1
|
Rao D, Yang L, Enxi X, Siyuan L, Yu Q, Zheng L, Zhou Z, Yerong C, Bo C, Xiuhong S, Eryi S. A predictive model in patients with chronic hydrocephalus following aneurysmal subarachnoid hemorrhage: a retrospective cohort study. Front Neurol 2024; 15:1366306. [PMID: 38817542 PMCID: PMC11137279 DOI: 10.3389/fneur.2024.1366306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
Objective Our aim was to develop a nomogram that integrates clinical and radiological data obtained from computed tomography (CT) scans, enabling the prediction of chronic hydrocephalus in patients with aneurysmal subarachnoid hemorrhage (aSAH). Method A total of 318 patients diagnosed with subarachnoid hemorrhage (SAH) and admitted to the Department of Neurosurgery at the Affiliated People's Hospital of Jiangsu University between January 2020 and December 2022 were enrolled in our study. We collected clinical characteristics from the hospital's medical record system. To identify risk factors associated with chronic hydrocephalus, we conducted both univariate and LASSO regression models on these clinical characteristics and radiological features, accompanied with penalty parameter adjustments conducted through tenfold cross-validation. All features were then incorporated into multivariate logistic regression analyses. Based on these findings, we developed a clinical-radiological nomogram. To evaluate its discrimination performance, we conducted Receiver Operating Characteristic (ROC) curve analysis and calculated the Area Under the Curve (AUC). Additionally, we employed calibration curves, and utilized Brier scores as an indicator of concordance. Additionally, Decision Curve Analysis (DCA) was performed to determine the clinical utility of our models by estimating net benefits at various threshold probabilities for both training and testing groups. Results The study included 181 patients, with a determined chronic hydrocephalus prevalence of 17.7%. Univariate logistic regression analysis identified 11 potential risk factors, while LASSO regression identified 7 significant risk factors associated with chronic hydrocephalus. Multivariate logistic regression analysis revealed three independent predictors for chronic hydrocephalus following aSAH: Periventricular white matter changes, External lumbar drainage, and Modified Fisher Grade. A nomogram incorporating these factors accurately predicted the risk of chronic hydrocephalus in both the training and testing cohorts. The AUC values were calculated as 0.810 and 0.811 for each cohort respectively, indicating good discriminative ability of the nomogram model. Calibration curves along with Hosmer-Lemeshow tests demonstrated excellent agreement between predicted probabilities and observed outcomes in both cohorts. Furthermore, Brier scores (0.127 for the training and 0.09 for testing groups) further validated the predictive performance of our nomogram model. The DCA confirmed that this nomogram provides superior net benefit across various risk thresholds when predicting chronic hydrocephalus. The decision curve demonstrated that when an individual's threshold probability ranged from 5 to 62%, this model is more effective in predicting the occurrence of chronic hydrocephalus after aSAH. Conclusion A clinical-radiological nomogram was developed to combine clinical characteristics and radiological features from CT scans, aiming to enhance the accuracy of predicting chronic hydrocephalus in patients with aSAH. This innovative nomogram shows promising potential in assisting clinicians to create personalized and optimal treatment plans by providing precise predictions of chronic hydrocephalus among aSAH patients.
