1
|
Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024; 8:80. [PMID: 38553633 PMCID: PMC10980741 DOI: 10.1038/s41698-024-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kartik Reddy
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Abhishek Midya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krunal Balvantbhai Pandav
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
2
|
Goldberg AR, Dovas A, Torres D, Sharma SD, Mela A, Merricks EM, Olabarria M, Shokooh LA, Zhao HT, Kotidis C, Calvaresi P, Viswanathan A, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Chen C, Bushong EA, Boassa D, Ellisman MH, Hillman EM, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575092. [PMID: 38293120 PMCID: PMC10827113 DOI: 10.1101/2024.01.10.575092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.
Collapse
Affiliation(s)
- Alexander R. Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M. Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T. Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D. Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B. Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A. Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M.C. Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J. A. Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A. Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032
| | - Darcy S. Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Morota N, Deletis V. Brainstem Surgery: Functional Surgical Anatomy with the Use of an Advanced Modern Intraoperative Neurophysiological Procedure. Adv Tech Stand Neurosurg 2023; 48:21-55. [PMID: 37770680 DOI: 10.1007/978-3-031-36785-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Intraoperative neurophysiology (ION) in brainstem surgery evolved as brainstem surgery advanced.The original idea of brainstem mapping (BSM) is a neurophysiological procedure to locate cranial nerve motor nuclei (CNMN) on the floor of the fourth ventricle. With the introduction of various skull base approaches to the brainstem, BSM is carried out on any surface of the brainstem to expose the safe entry zone to the intrinsic brainstem lesion. It is the modern concept of BSM, a broader definition of BSM. BSM enables to avoid direct damage to the CNMN when approaching the brainstem through the negative mapping region.The corticobulbar tract (CBT) motor evoked potential (MEP) is another ION procedure in brainstem surgery. It enables monitoring of the functional integrity of the whole cranial motor pathway without interrupting surgical procedures. Combined application of both BSM and CBT-MEP monitoring is indispensable for the functional preservation of the CNMN and their supranuclear innervation during the brainstem surgery.In this paper, the neurophysiological aspect of BSM and the CBT-MEP was fully described. Normal anatomical background of the floor of the fourth ventricle and the detail of the CBT anatomy were demonstrated to better understand their clinical usefulness, limitations, and surgical implications derived from ION procedures. Finally, a future perspective in the role of ION procedures in brainstem surgery was presented. The latest magnetic resonance imaging (MRI) technology can allow surgeons to find an "on the image" safe entry zone to the brainstem. However, the role of BSM and the CBT-MEP monitoring in terms of safe brainstem surgery stays unshakable. Special attention was paid for the recent trend of management in diffuse intrinsic pontine gliomas. A new role of BSM during a stereotactic biopsy was discussed.It is the authors' expectation that the paper enhances the clinical application of a contemporary standard of the ION in brainstem surgery and supports safer brainstem surgery more than ever and in the future.
Collapse
Affiliation(s)
- Nobuhito Morota
- Department of Neurosurgery, Kitasato University Hospital, Sagamihara, Japan
| | - Vedran Deletis
- Department of Neurosurgery, University Hospital, Zagreb, Croatia
| |
Collapse
|
4
|
White H, Webb R, McKnight I, Legg K, Lee C, Lee PH, Spicer OS, Shim JW. TRPV4 mRNA is elevated in the caudate nucleus with NPH but not in Alzheimer's disease. Front Genet 2022; 13:936151. [PMID: 36406122 PMCID: PMC9670164 DOI: 10.3389/fgene.2022.936151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
Symptoms of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD) are somewhat similar, and it is common to misdiagnose these two conditions. Although there are fluid markers detectable in humans with NPH and AD, determining which biomarker is optimal in representing genetic characteristics consistent throughout species is poorly understood. Here, we hypothesize that NPH can be differentiated from AD with mRNA biomarkers of unvaried proximity to telomeres. We examined human caudate nucleus tissue samples for the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) and amyloid precursor protein (APP). Using the genome data viewer, we analyzed the mutability of TRPV4 and other genes in mice, rats, and humans through matching nucleotides of six genes of interest and one house keeping gene with two factors associated with high mutation rate: 1) proximity to telomeres or 2) high adenine and thymine (A + T) content. We found that TRPV4 and microtubule associated protein tau (MAPT) mRNA were elevated in NPH. In AD, mRNA expression of TRPV4 was unaltered unlike APP and other genes. In mice, rats, and humans, the nucleotide size of TRPV4 did not vary, while in other genes, the sizes were inconsistent. Proximity to telomeres in TRPV4 was <50 Mb across species. Our analyses reveal that TRPV4 gene size and mutability are conserved across three species, suggesting that TRPV4 can be a potential link in the pathophysiology of chronic hydrocephalus in aged humans (>65 years) and laboratory rodents at comparable ages.
