1
|
Ruiz-Cardozo MA, Barot K, Yahanda AT, Singh SP, Trevino G, Yakdan S, Brehm S, Bui T, Joseph K, Vippa T, Hardi A, Jauregui JJ, Molina CA. Invasive devices to monitor the intraspinal perfusion pressure in the hemodynamic management of acute spinal cord injury: A systematic scoping review. Acta Neurochir (Wien) 2024; 166:400. [PMID: 39382579 DOI: 10.1007/s00701-024-06283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Various methods for measuring intrathecal pressure (ITP) after spinal cord injury (SCI) to guide hemodynamic management have been investigated. To synthesize the current literature, this current study conducted a scoping review of the use of intrathecal devices to monitor ITP during acute management of SCI with the aim of understanding the association between ITP monitoring with physiological and clinical outcomes. METHODS A systematic review of literature following the Cochrane Handbook for Systematic Reviews of Interventions and Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. All eligible studies were screened for inclusion and exclusion criteria. Data extracted included number of patients included, severity of injury, characteristics of the intervention-intrathecal device used to record the ITP, outcomes -hemodynamic parameters observed, changes in the American Spinal Injury Association (ASIA) Impairment Scale (AIS), total motor scores, association of ITP with other physiological variables. RESULTS The search yielded a total of 1,698 articles, of which 30 observational studies and 2 randomized clinical trials were deemed eligible based on their use of an intrathecal invasive device to monitor spinal cord perfusion pressure (SCPP) in patients with SCI. Of these, 9 studies used a lumbar drain, 23 a Codman pressure probe and 1 study that used both. These studies underscore the crucial interplay between ITP, the SCPP and physiological variables, with neurological outcome. It is still unclear whether monitoring from a lumbar drain is accurate enough to highlight what is occurring at the site of SCI, which is the main advantage of Codman Probe, however, the latter requires specialized personnel that may not be available in most settings. Minor adverse effects were associated with lumbar drain catheters, while cerebrospinal fluid leak requiring repair (~ 7%) is the main concern with Codman Probes. CONCLUSION Future investigation of SCPP protocols via lumbar drains and Codman probes ought to involve multi-centered randomized controlled trials and continued translational investigation with animal models.
Collapse
Affiliation(s)
- Miguel A Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Som P Singh
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Salim Yakdan
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tanvi Vippa
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julio J Jauregui
- Department of Orthopedic Surgery, University of Maryland Medical System, Baltimore, MD, USA
| | - Camilo A Molina
- Department of Neurological Surgery, Washington University School of Medicine, 600 N. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
2
|
Harmon JN, Hyde JE, Jensen DE, D'cessare EC, Odarenko AA, Bruce MF, Khaing ZZ. Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging. Exp Neurol 2024; 374:114681. [PMID: 38199511 PMCID: PMC10922898 DOI: 10.1016/j.expneurol.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Dylan E Jensen
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Emma C D'cessare
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Anton A Odarenko
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
3
|
Thomas AX, Erklauer JC. Neurocritical care and neuromonitoring considerations in acute pediatric spinal cord injury. Semin Pediatr Neurol 2024; 49:101122. [PMID: 38677801 DOI: 10.1016/j.spen.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Management of pediatric spinal cord injury (SCI) is an essential skill for all pediatric neurocritical care physicians. In this review, we focus on the evaluation and management of pediatric SCI, highlight a novel framework for the monitoring of such patients in the intensive care unit (ICU), and introduce advancements in critical care techniques in monitoring and management. The initial evaluation and characterization of SCI is crucial for improving outcomes as well as prognostication. While physical examination and imaging are the main stays of the work-up, we propose the use of somatosensory evoked potentials (SSEPs) and transcranial magnetic stimulation (TMS) for challenging clinical scenarios. SSEPs allow for functional evaluation of the dorsal columns consisting of tracts associated with hand function, ambulation, and bladder function. Meanwhile, TMS has the potential for informing prognostication as well as response to rehabilitation. Spine stabilization, and in some cases surgical decompression, along with respiratory and hemodynamic management are essential. Emerging research suggests that targeted spinal cerebral perfusion pressure may provide potential benefits. This review aims to increase the pediatric neurocritical care physician's comfort with SCI while providing a novel algorithm for monitoring spinal cord function in the ICU.