Collapse
Affiliation(s)
- Dai Rao
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Yang
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Enxi
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lu Siyuan
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Yu
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zheng
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhou Zhou
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Yerong
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Bo
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shan Xiuhong
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Sun Eryi
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
3
|
Blount JP, Hopson BD, Johnston JM, Rocque BG, Rozzelle CJ, Oakes JW. What has changed in pediatric neurosurgical care in spina bifida? A 30-year UAB/Children's of Alabama observational overview. Childs Nerv Syst 2023; 39:1791-1804. [PMID: 37233768 DOI: 10.1007/s00381-023-05938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Spina bifida (SB) remains the most serious and most common congenital anomaly of the human nervous system that is compatible with life. The open myelomeningocele on the back is perhaps the most obvious initial problem, but the collective impact of dysraphism upon the entirety of the nervous system and innervated organs is an equal or greater longitudinal threat. As such, patients with myelomeningocele (MMC) are best managed in a multi-disciplinary clinic that brings together experienced medical, nursing, and therapy teams that provide high standards of care while studying outcomes and sharing insights and experiences. Since its inception 30 years ago, the spina bifida program at UAB/Children's of Alabama has remained dedicated to providing exemplary multi-disciplinary care for affected children and their families. During this time, there has been great change in the care landscape, but many of the neurosurgical principles and primary issues have remained the same. In utero myelomeningocele closure (IUMC) has revolutionized initial care and has favorable impact on several important co-morbidities of SB including hydrocephalus, the Chiari II malformation, and the functional level of the neurologic deficit. Hydrocephalus however is not solved by IUMC, and hydrocephalus management remains at the center of neurosurgical care in SB. Ventricular shunts were long the cornerstone of treatment for hydrocephalus, but we came to assess and incorporate endoscopic third ventriculostomy with choroid plexus coagulation (ETV-CPC). Educated and nurtured by an experienced senior mentor, we dedicated ourselves to fundamental concepts but persistently evaluated our care outcomes and evolved our protocols and paradigms for improvement. Active conversations amidst networks of treasured colleagues were central to this development and growth. While hydrocephalus support and treatment of tethered spinal cord remained our principal neurosurgical charges, we evolved to embrace a holistic perspective and approach that is reflected and captured in the Lifetime Care Plan. Our team engaged actively in important workshops and guideline initiatives and was central to the development and support of the National Spina Bifida Patient Registry. We started and developed an adult SB clinic to support our patients who aged out of pediatric care. Lessons there taught us the importance of a model of transition that emphasized personal responsibility and awareness of health and the crucial role of dedicated support over time. Support for sleep, bowel health, and personal intimate cares are important contributors to overall health and care. This paper details our growth, learning, and evolution of care provision over the past 30 years.
Collapse
Affiliation(s)
- Jeffrey P Blount
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA.
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA.
| | - Betsy D Hopson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA
| | - James M Johnston
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA
| | - Jerry W Oakes
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
- Children's of Alabama, Lowder 400, 1600 Seventh Avenue South, Birmingham, AL, 35233, USA
| |
Collapse
|
4
|
Brown FN, Iwasawa E, Shula C, Fugate EM, Lindquist DM, Mangano FT, Goto J. Early postnatal microglial ablation in the Ccdc39 mouse model reveals adverse effects on brain development and in neonatal hydrocephalus. Fluids Barriers CNS 2023; 20:42. [PMID: 37296418 DOI: 10.1186/s12987-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects. METHODS In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type (WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and P18-21. RESULTS PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelination in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in the mutants worsened hypomyelination at P20. CONCLUSIONS Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed examination of microglial development and status may provide a clarification of the need for microglia in neonatal brain development.
Collapse
Affiliation(s)
- Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Diana M Lindquist
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Sanz Cortes M, Corroenne R, Sangi-Haghpeykar H, Orman G, Shetty A, Castillo J, Castillo H, Johnson RM, Shamshirsaz A, Belfort MA, Whitehead W, Meoded A. Association between ambulatory skills and diffusion tensor imaging of corpus callosal white matter in infants with spina bifida. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:657-665. [PMID: 35638229 DOI: 10.1002/uog.24958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To assess brain white matter using diffusion tensor imaging (DTI) at 1 year of age in infants diagnosed with open neural tube defect (ONTD) and explore the association of DTI parameters with ambulatory skills at 30 months of age. METHODS Magnetic resonance imaging (MRI) was performed at an average of 12 months of age and included an echo planar axial DTI sequence with diffusion gradients along 20 non-collinear directions. TORTOISE software was used to correct DTI raw data for motion artifacts, and DtiStudio, DiffeoMap and RoiEditor were used for further postprocessing. DTI data were analyzed in terms of fractional anisotropy (FA), trace, radial diffusivity and axial diffusivity. These parameters reflect the integrity and maturation of white-matter motor pathways. At 30 months of age, ambulation status was evaluated by a developmental pediatrician, and infants were classified as ambulatory if they were able to walk independently with or without orthoses or as non-ambulatory if they could not. Linear mixed-effects method was used to examine the association between study outcomes and study group. Possible confounders were sought, and analyses were adjusted for age at MRI scan and ventricular size by including them in the regression model as covariates. RESULTS Twenty patients with ONTD were included in this study, including three cases that underwent postnatal repair and 17 cases that underwent prenatal repair. There were five ambulatory and 15 non-ambulatory infants evaluated at a mean age of 31.5 ± 5.7 months. MRI was performed at 50.3 (2-132.4) weeks postpartum. When DTI analysis results were compared between ambulatory and non-ambulatory infants, significant differences were observed in the corpus callosum (CC). Compared with non-ambulatory infants, ambulatory infants had increased FA in the splenium (0.62 (0.48-0.75) vs 0.41 (0.34-0.49); P = 0.01, adjusted P = 0.02), genu (0.64 (0.47-0.80) vs 0.47 (0.35-0.61); P = 0.03, adjusted P = 0.004) and body (0.55 (0.45-0.65) vs 0.40 (0.35-0.46), P = 0.01, adjusted P = 0.01). Reduced trace was observed in the CC of ambulatory children at the level of the splenium (0.0027 (0.0018-0.0037) vs 0.0039 (0.0034-0.0044) mm2 /s; P = 0.04, adjusted P = 0.03) and genu (0.0029 (0.0020-0.0038) vs 0.0039 (0.0033-0.0045) mm2 /s; P = 0.04, adjusted P = 0.01). In addition, radial diffusivity was reduced in the CC of the ambulatory children at the level of the splenium (0.00057 (0.00025-0.00089) vs 0.0010 (0.00084-0.00120) mm2 /s; P = 0.02, adjusted P = 0.02) and the genu (0.00058 (0.00028-0.00088) vs 0.0010 (0.00085-0.00118) mm2 /s; P = 0.02, adjusted P = 0.02). There were no differences in axial diffusivity between ambulatory and non-ambulatory children. CONCLUSION This study demonstrates a significant association between white matter integrity of connecting fibers of the corpus callosum, as assessed by DTI, and ambulatory skills at 30 months of age in infants with ONTD. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Sanz Cortes
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - R Corroenne
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - H Sangi-Haghpeykar
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - G Orman
- Department of Pediatric Radiology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - A Shetty
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - J Castillo
- Department of Pediatrics, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - H Castillo
- Department of Pediatrics, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - R M Johnson
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - A Shamshirsaz
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - M A Belfort
- Department of Obstetrics and Gynecology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - W Whitehead
- Department of Neurosurgery, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| | - A Meoded