Collapse
Affiliation(s)
- Hunter White
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ryan Webb
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Peter H.U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Olivia Smith Spicer
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,*Correspondence: Joon W. Shim,
| |
Collapse
|
5
|
Glioma facilitates the epileptic and tumor-suppressive gene expressions in the surrounding region. Sci Rep 2022; 12:6805. [PMID: 35474103 PMCID: PMC9042955 DOI: 10.1038/s41598-022-10753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with glioma often demonstrate epilepsy. We previously found burst discharges in the peritumoral area in patients with malignant brain tumors during biopsy. Therefore, we hypothesized that the peritumoral area may possess an epileptic focus and that biological alterations in the peritumoral area may cause epileptic symptoms in patients with glioma. To test our hypothesis, we developed a rat model of glioma and characterized it at the cellular and molecular levels. We first labeled rat C6 glioma cells with tdTomato, a red fluorescent protein (C6-tdTomato), and implanted them into the somatosensory cortex of VGAT-Venus rats, which specifically expressed Venus, a yellow fluorescent protein in GABAergic neurons. We observed that the density of GABAergic neurons was significantly decreased in the peritumoral area of rats with glioma compared with the contralateral healthy side. By using a combination technique of laser capture microdissection and RNA sequencing (LCM-seq) of paraformaldehyde-fixed brain sections, we demonstrated that 19 genes were differentially expressed in the peritumoral area and that five of them were associated with epilepsy and neurodevelopmental disorders. In addition, the canonical pathways actively altered in the peritumoral area were predicted to cause a reduction in GABAergic neurons. These results suggest that biological alterations in the peritumoral area may be a cause of glioma-related epilepsy.
Collapse
|
6
|
Qin F, Huang Z, Dong Q, Xu X, Lu T, Chen J, Cheng N, Qiu W, Lu Z. Stereotactic biopsy for lesions in brainstem and deep brain: a single-center experience of 72 cases. ACTA ACUST UNITED AC 2021; 54:e11335. [PMID: 34320122 PMCID: PMC8302144 DOI: 10.1590/1414-431x2021e11335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Stereotactic biopsies for lesions in the brainstem and deep brain are rare. This study aimed to summarize our 6-year experience in the accurate diagnosis of lesions in the brain stem and deep brain and to discuss the technical note and strategies. From December 2011 to January 2018, 72 cases of intracranial lesions in the brainstem or deep in the lobes undergoing stereotactic biopsy were retrospectively reviewed. An individualized puncture path was designed based on the lesion's location and the image characteristics. The most common biopsy targets were deep in the lobes (43 cases, 59.7%), including frontal lobe (33 cases, 45.8%), temporal lobe (4 cases, 5.6%), parietal lobe (3 cases, 4.2%), and occipital lobe (3 cases, 4.2 %). There were 12 cases (16.7%) of the brainstem, including 8 cases (11.1%) of midbrain, and 4 cases (5.6%) of pons or brachium pontis. Other targets included internal capsule (2 cases, 2.8%), thalamus (3 cases, 4.2%), and basal ganglion (12 cases, 16.7%). As for complications, one patient developed acute intracerebral hemorrhage in the biopsy area at 2 h post-operation, and one patient had delayed intracerebral hemorrhage at 7 days post-operation. The remaining patients recovered well after surgery. There was no surgery-related death. The CT-MRI-guided stereotactic biopsy of lesions in the brainstem or deep in the brain has the advantages of high safety, accurate diagnosis, and low incidence of complications. It plays a crucial role in the diagnosis of atypical, microscopic, diffuse, multiple, and refractory lesions.
