1
|
Yang F, Liu W, Huang Y, Yang S, Shao Z, Cai X, Xiong L. Regulated cell death: Implications for intervertebral disc degeneration and therapy. J Orthop Translat 2022; 37:163-172. [DOI: 10.1016/j.jot.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
|
2
|
Zhu K, Zhao R, Ye Y, Xu G, Zhang C. Effect of lentivirus-mediated growth and differentiation factor-5 transfection on differentiation of rabbit nucleus pulposus mesenchymal stem cells. Eur J Med Res 2022; 27:5. [PMID: 35022077 PMCID: PMC8756615 DOI: 10.1186/s40001-021-00624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00624-5.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Rui Zhao
- Department of General Medicine, Bengbu Medical College, Bengbu, China
| | - Yuchen Ye
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| | - Changchun Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
3
|
Tang J, Zhang C, Wang S, Chen J. A novel circRNA-miRNA-mRNA network reveals hsa-circ-0040039 as a biomarker for intervertebral disc degeneration. J Int Med Res 2021; 49:300060520960983. [PMID: 34939437 PMCID: PMC8733709 DOI: 10.1177/0300060520960983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Alterations in the structure and function of intervertebral discs by
multifaceted chronic processes can result in intervertebral disc
degeneration (IDD). The mechanisms involved in IDD are still unknown. Methods We investigated the possible mechanisms underlying IDD using a bioinformatics
analysis of publicly available microarray expression datasets and built a
circular RNA–microRNA–mRNA (circRNA–miRNA–mRNA) network based on the
results. Datasets GSE67566 and GSE116726 were downloaded from the Gene
Expression Omnibus (GEO) and analyzed using the limma package in R. The
CircInteractome database was used to detect miRNAs related to circRNA, and
TargetScan, miRDB, and miRTarBase were used to predict target mRNAs. Key
target genes were annotated using Gene Ontology terms. Results The circRNA hsa-circ-0040039 was found to have the top log fold-change score.
Analysis using Metascape showed that the associated genes were enriched
mainly in the cell cycle. The Cytoscape plugin MCODE predicted that two
members of the RAS oncogene family—RAB1A and RAB1B—and multiple coagulation
factor deficiency (MCFD2) may play key roles in IDD. Conclusion Our results suggested that hsa-circ-0040039 and the related network may be
potential biomarkers for IDD.
Collapse
Affiliation(s)
- Jianhua Tang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Chenlin Zhang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Shengru Wang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Jianfeng Chen
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
- Jianfeng Chen, Department of Spine, Wuxi
Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, P.R.
China.
| |
Collapse
|
4
|
Huang Y, Zhong Z, Yang D, Huang L, Hu F, Luo D, Yan L, Wang R, Zhang L, Hu X, He J. Effects of swimming on pain and inflammatory factors in rats with lumbar disc herniation. Exp Ther Med 2019; 18:2851-2858. [PMID: 31555376 PMCID: PMC6755409 DOI: 10.3892/etm.2019.7893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to identify the effect of swimming on nerve root pain in rats with lumbar disc herniation (LDH). A total of 72 male Sprague Dawley rats (215±15 g) were randomly divided into three groups (n=24/group): The sham operation, model and exercise intervention groups, with the latter undergoing 4 weeks of swimming training. On days 0, 7, 14 and 28 following surgery, the changes in the post-limb mechanical claw threshold, the phospholipase A2 (PLA2), interleukin (IL)-6 and tumor necrosis factor (TNF)-α mRNA expression levels, the secretory PLA2 (sPLA2) expression, the IL-6 and TNF-α content, the nuclear factor (NF)-κBp65 protein expression level in the nucleus pulposus, and the apoptotic rate of the nucleus pulposus cells were detected. The results demonstrated that, in the model group, the threshold of hind paw withdrawal was decreased, and that the sPLA2 expression, IL-6 and TNF-α content, PLA2, IL-6 and TNF-α mRNA and NF-κBp65 protein expression levels in the nucleus pulposus were increased. The apoptotic rate of the nucleus pulposus cells was increased from day 7 following surgery, as compared with the sham operation group. In the exercise intervention group, the hind paw withdrawal threshold increased and the TNF-α and IL-6 content, sPLA2 expression and PLA2, IL-6 and TNF-α mRNA and NF-κBp65 protein expression levels were decreased from day 14 following surgery, and the apoptotic nucleus pulposus cells were decreased from day 7 following surgery, as compared with the model group. Collectively, the present data suggest that swimming can significantly reduce nerve root pain and inhibit inflammatory reaction in LDH, which can have positive effects on the treatment of LDH.