Collapse
Affiliation(s)
- Ajay X Thomas
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA.
| | - Jennifer C Erklauer
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Jin C, Wang K, Ren Y, Li Y, Wang Z, Cheng L, Xie N. Role of durotomy on function outcome, tissue sparing, inflammation, and tissue stiffness after spinal cord injury in rats. MedComm (Beijing) 2024; 5:e530. [PMID: 38576458 PMCID: PMC10993870 DOI: 10.1002/mco2.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
Currently, there is a lack of effective treatments for spinal cord injury (SCI), a debilitating medical condition associated with enduring paralysis and irreversible neuronal damage. Extradural decompression of osseous as well as soft tissue components has historically been the principal objective of surgical procedures. Nevertheless, this particular surgical procedure fails to tackle the intradural compressive alterations that contribute to secondary SCI. Here, we propose an early intrathecal decompression strategy and evaluate its role on function outcome, tissue sparing, inflammation, and tissue stiffness after SCI. Durotomy surgery significantly promoted recovery of hindlimb locomotor function in an open-field test. Radiological analysis suggested that lesion size and tissue edema were significantly reduced in animals that received durotomy. Relative to the group with laminectomy alone, the animals treated with a durotomy had decreased cavitation, scar formation, and inflammatory responses at 4 weeks after SCI. An examination of the mechanical properties revealed that durotomy facilitated an expeditious restoration of the injured tissue's elastic rigidity. In general, early decompressive durotomy could serve as a significant strategy to mitigate the impairments caused by secondary injury and establish a more conducive microenvironment for prospective cellular or biomaterial transplantation.
Collapse
Affiliation(s)
- Chen Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of OrthopedicsTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Kaiwei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of OrthopedicsShanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Zhanwei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Kwon BK, Tetreault LA, Martin AR, Arnold PM, Marco RAW, Newcombe VFJ, Zipser CM, McKenna SL, Korupolu R, Neal CJ, Saigal R, Glass NE, Douglas S, Ganau M, Rahimi-Movaghar V, Harrop JS, Aarabi B, Wilson JR, Evaniew N, Skelly AC, Fehlings MG. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on Hemodynamic Management. Global Spine J 2024; 14:187S-211S. [PMID: 38526923 DOI: 10.1177/21925682231202348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
STUDY DESIGN Clinical practice guideline development following the GRADE process. OBJECTIVES Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets. METHODS A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences. RESULTS The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence. CONCLUSION We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI.
Collapse
Affiliation(s)
- Brian K Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | | | - Allan R Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Paul M Arnold
- Department of Neurosurgery, University of Illinois Champaign-Urbana, Urbana, IL, USA
| | - Rex A W Marco
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Virginia F J Newcombe
- University Division of Anaesthesia and PACE, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carl M Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
| | - Chris J Neal
- Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nina E Glass
- Department of Surgery, Rutgers, New Jersey Medical School, University Hospital, Newark, NJ
| | - Sam Douglas
- Praxis Spinal Cord Institute, Vancouver, BC, Canada
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James S Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jefferson R Wilson
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nathan Evaniew
- McCaig Institute for Bone and Joint Health, Department of Surgery, Orthopaedic Surgery, Cumming School of Medicine, University of Calgary, AB, Canada
| | | | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Visagan R, Kearney S, Blex C, Serdani-Neuhaus L, Kopp MA, Schwab JM, Zoumprouli A, Papadopoulos MC, Saadoun S. Adverse Effect of Neurogenic, Infective, and Inflammatory Fever on Acutely Injured Human Spinal Cord. J Neurotrauma 2023; 40:2680-2693. [PMID: 37476968 PMCID: PMC11265769 DOI: 10.1089/neu.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
This study aims to determine the effect of neurogenic, inflammatory, and infective fevers on acutely injured human spinal cord. In 86 patients with acute, severe traumatic spinal cord injuries (TSCIs; American Spinal Injury Association Impairment Scale (AIS), grades A-C) we monitored (starting within 72 h of injury, for up to 1 week) axillary temperature as well as injury site cord pressure, microdialysis (MD), and oxygen. High fever (temperature ≥38°C) was classified as neurogenic, infective, or inflammatory. The effect of these three fever types on injury-site physiology, metabolism, and inflammation was studied by analyzing 2864 h of intraspinal pressure (ISP), 1887 h of MD, and 840 h of tissue oxygen data. High fever occurred in 76.7% of the patients. The data show that temperature was higher in neurogenic than non-neurogenic fever. Neurogenic fever only occurred with injuries rostral to vertebral level T4. Compared with normothermia, fever was associated with reduced tissue glucose (all fevers), increased tissue lactate to pyruvate ratio (all fevers), reduced tissue oxygen (neurogenic + infective fevers), and elevated levels of pro-inflammatory cytokines/chemokines (infective fever). Spinal cord metabolic derangement preceded the onset of infective but not neurogenic or inflammatory fever. By considering five clinical characteristics (level of injury, axillary temperature, leukocyte count, C-reactive protein [CRP], and serum procalcitonin [PCT]), it was possible to confidently distinguish neurogenic from non-neurogenic high fever in 59.3% of cases. We conclude that neurogenic, infective, and inflammatory fevers occur commonly after acute, severe TSCI and are detrimental to the injured spinal cord with infective fever being the most injurious. Further studies are required to determine whether treating fever improves outcome. Accurately diagnosing neurogenic fever, as described, may reduce unnecessary septic screens and overuse of antibiotics in these patients.