- Department of Pediatric Radiology, Texas Children's Hospital & Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Trigo L, Eixarch E, Bottura I, Dalaqua M, Barbosa AA, De Catte L, Demaerel P, Dymarkowski S, Deprest J, Lapa DA, Aertsen M, Gratacos E. Prevalence of supratentorial anomalies assessed by magnetic resonance imaging in fetuses with open spina bifida. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:804-812. [PMID: 34396624 DOI: 10.1002/uog.23761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To determine the prevalence of brain anomalies at the time of preoperative magnetic resonance imaging (MRI) assessment in fetuses eligible for prenatal open spina bifida (OSB) repair, and to explore the relationship between brain abnormalities and features of the spinal defect. METHODS This was a retrospective cross-sectional study, conducted in three fetal medicine centers, of fetuses eligible for OSB fetal surgery repair between January 2009 and December 2019. MRI images obtained as part of the presurgical assessment were re-evaluated by two independent observers, blinded to perinatal results, to assess: (1) the type and area of the defect and its anatomical level; (2) the presence of any structural central nervous system (CNS) anomaly and abnormal ventricular wall; and (3) fetal head and brain biometry. Binary regression analyses were performed and data were adjusted for type of defect, upper level of the lesion (ULL), gestational age (GA) at MRI and fetal medicine center. Multiple logistic regression analysis was performed in order to identify lesion characteristics and brain anomalies associated with a higher risk of presence of abnormal corpus callosum (CC) and/or heterotopia. RESULTS Of 115 fetuses included, 91 had myelomeningocele and 24 had myeloschisis. Anatomical level of the lesion was thoracic in seven fetuses, L1-L2 in 13, L3-L5 in 68 and sacral in 27. Median GA at MRI was 24.7 (interquartile range, 23.0-25.7) weeks. Overall, 52.7% of cases had at least one additional brain anomaly. Specifically, abnormal CC was observed in 50.4% of cases and abnormality of the ventricular wall in 19.1%, of which 4.3% had nodular heterotopia. Factors associated independently with higher risk of abnormal CC and/or heterotopia were non-sacral ULL (odds ratio (OR), 0.51 (95% CI, 0.26-0.97); P = 0.043), larger ventricular width (per mm) (OR, 1.23 (95% CI, 1.07-1.43); P = 0.005) and presence of abnormal cavum septi pellucidi (OR, 3.76 (95% CI, 1.13-12.48); P = 0.031). CONCLUSIONS Half of the fetuses assessed for OSB repair had an abnormal CC and/or an abnormal ventricular wall prior to prenatal repair. The likelihood of brain abnormalities was increased in cases with a non-sacral lesion and wider lateral ventricles. These findings highlight the importance of a detailed preoperative CNS evaluation of fetuses with OSB. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L Trigo
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- My FetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - E Eixarch
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - I Bottura
- Fetal and Neonatal Therapy Group, Hospital Sabará, São Paulo, Brazil
| | - M Dalaqua
- Department of Radiology, Hospital Israelita Albert Einsten, São Paulo, Brazil
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, Brazil
| | - A A Barbosa
- Fetal and Neonatal Therapy Group, Hospital Sabará, São Paulo, Brazil
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, Brazil
| | - L De Catte
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ KU Leuven, Leuven, Belgium
| | - P Demaerel
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - J Deprest
- My FetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ KU Leuven, Leuven, Belgium
- Institute of Women's Health, University College London, London, UK
| | - D A Lapa
- Fetal Therapy Program, Hospital Israelita Albert Einsten, São Paulo, Brazil
- Department of Hospital Infantil Sabará, São Paulo, Brazil
| | - M Aertsen
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - E Gratacos
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
7
|
Adam R, Ghahari D, Morton JB, Eagleson R, de Ribaupierre S. Brain Network Connectivity and Executive Function in Children with Previous Infantile Hydrocephalus. Brain Connect 2022; 12:784-798. [PMID: 35302386 DOI: 10.1089/brain.2021.0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Infantile hydrocephalus is a condition in which there is an abnormal build-up of cerebrospinal fluid in the ventricles within the first few months of life, which puts pressure on surrounding brain tissues. Compression of the developing brain increases the risk of secondary brain injury and cognitive disabilities. METHODS In this study, we used diffusion-weighted imaging and resting-state functional MRI to investigate the effects of ventricle dilatation on structural and functional brain networks in children with shunted infantile hydrocephalus and examined how these brain changes may impact executive function. RESULTS We found that children with hydrocephalus have altered structural and functional connectivity between and within large-scale networks. Moreover, hyperconnectivity between the ventral attention and default mode network in children with hydrocephalus correlated with reduced executive function scores. Compared to typically developing age-matched control participants, our patient population also had lower fractional anisotropy in posterior white matter. DISCUSSION Overall, these findings suggest that infantile hydrocephalus has long-term effects on brain network connectivity, white matter development, and executive function in children at school-age. Future work will examine the relationship between ventricular volumes prior to shunt placement in infancy and brain network development throughout childhood.