Collapse
Affiliation(s)
- Feng Qin
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenchao Huang
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing Dong
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Xu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tingting Lu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianning Chen
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Na Cheng
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Qiu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Deak D, Gorcea-Andronic N, Sas V, Teodorescu P, Constantinescu C, Iluta S, Pasca S, Hotea I, Turcas C, Moisoiu V, Zimta AA, Galdean S, Steinheber J, Rus I, Rauch S, Richlitzki C, Munteanu R, Jurj A, Petrushev B, Selicean C, Marian M, Soritau O, Andries A, Roman A, Dima D, Tanase A, Sigurjonsson O, Tomuleasa C. A narrative review of central nervous system involvement in acute leukemias. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:68. [PMID: 33553361 PMCID: PMC7859772 DOI: 10.21037/atm-20-3140] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called “sticky cells” which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Gorcea-Andronic
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Sas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Intensive Care Unit, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ionut Hotea
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Galdean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Rus
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Mirela Marian
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alexandra Andries
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Andrei Roman
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Role of endoscopic surgical biopsy in diagnoses of intraventricular/periventricular tumors: review of literature including a monocentric case series. Acta Neurol Belg 2020; 120:517-530. [PMID: 32107717 DOI: 10.1007/s13760-020-01299-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
The intra- and periventricular location tumor (IPVT) of a brain remains a hard challenge for the neurosurgeon because of the deep location and eloquent anatomic associations. Due to this high risk of iatrogenic injury, many surgeons elect to perform biopsies of such lesions to establish a diagnosis. On the one hand, stereotaxic needle biopsy (SNB) is a minimally invasive procedure but with a significant risk of complications and a high risk of lack of tissue for molecular analyses for this region [Fukushima in Neurosurgery 2:110-113 (1978)]; on the other hand, the use of endoscopic intraventricular biopsy (EIB) allows for diagnosis with minimal surgical intervention [Iwamoto et al. in Ann Neurol 64(suppl. 6):628-634 (2008)]. IPVTs and related CSF pathway obstructions can be safely and effectively treated with endoscopic techniques. It is not possible to compare EIB with diagnoses made by any other method or with the established treatment. We aim to analyze the accuracy of EIB results by comparing them with results of biopsies performed later, in other methods and thereby evaluating the treatment evolution considering our personal experience. The difficulties and complications encountered are presented and compared with those reported in the literature to obtain the best review possible for this topic. A systematic review of literature was done using MEDLINE, the NIH Library, PubMed, and Google Scholar yielded 1.951 cases for EIB and 1912 for SNB, according to standard systemic review techniques. Review was conducted on 50 studies describing surgical procedures for lesions intra- and para-ventricular. The primary outcome measure was a diagnostic success. We also consider 20 patients with IPVT treated in our department. Clinical characteristics and surgical outcome were evaluated and a systematic review of the literature was performed. Overall, all our biopsies were diagnostic, with a positive histologic sample in 100% of our patients. 8 patients underwent a concurrent endoscopic third ventriculostomy. 4 patients underwent a concurrent ventriculostomy combined with septostomy. For 1 patient was necessary the only septostomy combined with biopsy. Every case has obtained a histological diagnosis. The percentage of complications was very low with only 1 case of post-operative infection and 1 case of hemorrhage. It was impossible to create a specific comparison from literature data of IPVTs between a stereotactic and endoscopic procedure, it presents only the collection of pineal gland tumor [Kelly in Neurosurgery 25(02):185-194 (1989); Quick-Weller in World Neurosurgery 96:124-128 (2016)] or unknown location of the lesion in major review [Marenco-Hillembrand et al. in Front Oncol 8:558 (2018)]. The present study aims to report our experience with the surgical management of IPVTs. The EIB sample yields an accurate histologic diagnosis tumor, with a positive histologic sample in 87, 95% of patients. The choice of the appropriate procedure should consider not only the preference and the experience of the neurosurgeon but also the several other variables as the location. While some periventricular lesions are better approached by endoscopic techniques, others are more suited for stereotactic-guided approaches. The ability to perform an EIB and relieve tumor-associated hydrocephalus by neuroendoscopy is considered to be a benefit of this procedure since this is less invasive than other treatments.