Collapse
Affiliation(s)
- Yizhuan Huang
- Department of Spinal Specialty, The Affiliated Sports Hospital of Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Zhendong Zhong
- Institute of Laboratory Animals of Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Yang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Lingyuan Huang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Fengjiao Hu
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Dan Luo
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Linxia Yan
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Rong Wang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Lijie Zhang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Xuemei Hu
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Jinli He
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
5
|
Li X, Cheng S, Wu Y, Ying J, Wang C, Wen T, Bai X, Ji W, Wang D, Ruan D. Functional self-assembled peptide scaffold inhibits tumor necrosis factor-alpha-induced inflammation and apoptosis in nucleus pulposus cells by suppressing nuclear factor-κB signaling. J Biomed Mater Res A 2017; 106:1082-1091. [PMID: 29164771 DOI: 10.1002/jbm.a.36301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/28/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaochuan Li
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
- Department of Orthopedic Surgery; The People's Hospital of Gaozhou; Guangdong People's Republic of China
| | - Shi Cheng
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Yaohong Wu
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
- Department of Spinal Surgery; The Affiliated Ganzhou Hospital of Nanchang University; Ganzhou Jiangxi People's Republic of China
| | - Jingwei Ying
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Chaofeng Wang
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Tianyong Wen
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Xuedong Bai
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Wei Ji
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Deli Wang
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| | - Dike Ruan
- Department of Orthopedic Surgery; Navy General Hospital; Beijing People's Republic of China
| |
Collapse
|
6
|
Li XC, Wu YH, Bai XD, Ji W, Guo ZM, Wang CF, He Q, Ruan DK. BMP7-Based Functionalized Self-Assembling Peptides Protect Nucleus Pulposus-Derived Stem Cells From Apoptosis In Vitro. Tissue Eng Part A 2016; 22:1218-1228. [PMID: 27582519 DOI: 10.1089/ten.tea.2016.0230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering has shown great success in the treatment of intervertebral disk degeneration (IVDD) in the past decade. However, the adverse and harsh microenvironment associated in the intervertebral disks remains a great obstacle for the survival of transplanted cells. Although increasing numbers of new materials have been created or modified to overcome this hurdle, a new effective strategy of biological therapy is still required. In this study, bone morphogenic protein 7 (BMP7)-based functionalized self-assembling peptides were developed by conjugating a bioactive motif from BMP-7 (RKPS) onto the C-terminal of the peptide RADARADARADARADA (RADA16-I) at a ratio of 1:1 to form a new RADARKPS peptide. Human nucleus pulposus-derived stem cells (NPDCs) were cultured in the presence of RADA-RKPS or RADA16-I in an apoptosis-promoting environment that was induced by tumor necrosis factor-alpha, and cells were cultured with RADA16-I in normal medium that served as the control group. After 48 h of apoptosis induction, the viability, proliferation, apoptosis rate, and expression of apoptosis-related genes of NPDCs in the different groups were evaluated, and the differentiation of NPDCs toward nucleus pulposus-like cells was tested. The results showed that the RADA-RKPS peptide could significantly protect the survival and proliferation of NPDCs. In addition, the application of RADA-RKPS decreased the rate of cell apoptosis, as detected by TUNEL-positive staining. Furthermore, our in vitro study confirmed the apoptosis-protecting effects of RADA-RKPS peptides, which significantly reduced the BAX/BCL-2 ratio of NPDCs and upregulated the gene expression of collagen II a1, aggrecan, and Sox-9 after 48 h of apoptosis induction. Collectively, these lines of evidence suggest that RADA-RKPS peptides confer a protective effect to NPDCs in an apoptosis environment, suggesting their potential application in the development of new biological treatment strategies for IVDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China .,3 Department of Orthopedic Surgery, The People's Hospital of Gaozhou, Guangdong, People's Republic of China
| | - Yao-Hong Wu
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Xue-Dong Bai
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Wei Ji
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Zi-Ming Guo
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Chao-Feng Wang
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Di-Ke Ruan
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
7
|
Chen J, Hou C, Chen X, Wang D, Yang P, He X, Zhou J, Li H. Protective effect of cannabidiol on hydrogen peroxide‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells. Mol Med Rep 2016; 14:2321-7. [PMID: 27430346 DOI: 10.3892/mmr.2016.5513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 02/21/2016] [Indexed: 11/06/2022] Open