Collapse
Affiliation(s)
- Ravindran Visagan
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Siobhan Kearney
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
- Neuro Anesthesia and Neuro Intensive Care Unit, St. George's Hospital, London, United Kingdom
| | - Christian Blex
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leonarda Serdani-Neuhaus
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A. Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan M. Schwab
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Berlin, Germany
- The Belford Center for Spinal Cord Injury, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
- Departments of Neurology, Physical Medicine and Rehabilitation, and Neurosciences, The Ohio State University, Columbus, Ohio, USA
| | - Argyro Zoumprouli
- Neuro Anesthesia and Neuro Intensive Care Unit, St. George's Hospital, London, United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| |
Collapse
|
7
|
Visagan R, Boseta E, Zoumprouli A, Papadopoulos MC, Saadoun S. Spinal cord perfusion pressure correlates with breathing function in patients with acute, cervical traumatic spinal cord injuries: an observational study. Crit Care 2023; 27:362. [PMID: 37730639 PMCID: PMC10512582 DOI: 10.1186/s13054-023-04643-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE This study aims to determine the relationship between spinal cord perfusion pressure (SCPP) and breathing function in patients with acute cervical traumatic spinal cord injuries. METHODS We included 8 participants without cervical TSCI plus 13 patients with cervical traumatic spinal cord injuries, American Spinal Injury Association Impairment Scale grades A-C. In the TSCI patients, we monitored intraspinal pressure from the injury site for up to a week and computed the SCPP as mean arterial pressure minus intraspinal pressure. Breathing function was quantified by diaphragmatic electromyography using an EDI (electrical activity of the diaphragm) nasogastric tube as well as by ultrasound of the diaphragm and the intercostal muscles performed when sitting at 20°-30°. RESULTS We analysed 106 ultrasound examinations (total 1370 images/videos) and 198 EDI recordings in the patients with cervical traumatic spinal cord injuries. During quiet breathing, low SCPP (< 60 mmHg) was associated with reduced EDI-peak (measure of inspiratory effort) and EDI-min (measure of the tonic activity of the diaphragm), which increased and then plateaued at SCPP 60-100 mmHg. During quiet and deep breathing, the diaphragmatic thickening fraction (force of diaphragmatic contraction) plotted versus SCPP had an inverted-U relationship, with a peak at SCPP 80-90 mmHg. Diaphragmatic excursion (up and down movement of the diaphragm) during quiet breathing did not correlate with SCPP, but diaphragmatic excursion during deep breathing plotted versus SCPP had an inverse-U relationship with a peak at SCPP 80-90 mmHg. The thickening fraction of the intercostal muscles plotted versus SCPP also had inverted-U relationship, with normal intercostal function at SCPP 80-100 mmHg, but failure of the upper and middle intercostals to contract during inspiration (i.e. abdominal breathing) at SCPP < 80 or > 100 mmHg. CONCLUSIONS After acute, cervical traumatic spinal cord injuries, breathing function depends on the SCPP. SCPP 80-90 mmHg correlates with optimum diaphragmatic and intercostal muscle function. Our findings raise the possibility that intervention to maintain SCPP in this range may accelerate ventilator liberation which may reduce stay in the neuro-intensive care unit.
