany Barsotti
- California Institute for Human Science, Encinitas, California (Ms Barsotti)
| | - Blake T Gurfein
- Osher Center for Integrative Medicine, University of California, San Francisco, (Dr Gurfein)
| |
Collapse
|
25
|
Hana A, Hana A, Dooms G, Boecher-Schwarz H, Hertel F. Visualization of the medial forebrain bundle using diffusion tensor imaging. Front Neuroanat 2015; 9:139. [PMID: 26581828 PMCID: PMC4628102 DOI: 10.3389/fnana.2015.00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were six women and nine men. The mean age was 58.6 years (39–77). Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson‘s disease and one had multiple sclerosis. The remaining six patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding, and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 × 200 mm2, slice thickness 2 mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm2. The maximal angle was 50°. Additional scanning time was < 9 min. We were able to visualize the MFB in 12 of our patients bilaterally and in the remaining three patients we depicted the MFB on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the MFB is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Surgery in this part of the brain should always take the preservation of this white matter tract into account.
Collapse
Affiliation(s)
- Ardian Hana
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Anisa Hana
- Internal Medicine, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Georges Dooms
- Service of Neuroradiology, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Hans Boecher-Schwarz
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Frank Hertel
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| |
Collapse
|
26
|
Using MDEFT MRI Sequences to Target the GPi in DBS Surgery. PLoS One 2015; 10:e0137868. [PMID: 26366574 PMCID: PMC4569189 DOI: 10.1371/journal.pone.0137868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/23/2015] [Indexed: 11/19/2022] Open
Abstract
Objective Recent advances in different MRI sequences have enabled direct visualization and targeting of the Globus pallidus internus (GPi) for DBS surgery. Modified Driven Equilibrium Fourier Transform (MDEFT) MRI sequences provide high spatial resolution and an excellent contrast of the basal ganglia with low distortion. In this study, we investigate if MDEFT sequences yield accurate and reliable targeting of the GPi and compare direct targeting based on MDEFT sequences with atlas-based targeting. Methods 13 consecutive patients considered for bilateral GPi-DBS for dystonia or PD were included in this study. Preoperative targeting of the GPi was performed visually based on MDEFT sequences as well as by using standard atlas coordinates. Postoperative CT imaging was performed to calculate the location of the implanted leads as well as the active electrode(s). The coordinates of both visual and atlas based targets were compared. The stereotactic coordinates of the lead and active electrode(s) were calculated and projected on the segmented GPi. Results On MDEFT sequences the GPi was well demarcated in most patients. Compared to atlas-based planning the mean target coordinates were located significantly more posterior. Subgroup analysis showed a significant difference in the lateral coordinate between dystonia (LAT = 19.33 ± 0.90) and PD patients (LAT = 20.67 ± 1.69). Projected on the segmented preoperative GPi the active contacts of the DBS electrode in both dystonia and PD patients were located in the inferior and posterior part of the structure corresponding to the motor part of the GPi. Conclusions MDEFT MRI sequences provide high spatial resolution and an excellent contrast enabling precise identification and direct visual targeting of the GPi. Compared to atlas-based targeting, it resulted in a significantly different mean location of our target. Furthermore, we observed a significant variability of the target among the PD and dystonia subpopulation suggesting accurate targeting for each individual patient.