Abstract
Cannabidiol, a major component of marijuana, protects nerves, and exerts antispasmodic, anti-inflammatory and anti‑anxiety effects. In the current study, the protective effect of cannabidiol was observed to prevent hydrogen peroxide (H2O2)‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells. Nucleus pulposus cells were isolated from rats and cultured in vitro, and H2O2 was used to construct the nucleus pulposus cell model. Cell viability of the nucleus pulposus cells was assessed using a 3‑(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay. The ratio of apoptotic cells, and caspase‑3 or cyclooxygenase‑2 (COX‑2) mRNA expression was analyzed by annexin V‑fluorescein isothiocyanate/propidium‑iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The quantities of interleukin (IL)‑1β and interleukin‑6 were measured using a series of assay kits. B-cell lymphoma 2 (Bcl‑2) and inducible nitric oxide synthase (iNOS) protein expression levels were analyzed using western blotting. The present study identified that cannabidiol enhanced cell viability and reduced apoptosis in H2O2‑treated nucleus pulposus cells in vitro using a lumbar disc herniation (LDH) model. In addition, cannabidiol reduced caspase‑3 gene expression and augmented the Bcl‑2 protein expression levels in the nucleus pulposus cells following H2O2 exposure. Pre‑treatment with cannabidiol suppressed the promotion of COX‑2, iNOS, IL‑1β and IL‑6 expression in the nucleus pulposus cells following H2O2 exposure. Taken together, these results suggest that cannabidiol potentially exerts its protective effect on LDH via the suppression of anti‑apoptosis, anti‑inflammation and anti‑oxidative activities in nucleus pulposus cells.
Collapse
Affiliation(s)
- Jie Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dong Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing He
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jinsong Zhou
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiatong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Haopeng Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
8
|
Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats. Lab Anim (NY) 2015; 43:276-82. [PMID: 25050728 DOI: 10.1038/laban.529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/25/2014] [Indexed: 01/08/2023]
Abstract
The ability to evaluate distress in laboratory animals is needed in order to ensure that husbandry and experimental procedures do not negatively impact animal welfare. Accurate measurement of acute stress and chronic stress, and distinguishing between stress that is harmful (distress) and stress that does no harm (eustress), can be challenging. Whereas corticosterone concentrations are commonly used to measure stress in laboratory animals, the neutrophil-lymphocyte ratio has been proposed as a potentially better indicator of chronic stress. Furthermore, an association between such measures of stress and concurrent behavioral indicators of negative welfare is required to determine their accuracy in evaluating distress. The authors compared serum corticosterone concentrations and neutrophil-lymphocyte ratios to assess acute or chronic stress in male Sprague Dawley rats. Elevated serum corticosterone concentrations, but not neutrophil-lymphocyte ratios, were associated with acute stress exposure, whereas elevated neutrophil-lymphocyte ratios, but not serum corticosterone concentrations, were associated with chronic stress exposure. Because the neutrophil-lymphocyte ratio differences corresponded with a behavioral indicator of distress in chronically stressed rats, it may serve as a valuable tool for the physiological assessment of distress in rats.
Collapse
|
9
|
Sun Z, Luo B, Liu ZH, Samartzis D, Liu Z, Gao B, Huang L, Luo ZJ. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy. Int J Biol Sci 2015; 11:133-43. [PMID: 25561896 PMCID: PMC4279089 DOI: 10.7150/ijbs.10598] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023] Open
Abstract
Introduction: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. Methods: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. Results: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). Conclusions: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3 activity; regulating ECM and modulator genes, suppressing pro-inflammatory factors and preserving CK8. Consequently, the protective impact of ADSCs found in this study provides an essential understanding and expands our knowledge as to the utility of ADSCs therapy for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhen Sun
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Beier Luo
- 2. Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Zhi-Heng Liu
- 3. Department of Orthopedics, Air Force Hospital, Youyi Road 269, Xi'an, China
| | - Dino Samartzis
- 4. Department of Orthopaedics and Traumatology, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhongyang Liu
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Bo Gao
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Liangliang Huang
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Zhuo-Jing Luo
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| |
Collapse
|