Collapse
Affiliation(s)
- Ravindran Visagan
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ellaine Boseta
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
- Neuro-anaesthesia and Neuro-intensive Care Unit, St. George's Hospital, London, SW17 0QT, UK
| | - Argyro Zoumprouli
- Neuro-anaesthesia and Neuro-intensive Care Unit, St. George's Hospital, London, SW17 0QT, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
8
|
Chryssikos T, Stokum JA, Ahmed AK, Chen C, Wessell A, Cannarsa G, Caffes N, Oliver J, Olexa J, Shea P, Labib M, Woodworth G, Ksendzovsky A, Bodanapally U, Crandall K, Sansur C, Schwartzbauer G, Aarabi B. Surgical Decompression of Traumatic Cervical Spinal Cord Injury: A Pilot Study Comparing Real-Time Intraoperative Ultrasound After Laminectomy With Postoperative MRI and CT Myelography. Neurosurgery 2023; 92:353-362. [PMID: 36637270 PMCID: PMC9815093 DOI: 10.1227/neu.0000000000002207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Decompression of the injured spinal cord confers neuroprotection. Compared with timing of surgery, verification of surgical decompression is understudied. OBJECTIVE To compare the judgment of cervical spinal cord decompression using real-time intraoperative ultrasound (IOUS) following laminectomy with postoperative MRI and CT myelography. METHODS Fifty-one patients were retrospectively reviewed. Completeness of decompression was evaluated by real-time IOUS and compared with postoperative MRI (47 cases) and CT myelography (4 cases). RESULTS Five cases (9.8%) underwent additional laminectomy after initial IOUS evaluation to yield a final judgment of adequate decompression using IOUS in all 51 cases (100%). Postoperative MRI/CT myelography showed adequate decompression in 43 cases (84.31%). Six cases had insufficient bony decompression, of which 3 (50%) had cerebrospinal fluid effacement at >1 level. Two cases had severe circumferential intradural swelling despite adequate bony decompression. Between groups with and without adequate decompression on postoperative MRI/CT myelography, there were significant differences for American Spinal Injury Association motor score, American Spinal Injury Association Impairment Scale grade, AO Spine injury morphology, and intramedullary lesion length (IMLL). Multivariate analysis using stepwise variable selection and logistic regression showed that preoperative IMLL was the most significant predictor of inadequate decompression on postoperative imaging (P = .024). CONCLUSION Patients with severe clinical injury and large IMLL were more likely to have inadequate decompression on postoperative MRI/CT myelography. IOUS can serve as a supplement to postoperative MRI/CT myelography for the assessment of spinal cord decompression. However, further investigation, additional surgeon experience, and anticipation of prolonged swelling after surgery are required.
Collapse
Affiliation(s)
- Timothy Chryssikos
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdul-Kareem Ahmed
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron Wessell
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Gregory Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Oliver
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joshua Olexa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Labib
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Graeme Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Uttam Bodanapally
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kenneth Crandall
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Dhaliwal P, Gomez A, Zeiler FA. Case report: Continuous spinal cord physiologic monitoring following traumatic spinal cord injury-A report from the Winnipeg Intraspinal Pressure Study (WISP). Front Neurol 2023; 14:1069623. [PMID: 37114219 PMCID: PMC10128987 DOI: 10.3389/fneur.2023.1069623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Acute traumatic spinal cord injury is routinely managed by surgical decompression and instrumentation of the spine. Guidelines also suggest elevating mean arterial pressure to 85 mmHg to mitigate secondary injury. However, the evidence for these recommendations remains very limited. There is now considerable interest in measuring spinal cord perfusion pressure by monitoring mean arterial pressure and intraspinal pressure. Here, we present our first institutional experience of using a strain gauge pressure transducer monitor to measure intraspinal pressure and subsequent derivation of spinal cord perfusion pressure. Case presentation The patient presented to medical attention after a fall off of scaffolding. A trauma assessment was completed at a local emergency room. He did not have any motor strength or sensation to the lower extremities. A computed tomography (CT) scan of the thoracolumbar spine confirmed a T12 burst fracture with retropulsion of bone fragments into the spinal canal. He was taken to surgery for urgent decompression of the spinal cord and instrumentation of the spine. A subdural strain gauge pressure monitor was placed at the site of injury through a small dural incision. Mean arterial pressure and intraspinal pressure were then monitored for 5 days after surgery. Spinal cord perfusion pressure was derived. The procedure was performed without complication and the patient underwent rehabilitation for 3 months where he regained some motor and sensory function in his lower extremities. Conclusion The first North American attempt at insertion of a strain gauge pressure monitor into the subdural space at the site of injury following acute traumatic spinal cord injury was performed successfully and without complication. Spinal cord perfusion pressure was derived successfully using this physiological monitoring. Further research efforts to validate this technique are required.