Collapse
|
27
|
Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Rev Neurol (Paris) 2015; 171:750-61. [PMID: 26343921 DOI: 10.1016/j.neurol.2015.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology, besides a minority of genetic cases, is still largely unknown. Animal models have contributed to elucidate PD etiology and pathogenesis, as well as its cellular and molecular mechanisms, leading to the general hypothesis that this neurological disorder is due to complex interactions between environmental and genetic factors. However, the full understanding of PD is still very far from being achieved, and new potential treatments need to be tested to further improve patients' quality of life and, possibly, slow down the neurodegenerative process. In this context, animal models of PD are required to address all these issues. "Classic" models are based on neurotoxins that selectively target catecholaminergic neurons (such as 6-hydroxydopamine, 1-methyl-1,2,3,6-tetrahydropiridine, agricultural pesticides, etc.), while more recent models employ genetic manipulations that either introduce mutations similar to those find in familial cases of PD (α-synuclein, DJ-1, PINK1, Parkin, etc.) or selectively disrupt nigrostriatal neurons (MitoPark, Pitx3, Nurr1, etc.). Each one of these models has its own advantages and limitations, thus some are better suited for studying PD pathogenesis, while others are more pertinent to test therapeutic treatments. Here, we provide a critical and updated review of the most used PD models.
Collapse
Affiliation(s)
- P Gubellini
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM) UMR7288, case 907, parc scientifique de Luminy, 163, avenue de Luminy, 13009 Marseille, France
| | - P Kachidian
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM) UMR7288, case 907, parc scientifique de Luminy, 163, avenue de Luminy, 13009 Marseille, France.
| |
Collapse
|
28
|
Fernández-Irigoyen J, Zelaya MV, Perez-Valderrama E, Santamaría E. New insights into the human brain proteome: Protein expression profiling of deep brain stimulation target areas. J Proteomics 2015; 127:395-405. [PMID: 25845585 DOI: 10.1016/j.jprot.2015.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Deep brain stimulation (DBS) is a neurosurgical procedure that provides therapeutic benefits for movement and affective disorders. The nucleus basalis of Meynert (NBM) and substantia nigra (SN) are considered target areas to apply DBS. Even though the degeneration of NBM and SN underlies the cognitive decline observed in neurological diseases, the protein knowledge derived from both areas is scarce. We have characterized the proteome present in both subcortical brain areas using the Triple TOF 5600 mass spectrometer, identifying 2775 and 3469 proteoforms in NBM and SN respectively. Data mining of MS-generated proteomic data have revealed that: i) 675 proteins tend to localize to synaptic ending, ii) 61% of the global dataset is also present in human CSF and/or plasma, and iii) 894 proteins have not been previously identified in healthy brain by MS. The correlation of NBM and SN proteomic expression profiles with human brain transcriptome data available at Allen Brain Atlas has revealed protein evidence for 250 genes considered with brain-wide expression and 112 genes with region-specific expression in human brain. In addition, protein datasets have been classified according to their chromosomal origin, increasing the current proteome coverage in healthy human brain. BIOLOGICAL SIGNIFICANCE The nucleus basalis of Meynert and substantia nigra are brain areas of clinical interest to apply the deep brain stimulation (DBS) technology in neurosurgery. Our proteomic characterization has revealed 675 proteins involved in the regulation of synaptic transmission, electrical machinery, and neurotransmitter release in both DBS target areas. Moreover, 2599 identified proteins present capacity to be secreted to the CSF and plasma. Our data contribute to a further step towards the characterization of the anatomical atlas of the human brain proteome, detecting 652 proteins that are common between different basal ganglia structures. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - María Victoria Zelaya
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain; Neurological Tissue Bank, Navarrabiomed, Fundación Miguel Servet, 31008 Pamplona, Spain
| | - Estela Perez-Valderrama
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
29
|
Christian E, Melamed E, Peck E, Krieger MD, McComb JG. Does a temporizing measure of cerebrospinal fluid drainage as the initial procedure alter the surgical outcome in premature infants with post-hemorrhagic hydrocephalus? Fluids Barriers CNS 2015. [PMCID: PMC4582318 DOI: 10.1186/2045-8118-12-s1-p8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
30
|
Christian E, Jin D, Attenello F, Wen T, Cen S, Mack WJ, Krieger MD, McComb JG. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000-2010. Fluids Barriers CNS 2015. [PMCID: PMC4582248 DOI: 10.1186/2045-8118-12-s1-o1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|