Collapse
|
9
|
Haj-Hosseini N, Richter JCO, Milos P, Hallbeck M, Wårdell K. 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2284-2296. [PMID: 29760987 PMCID: PMC5946788 DOI: 10.1364/boe.9.002284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
A fiber optic probe was developed for guidance during stereotactic brain biopsy procedures to target tumor tissue and reduce the risk of hemorrhage. The probe was connected to a setup for the measurement of 5-aminolevulinic acid (5-ALA) induced fluorescence and microvascular blood flow. Along three stereotactic trajectories, fluorescence (n = 109) and laser Doppler flowmetry (LDF) (n = 144) measurements were done in millimeter increments. The recorded signals were compared to histopathology and radiology images. The median ratio of protoporphyrin IX (PpIX) fluorescence and autofluorescence (AF) in the tumor was considerably higher than the marginal zone (17.3 vs 0.9). The blood flow showed two high spots (3%) in total. The proposed setup allows simultaneous and real-time detection of tumor tissue and microvascular blood flow for tracking the vessels.
Collapse
Affiliation(s)
| | - Johan C. O. Richter
- Department of Biomedical Engineering, Linköping University, Sweden
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Peter Milos
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Sweden
| |
Collapse
|
10
|
Liu J, Wang Y, Sun X, Liu S, Yu Z, Ji N, Sun S, Liu Y. Lesions of the central nervous system in leukemia: Pathological and magnetic resonance imaging features at presentation in 14 patients. Oncol Lett 2017; 14:8162-8170. [PMID: 29344259 DOI: 10.3892/ol.2017.7192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/26/2017] [Indexed: 10/18/2022] Open
Abstract
The present study aimed to characterize the specific pathology and magnetic resonance imaging (MRI) findings observed in patients with leukemia with central nervous system (CNS) lesions, and to determine their value in the management of such patients. Lesions of the CNS were observed during and following treatment of leukemia. The data from stereotactic biopsy-proven pathology (12 patients) and MRI examinations (14 patients) were retrospectively evaluated. Proton-magnetic resonance-spectroscopy was performed in three patients. Factors that predisposed to lesions of the CNS were reviewed from the patient medical records. Among the 14 patients, eight had CNS leukemia, four had a CNS infection and two had a neurodegenerative disorder (one leukoencephalopathy and one glial cell hyperplasia). The clinical diagnosis based on clinical symptoms, signs and MRI features was not consistent with the pathological diagnosis in two patients. In one patient, the clinical diagnosis was a CNS infection; however, the patient's pathological diagnosis was CNS leukemia. In the other patient, the clinical diagnosis was CNS leukemia, but the pathological diagnosis was glial cell hyperplasia. CNS lesions in leukemia have a wide range of causes. Apart from the relapse of leukemia in the CNS, there are treatment-associated neurotoxicities and infections that are caused by immunocompromised states. As numerous leukemia-associated CNS lesions are treatable, early diagnosis is essential.
Collapse
Affiliation(s)
- Jing Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yaming Wang
- Department of Neurosurgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shuo Liu
- Duke Clinical Research Institute, Duke University, Durham, NC 27705, USA
| | - Zhenkun Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Nanjing Tongren Hospital, Southeast University, Nanjing 211100, P.R. China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shengjun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|