Collapse
Affiliation(s)
- Perry Dhaliwal
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Perry Dhaliwal,
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick Adam Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Weber-Levine C, Judy BF, Hersh AM, Awosika T, Tsehay Y, Kim T, Chara A, Theodore N. Multimodal interventions to optimize spinal cord perfusion in patients with acute traumatic spinal cord injuries: a systematic review. J Neurosurg Spine 2022; 37:729-739. [PMID: 35901776 DOI: 10.3171/2022.4.spine211434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors systematically reviewed current evidence for the utility of mean arterial pressure (MAP), intraspinal pressure (ISP), and spinal cord perfusion pressure (SCPP) as predictors of outcomes after traumatic spinal cord injury (SCI). METHODS PubMed, Cochrane Reviews Library, EMBASE, and Scopus databases were queried in December 2020. Two independent reviewers screened articles using Covidence software. Disagreements were resolved by a third reviewer. The inclusion criteria for articles were 1) available in English; 2) full text; 3) clinical studies on traumatic SCI interventions; 4) involved only human participants; and 5) focused on MAP, ISP, or SCPP. Exclusion criteria were 1) only available in non-English languages; 2) focused only on the brain; 3) described spinal diseases other than SCI; 4) interventions altering parameters other than MAP, ISP, or SCPP; and 5) animal studies. Studies were analyzed qualitatively and grouped into two categories: interventions increasing MAP or interventions decreasing ISP. The Scottish Intercollegiate Guidelines Network level of evidence was used to assess bias and the Grading of Recommendations, Assessment, Development, and Evaluation approach was used to rate confidence in the anticipated effects of each outcome. RESULTS A total of 2540 unique articles were identified, of which 72 proceeded to full-text review and 24 were included in analysis. One additional study was included retrospectively. Articles that went through full-text review were excluded if they were a review paper (n = 12), not a full article (n = 12), a duplicate paper (n = 9), not a human study (n = 3), not in English (n = 3), not pertaining to traumatic SCI (n = 3), an improper intervention (n = 3), without intervention (n = 2), and without analysis of intervention (n = 1). Although maintaining optimal MAP levels is the current recommendation for SCI management, the published literature supports maintenance of SCPP as a stronger indicator of favorable outcomes. Studies also suggest that laminectomy and durotomy may provide better outcomes than laminectomy alone, although higher-level studies are needed. Current evidence is inconclusive on the effectiveness of CSF drainage for reducing ISP. CONCLUSIONS This review demonstrates the importance of assessing how different interventions may vary in their ability to optimize SCPP.
Collapse
|
11
|
Gee CM, Kwon BK. Significance of spinal cord perfusion pressure following spinal cord injury: A systematic scoping review. J Clin Orthop Trauma 2022; 34:102024. [PMID: 36147378 PMCID: PMC9486559 DOI: 10.1016/j.jcot.2022.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
This scoping review systematically reviewed relevant research to summarize the literature addressing the significance of monitoring spinal cord perfusion pressure (SCPP) in acute traumatic spinal cord injury (SCI). The objectives of the review were to (1) examine the nature of research in the field of SCPP monitoring in SCI, (2) summarize the key research findings in the field, and (3) identify research gaps in the existing literature and future research priorities. Primary literature searches were conducted using databases (Medline and Embase) and expanded searches were conducted by reviewing the references of eligible articles and searches of Scopus, Web of Science core collection, Google Scholar, and conference abstracts. Relevant data were extracted from the studies and synthesis of findings was guided by the identification of patterns across studies to identify key themes and research gaps within the literature. Following primary and expanded searches, a total of 883 articles were screened. Seventy-three articles met the review inclusion criteria, including 34 original research articles. Other articles were categorized as conference abstracts, literature reviews, systematic reviews, letters to the editor, perspective articles, and editorials. Key themes relevant to the research question that emerged from the review included the relationship between SCPP and neurological recovery, the safety of monitoring pressures within the intrathecal space, and methods of intervention to enhance SCPP in the setting of acute traumatic SCI. Original research that aims to enhance SCPP by targeting increases in mean arterial pressure or reducing pressure in the intrathecal space is reviewed. Further discussion regarding where pressure within the intrathecal space should be measured is provided. Finally, we highlight research gaps in the literature such as determining the feasibility of invasive monitoring at smaller centers, the need for a better understanding of cerebrospinal fluid physiology following SCI, and novel pharmacological interventions to enhance SCPP in the setting of acute traumatic SCI. Ultimately, despite a growing body of literature on the significance of SCPP monitoring following SCI, there are still a number of important knowledge gaps that will require further investigation.