Collapse
Affiliation(s)
- Ramina Adam
- University of Western Ontario, 6221, 1151 Richmond Street, London, Canada, N6A 3K7;
| | | | | | - Roy Eagleson
- University of Western Ontario, 6221, London, Canada;
| | | |
Collapse
|
8
|
Bauer DF, Baird LC, Klimo P, Mazzola CA, Nikas DC, Tamber MS, Flannery AM. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Treatment of Pediatric Hydrocephalus: Update of the 2014 Guidelines. Neurosurgery 2020; 87:1071-1075. [DOI: 10.1093/neuros/nyaa434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
BACKGROUND
The Congress of Neurological Surgeons reviews its guidelines according to the Institute of Medicine's recommended best practice of reviewing guidelines every 5 yrs. The authors performed a planned 5-yr review of the medical literature used to develop the “Pediatric hydrocephalus: systematic literature review and evidence-based guidelines” and determined the need for an update to the original guideline based on new available evidence.
OBJECTIVE
To perform an update to include the current medical literature for the “Pediatric hydrocephalus: systematic literature review and evidence-based guidelines”, originally published in 2014.
METHODS
The Guidelines Task Force used the search terms and strategies consistent with the original guidelines to search PubMed and Cochrane Central for relevant literature published between March 2012 and November 2019. The same inclusion/exclusion criteria were also used to screen abstracts and to perform the full-text review. Full text articles were then reviewed and when appropriate, included as evidence and recommendations were added or changed accordingly.
RESULTS
A total of 41 studies yielded by the updated search met inclusion criteria and were included in this update.
CONCLUSION
New literature resulting from the update yielded a new recommendation in Part 2, which states that neuro-endoscopic lavage is a feasible and safe option for the removal of intraventricular clots and may lower the rate of shunt placement (Level III). Additionally a recommendation in part 7 of the guideline now states that antibiotic-impregnated shunt tubing reduces the risk of shunt infection compared with conventional silicone hardware and should be used for children who require placement of a shunt (Level I). <https://www.cns.org/guidelines/browse-guidelines-detail/pediatric-hydrocephalus-guideline>
Collapse
Affiliation(s)
- David F Bauer
- Department of Neurosurgery, Texas Children's Hospital, Pediatric Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Lissa C Baird
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Klimo
- Semmes Murphey Department of Neurosurgery, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Catherine A Mazzola
- Goryeb Children’s Hospital, Morristown, New Jersey, Rutgers Department of Neurological Surgery, Newark, New Jersey
| | - Dimitrios C Nikas
- Division of Pediatric Neurosurgery, Advocate Children's Hospital, Oak Lawn, Illinois
| | - Mandeep S Tamber
- Division of Pediatric Neurosurgery, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ann Marie Flannery
- Kids Specialty Center, Women's & Children's Hospital, Lafayette, Louisiana
| |
Collapse
|
9
|
The impact of cerebral anomalies on cognitive outcome in patients with spina bifida: A systematic review. Eur J Paediatr Neurol 2020; 28:16-28. [PMID: 32771303 DOI: 10.1016/j.ejpn.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/12/2020] [Accepted: 07/18/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spina bifida is the most common congenital birth defect affecting the central nervous system. Given the frequent association of cerebral anomalies, spina bifida is not a single developmental abnormality of the central nervous system. Patients with spina bifida typically perform below average on cognitive tasks. It has been hypothesized that associated cerebral anomalies as well negatively affect cognition in spina bifida patients. OBJECTIVE This study aims to review the impact of cerebral anomalies on cognitive outcome in patients with spina bifida. METHODS A systematic search of multiple databases, including Pubmed, Embase, Web of Science and The Cochrane Central Register of Controlled Trials, was performed. All relevant primary research articles were included. All included articles were methodologically evaluated using a critical appraisal checklist. RESULTS In total 27 articles were included in this systematic review. A significant impact of different cerebral anomalies on cognition was found. More specifically, hydrocephalus, Chiari malformation type II and anomalies of the corpus callosum, central executive network, default mode network, cortical thickness and gyrification, fornix, grey matter volume and total brain volume were found to have a significant impact on cognitive outcome. The presence of a CSF shunt was also negatively associated with cognition. The results on Chiari malformation type II decompression and CSF shunt complications are inconsistent. CONCLUSION Associated cerebral anomalies have a significant impact on cognitive outcome in patients with spina bifida. The interrelatedness of the different cerebral anomalies makes it difficult to distinguish their individual impact on cognition.