Collapse
Affiliation(s)
- Cameron M. Gee
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Canada
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Canada
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Canada
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Canada
| |
Collapse
|
12
|
Yang C, He T, Wang Q, Wang G, Ma J, Chen Z, Li Q, Wang L, Quan Z. Elevated intraspinal pressure drives edema progression after acute compression spinal cord injury in rabbits. Exp Neurol 2022; 357:114206. [PMID: 35988698 DOI: 10.1016/j.expneurol.2022.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Elevated intraspinal pressure (ISP) following traumatic spinal cord injury (tSCI) can be an important factor for secondary SCI that may result in greater tissue damage and functional deficits. Our present study aimed to investigate the dynamic changes in ISP after different degrees of acute compression SCI in rabbits with closed canals and explore its influence on spinal cord pathophysiology. Closed balloon compression injuries were induced with different inflated volumes (40 μl, 50 μl or no inflation) at the T7/8 level in rabbits. ISP was monitored by a SOPHYSA probe at the epicenter within 7 days post-SCI. Edema progression, spinal cord perfusion and damage severity were evaluated by serial multisequence MRI scans, somatosensory evoked potentials (SEPs) and behavioral scores. Histological and blood spinal cord barrier (BSCB) permeability results were subsequently analyzed. The results showed that the ISP waveforms comprised three peaks, significantly increased after tSCI, peaked at 72 h (21.86 ± 3.13 mmHg) in the moderate group or 48 h (31.71 ± 6.02 mmHg) in the severe group and exhibited "slow elevated and fast decreased" or "fast elevated and slow decreased" dynamic changes in both injured groups. Elevated ISP after injury was correlated with spinal cord perfusion and edema progression, leading to secondary lesion enlargement. The secondary damage aggravation can be visualized by diffusion tensor tractography (DTT). Moreover, the BSCB permeability was significantly increased at the epicenter and rostrocaudal segments at 72 h after SCI; by 14 days, notable permeability was still observed at the caudal segment in the severely injured rabbits. Our results suggest that the ISP of rabbits with closed canals increased after acute compression SCI and exhibited different dynamic change patterns in moderately and severely injured rabbits. Elevated ISP exacerbated spinal cord perfusion, drove edema progression and led to secondary lesion enlargement that was strongly associated with BSCB disruption. For severe tSCI, early intervention targeting elevated ISP may be an indispensable choice to rescue spinal cord function.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Tao He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Orthopaedic Trauma, Chongqing General Hospital, No.118 Xingguang Avenue, Liangjiang New District, Chongqing 40114, China
| | - Qing Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China
| | - Gaoju Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China
| | - Jingjin Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Zhiyu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Qiaochu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
13
|
Picetti E, Iaccarino C, Coimbra R, Abu-Zidan F, Tebala GD, Balogh ZJ, Biffl WL, Coccolini F, Gupta D, Maier RV, Marzi I, Robba C, Sartelli M, Servadei F, Stahel PF, Taccone FS, Unterberg AW, Antonini MV, Galante JM, Ansaloni L, Kirkpatrick AW, Rizoli S, Leppaniemi A, Chiara O, De Simone B, Chirica M, Shelat VG, Fraga GP, Ceresoli M, Cattani L, Minardi F, Tan E, Wani I, Petranca M, Domenichelli F, Cui Y, Malchiodi L, Sani E, Litvin A, Hecker A, Montanaro V, Beka SG, Di Saverio S, Rossi S, Catena F. The acute phase management of spinal cord injury affecting polytrauma patients: the ASAP study. World J Emerg Surg 2022; 17:20. [PMID: 35468806 PMCID: PMC9036814 DOI: 10.1186/s13017-022-00422-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Few data on the management of acute phase of traumatic spinal cord injury (tSCI) in patients suffering polytrauma are available. As the therapeutic choices in the first hours may have a deep impact on outcome of tSCI patients, we conducted an international survey investigating this topic. METHODS The survey was composed of 29 items. The main endpoints of the survey were to examine: (1) the hemodynamic and respiratory management, (2) the coagulation management, (3) the timing of magnetic resonance imaging (MRI) and spinal surgery, (4) the use of corticosteroid therapy, (5) the role of intraspinal pressure (ISP)/spinal cord perfusion pressure (SCPP) monitoring and (6) the utilization of therapeutic hypothermia. RESULTS There were 171 respondents from 139 centers worldwide. A target mean arterial pressure (MAP) target of 80-90 mmHg was chosen in almost half of the cases [n = 84 (49.1%)]. A temporary reduction in the target MAP, for the time strictly necessary to achieve bleeding control in polytrauma, was accepted by most respondents [n = 100 (58.5%)]. Sixty-one respondents (35.7%) considered acceptable a hemoglobin (Hb) level of 7 g/dl in tSCI polytraumatized patients. An arterial partial pressure of oxygen (PaO2) of 80-100 mmHg [n = 94 (55%)] and an arterial partial pressure of carbon dioxide (PaCO2) of 35-40 mmHg [n = 130 (76%)] were chosen in most cases. A little more than half of respondents considered safe a platelet (PLT) count > 100.000/mm3 [n = 99 (57.9%)] and prothrombin time (PT)/activated partial thromboplastin time (aPTT) < 1.5 times the normal control [n = 85 (49.7%)] in patients needing spinal surgery. MRI [n = 160 (93.6%)] and spinal surgery [n = 158 (92.4%)] should be performed after intracranial, hemodynamic, and respiratory stabilization by most respondents. Corticosteroids [n = 103 (60.2%)], ISP/SCPP monitoring [n = 148 (86.5%)], and therapeutic hypothermia [n = 137 (80%)] were not utilized by most respondents. CONCLUSIONS Our survey has shown a great worldwide variability in clinical practices for acute phase management of tSCI patients with polytrauma. These findings can be helpful to define future research in order to optimize the care of patients suffering tSCI.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Reggio Emilia, Italy