Collapse
|
10
|
Long-Term Intellectual and Fine Motor Outcomes in Spina Bifida Are Related to Myelomeningocele Repair and Shunt Intervention History. J Int Neuropsychol Soc 2020; 26:364-371. [PMID: 31729310 PMCID: PMC7125008 DOI: 10.1017/s1355617719001176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Lifespan outcomes of simultaneous versus sequential myelomeningocele repair and shunt placement or effects of repeated shunt revisions on specific domains of IQ or fine motor dexterity are largely unknown. The current study addressed these gaps in a large cohort of children and adults with spina bifida myelomeningocele (SBM). METHODS Participants between 7 and 44 years of age with SBM and shunted hydrocephalus were recruited from international clinics at two time points. Each participant completed a standardized neuropsychological evaluation that included estimates of IQ and fine motor dexterity. Simultaneous versus sequential surgical repair and number of shunt revisions were examined in relation to long-term IQ and fine motor scores. RESULTS Simultaneous myelomeningocele repair and shunting were associated with more frequent shunt revisions, as well as to lower Full Scale and verbal IQ scores, controlling for number of shunt revisions. More shunt revisions across study time points were associated with higher nonverbal IQ (NVIQ) scores. No effects were observed on fine motor dexterity. CONCLUSIONS Findings indicate generally greater influence of surgery type over shunt revision history on outcomes in well-managed hydrocephalus. Findings supported apparent, domain-specific benefits of sequential compared to simultaneous surgery across the lifespan in SBM. Higher NVIQ scores with greater number of additional shunt revisions across surgery type supported positive outcomes with effective surgical management for hydrocephalus.
Collapse
|
11
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
12
|
Toll SA, Jones MT, Yoshida EJ, Dhall G, Olch AJ, Wong KK. The relationship between ventricular volume and whole-brain irradiation dose in central nervous system germ cell tumors. Pediatr Blood Cancer 2019; 66:e28005. [PMID: 31535450 DOI: 10.1002/pbc.28005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Advanced irradiation techniques, including intensity-modulated radiation therapy (IMRT), aim to limit irradiation to adjoining tissues by conforming beams to a well-defined volume. In intracranial germinomas, whole-ventricular IMRT decreases the volume of irradiation to surrounding parenchyma. This study examined the relationship between ventricular volume and radiation dose to surrounding tissue. PROCEDURE We retrospectively reviewed age, sex, ventricular and brain volume, ventricular dose, and volume of brain that received 12 Gy (V12) for patients diagnosed with germ cell tumors at our institution treated with whole-ventricular IMRT between 2002 and 2016. Variables were assessed for correlation and statistical significance. RESULTS Forty-seven patients were analyzed. The median whole-ventricular irradiation dose was 24 Gy with a median boost dose of 30 Gy. The median ventricular volume was 234.3 cm3 , and median brain volume was 1408 cm3 . There was no significant difference between mean ventricular volume of suprasellar versus pineal tumors (P = .95). The median V12 of the brain, including the ventricles, was 58.9%. The strongest correlation was between ventricular volume and V12, with an r2 (coefficient of determination) of .47 (P < .001). Multiple regression analysis indicated that total boost dose and boost planning target volume significantly predicted V12 (P < .001). CONCLUSIONS Although whole-ventricular IMRT limited irradiation to surrounding tissue in our cohort, a significant percentage of the brain received at least 12 Gy. This study suggests that there is a positive correlation between ventricular volume and the volume of brain parenchyma receiving at least 12 Gy with an important contribution from the boost phase of treatment.