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA, USA
- Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Fikri Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Giovanni D Tebala
- Department of General Surgery, Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxford, UK
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, Newcastle, NSW, Australia
- Discipline of Surgery, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Walter L Biffl
- Department of Trauma and Acute Care Surgery, Scripps Memorial Hospital, La Jolla, CA, USA
| | | | - Deepak Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ronald V Maier
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt Am Main, Frankfurt am Main, Germany
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
- Dipartimento Di Scienze Chirurgiche Diagnostiche Integrate, University of Genova, Genova, Italy
| | - Massimo Sartelli
- Department of General Surgery, Macerata Hospital, Macerata, Italy
| | - Franco Servadei
- Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Philip F Stahel
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
- The Medical Center of Aurora, Aurora, CO, USA
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Marta Velia Antonini
- ECMO Team, Bufalini Hospital, Cesena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Reggio Emilia, Italy
| | - Joseph M Galante
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Luca Ansaloni
- Department of General Surgery, University Hospital of Pavia, Pavia, Italy
| | - Andrew W Kirkpatrick
- General, Acute Care, Abdominal Wall Reconstruction, and Trauma Surgery, Foothills Medical Centre, Calgary, AB, Canada
| | - Sandro Rizoli
- Surgery Department, Section of Trauma Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Ari Leppaniemi
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Osvaldo Chiara
- General Surgery and Trauma Team, ASST Niguarda Milano, University of Milano, Milan, Italy
| | - Belinda De Simone
- Department of General and Metabolic Surgery, Poissy and Saint-Germain-en-Laye Hospitals, Poissy, France
| | - Mircea Chirica
- Department of Digestive Surgery, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
| | - Vishal G Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Gustavo P Fraga
- Surgery Department, Faculdade de Ciências Médicas (FCM), Unicamp Campinas, Campinas, SP, Brazil
| | - Marco Ceresoli
- General Surgery Department, School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Luca Cattani
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Francesco Minardi
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Edward Tan
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Imtiaz Wani
- Department of Minimal Access and General Surgery, Government Gousia Hospital, Srinagar, Kashmir, India
| | - Massimo Petranca
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Francesco Domenichelli
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Laura Malchiodi
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Emanuele Sani
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Andrey Litvin
- Department of Surgical Disciplines, Immanuel Kant Baltic Federal University, Regional Clinical Hospital, Kaliningrad, Russia
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | - Vito Montanaro
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | | | - Salomone Di Saverio
- Department of General Surgery, Ospedale Civile "Madonna del Soccorso", San Benedetto del Tronto, AP, Italy
| | - Sandra Rossi
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy
| | - Fausto Catena
- Department of General and Emergency Surgery, "M. Bufalini" Hospital, Cesena, Italy
| |
Collapse
|
14
|
Yang CH, Quan ZX, Wang GJ, He T, Chen ZY, Li QC, Yang J, Wang Q. Elevated intraspinal pressure in traumatic spinal cord injury is a promising therapeutic target. Neural Regen Res 2022; 17:1703-1710. [PMID: 35017417 PMCID: PMC8820714 DOI: 10.4103/1673-5374.332203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The currently recommended management for acute traumatic spinal cord injury aims to reduce the incidence of secondary injury and promote functional recovery. Elevated intraspinal pressure (ISP) likely plays an important role in the processes involved in secondary spinal cord injury, and should not be overlooked. However, the factors and detailed time course contributing to elevated ISP and its impact on pathophysiology after traumatic spinal cord injury have not been reviewed in the literature. Here, we review the etiology and progression of elevated ISP, as well as potential therapeutic measures that target elevated ISP. Elevated ISP is a time-dependent process that is mainly caused by hemorrhage, edema, and blood-spinal cord barrier destruction and peaks at 3 days after traumatic spinal cord injury. Duraplasty and hypertonic saline may be promising treatments for reducing ISP within this time window. Other potential treatments such as decompression, spinal cord incision, hemostasis, and methylprednisolone treatment require further validation.