Collapse
Affiliation(s)
- Stephanie A Toll
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Marjorie T Jones
- Department of Mathematics, Pepperdine University, Malibu, California
| | - Emi J Yoshida
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Girish Dhall
- Division of Pediatric Hematology-Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Arthur J Olch
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiation Oncology, Keck School of Medicine, University of California, Los Angeles, California.,Radiation Oncology Program, Children's Hospital Los, Angeles, Los Angeles, California
| | - Kenneth K Wong
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiation Oncology, Keck School of Medicine, University of California, Los Angeles, California.,Radiation Oncology Program, Children's Hospital Los, Angeles, Los Angeles, California
| |
Collapse
|
13
|
Li Y, Tan Z, Wang Y, Wang Y, Li D, Chen Q, Huang W. Detection of differentiated changes in gray matter in children with progressive hydrocephalus and chronic compensated hydrocephalus using voxel-based morphometry and machine learning. Anat Rec (Hoboken) 2019; 303:2235-2247. [PMID: 31654555 DOI: 10.1002/ar.24306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 08/31/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
Abstract
Currently, no neuroimaging study has reported the detection of specific imaging biomarkers that distinguish the progressive hydrocephalus (PH) and chronic compensated hydrocephalus (CH). Our main focus is to evaluate the different structural changes in classifying the two types of hydrocephalus children. Twenty-two children with hydrocephalus (12 PHs and 10 CHs) and 30 age-matched healthy controls were enrolled and the T1-weighted imaging was collected in the study. A customized voxel-based morphometry (VBM) approach and support vector machine (SVM) were combined to investigate the structural changes and group classification. Comparing with the controls and CH, PH groups invariably showed a significant decrease of GM volume in the bilateral hippocampus/parahippocampus, insula, and motor-related areas. SVM applied to the GM volumes of bilateral hippocampus/parahippocampus, insula, and motor-related areas correctly identified hydrocephalus children from normal controls with a statistically significant accuracy of 88.46% (p ≤ .001). In addition, SVM applied to GM volumes of the same regions correctly identified PH from CH with a statistically significant accuracy of 77.27% (p ≤ .009). Using VBM analysis, we characterized and visualized the GM changes in children with hydrocephalus. Machine learning results further confirmed that a significant decrease of the bilateral hippocampus/parahippocampus, insula, and motor-related GM volume can serve as a specific neuroimaging index to distinguish the children with PH from the children with CH and controls at individual. The findings could help to aid the identification of individuals with PH in clinical practice.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Ya Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanfang Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Tan K, Meiri A, Mowrey WB, Abbott R, Goodrich JT, Sandler AL, Suri AK, Lipton ML, Wagshul ME. Diffusion tensor imaging and ventricle volume quantification in patients with chronic shunt-treated hydrocephalus: a matched case-control study. J Neurosurg 2018; 129:1611-1622. [PMID: 29350598 DOI: 10.3171/2017.6.jns162784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/19/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe object of this study was to use diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) to characterize the long-term effects of hydrocephalus and shunting on white matter integrity and to investigate the relationship of ventricular size and alterations in white matter integrity with headache and quality-of-life outcome measures.METHODSPatients with shunt-treated hydrocephalus and age- and sex-matched healthy controls were recruited into the study and underwent anatomical and DTI imaging on a 3-T MRI scanner. All patients were clinically stable, had undergone CSF shunt placement before 2 years of age, and had a documented history of complaints of headaches. Outcome was scored based on the Headache Disability Inventory and the Hydrocephalus Outcome Questionnaire. Fractional anisotropy (FA) and other DTI-based measures (axial, radial, and mean diffusivity; AD, RD, and MD, respectively) were extracted in the corpus callosum and internal capsule with manual region-of-interest delineation and in other regions with TBSS. Paired t-tests, corrected with a 5% false discovery rate, were used to identify regions with significant differences between patients and controls. Within the patient group, linear regression models were used to investigate the relationship between FA or ventricular volume and outcome, as well as the effect of shunt-related covariates.RESULTSTwenty-one hydrocephalus patients and 21 matched controls completed the study, and their data were used in the final analysis. The authors found significantly lower FA for patients than for controls in 20 of the 48 regions, mostly posterior white matter structures, in periventricular as well as more distal tracts. Of these 20 regions, 17 demonstrated increased RD, while only 5 showed increased MD and 3 showed decreased AD. No areas of increased FA were observed. Higher FA in specific periventricular white matter tracts, tending toward FA in controls, was associated with increased ventricular size, as well as improved clinical outcome.CONCLUSIONSThe study shows that TBSS-based DTI is a sensitive technique for elucidating changes in white matter structures due to hydrocephalus and chronic CSF shunting and provides preliminary evidence that DTI may be a valuable tool for tailoring shunt procedures to monitor ventricular size following shunting and achieve optimal outcome, as well as for guiding the development of alternate therapies for hydrocephalus.
Collapse
Affiliation(s)
- Kristy Tan
- 1Department of Radiology, Gruss Magnetic Resonance Research Center, and
| | - Avital Meiri
- 1Department of Radiology, Gruss Magnetic Resonance Research Center, and
| | | | - Rick Abbott
- 3Department of Neurological Surgery, Children's Hospital at Montefiore; and
| | - James T Goodrich
- 3Department of Neurological Surgery, Children's Hospital at Montefiore; and
| | - Adam L Sandler
- 3Department of Neurological Surgery, Children's Hospital at Montefiore; and
| | - Asif K Suri
- 1Department of Radiology, Gruss Magnetic Resonance Research Center, and
- 5Department of Radiology, Montefiore Medical Center, Bronx, New York
| | - Michael L Lipton
- 1Department of Radiology, Gruss Magnetic Resonance Research Center, and
- 4Neuroscience
- 5Department of Radiology, Montefiore Medical Center, Bronx, New York
- 6Psychiatry and Behavioral Sciences, and
| | - Mark E Wagshul
- 1Department of Radiology, Gruss Magnetic Resonance Research Center, and
- 7Physiology and Biophysics, Albert Einstein College of Medicine
| |
Collapse
|
15
|
Are Shunt Revisions Associated with IQ in Congenital Hydrocephalus? A Meta -Analysis. Neuropsychol Rev 2016; 26:329-339. [PMID: 27815765 PMCID: PMC9996637 DOI: 10.1007/s11065-016-9335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 01/26/2023]
Abstract
Although it is generally acknowledged that shunt revisions are associated with reductions in cognitive functions in individuals with congenital hydrocephalus, the literature yields mixed results and is inconclusive. The current study used meta-analytic methods to empirically synthesize studies addressing the association of shunt revisions and IQ in individuals with congenital hydrocephalus. Six studies and three in-house datasets yielded 11 independent samples for meta-analysis. Groups representing lower and higher numbers of shunt revisions were coded to generate effect sizes for differences in IQ scores. Mean effect size across studies was statistically significant, but small (Hedges' g = 0.25, p < 0.001, 95 % CI [0.08, 0.43]) with more shunt revisions associated with lower IQ scores. Results show an association of lower IQ and more shunt revisions of about 3 IQ points, a small effect, but within the error of measurement associated with IQ tests. Although clinical significance of this effect is not clear, results suggest that repeated shunt revisions because of shunt failure is associated with a reduction in cognitive functions.
Collapse
|
16
|
Bradley KA, Juranek J, Romanowska-Pawliczek A, Hannay HJ, Cirino PT, Dennis M, Kramer LA, Fletcher JM. Plasticity of Interhemispheric Temporal Lobe White Matter Pathways Due to Early Disruption of Corpus Callosum Development in Spina Bifida. Brain Connect 2016; 6:238-48. [PMID: 26798959 DOI: 10.1089/brain.2015.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development.
Collapse
Affiliation(s)
- Kailyn A Bradley
- 1 Department of Psychology, University of Houston , Houston, Texas.,2 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenifer Juranek
- 3 Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston , Houston, Texas
| | - Anna Romanowska-Pawliczek
- 3 Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston , Houston, Texas
| | - H Julia Hannay
- 1 Department of Psychology, University of Houston , Houston, Texas
| | - Paul T Cirino
- 1 Department of Psychology, University of Houston , Houston, Texas
| | - Maureen Dennis
- 4 Program in Neurosciences and Mental Health, The Hospital for Sick Children , Toronto, Canada
| | - Larry A Kramer
- 5 Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jack M Fletcher
- 1 Department of Psychology, University of Houston , Houston, Texas
| |
Collapse
|
17
|
|