Collapse
Affiliation(s)
- Chao-Hua Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province; Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Xue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gao-Ju Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao-Chu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qing Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
Hogg FRA, Kearney S, Solomon E, Gallagher MJ, Zoumprouli A, Papadopoulos MC, Saadoun S. Acute, severe traumatic spinal cord injury: improving urinary bladder function by optimizing spinal cord perfusion. J Neurosurg Spine 2021; 36:145-152. [PMID: 34479207 DOI: 10.3171/2021.3.spine202056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to investigate the effect of acute, severe traumatic spinal cord injury on the urinary bladder and the hypothesis that increasing the spinal cord perfusion pressure improves bladder function. METHODS In 13 adults with traumatic spinal cord injury (American Spinal Injury Association Impairment Scale grades A-C), a pressure probe and a microdialysis catheter were placed intradurally at the injury site. We varied the spinal cord perfusion pressure and performed filling cystometry. Patients were followed up for 12 months on average. RESULTS The 13 patients had 63 fill cycles; 38 cycles had unfavorable urodynamics, i.e., dangerously low compliance (< 20 mL/cmH2O), detrusor overactivity, or dangerously high end-fill pressure (> 40 cmH2O). Unfavorable urodynamics correlated with periods of injury site hypoperfusion (spinal cord perfusion pressure < 60 mm Hg), hyperperfusion (spinal cord perfusion pressure > 100 mm Hg), tissue glucose < 3 mM, and tissue lactate to pyruvate ratio > 30. Increasing spinal cord perfusion pressure from 67.0 ± 2.3 mm Hg (average ± SE) to 92.1 ± 3.0 mm Hg significantly reduced, from 534 to 365 mL, the median bladder volume at which the desire to void was first experienced. All patients with dangerously low average initial bladder compliance (< 20 mL/cmH2O) maintained low compliance at follow-up, whereas all patients with high average initial bladder compliance (> 100 mL/cmH2O) maintained high compliance at follow-up. CONCLUSIONS We conclude that unfavorable urodynamics develop within days of traumatic spinal cord injury, thus challenging the prevailing notion that the detrusor is initially acontractile. Urodynamic studies performed acutely identify patients with dangerously low bladder compliance likely to benefit from early intervention. At this early stage, bladder function is dynamic and is influenced by fluctuations in the physiology and metabolism at the injury site; therefore, optimizing spinal cord perfusion is likely to improve urological outcome in patients with acute severe traumatic spinal cord injury.
Collapse
Affiliation(s)
| | - Siobhan Kearney
- 1Academic Neurosurgery Unit, St. George's, University of London
| | - Eskinder Solomon
- 2Department of Urology, Guy's and St. Thomas' NHS Foundation Trust; and
| | | | - Argyro Zoumprouli
- 3Neuro-Intensive Care Unit, St. George's Hospital, London, United Kingdom
| | | | - Samira Saadoun
- 1Academic Neurosurgery Unit, St. George's, University of London
| |
Collapse
|
16
|
Alshorman J, Wang Y, Zhu F, Zeng L, Chen K, Yao S, Jing X, Qu Y, Sun T, Guo X. Medical Communication Services after Traumatic Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4798927. [PMID: 34512936 PMCID: PMC8424255 DOI: 10.1155/2021/4798927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
It is difficult to assess and monitor the spinal cord injury (SCI) because of its pathophysiology after injury, with different degrees of prognosis and various treatment methods, including laminectomy, durotomy, and myelotomy. Medical communication services with different factors such as time of surgical intervention, procedure choice, spinal cord perfusion pressure (SCPP), and intraspinal pressure (ISP) contribute a significant role in improving neurological outcomes. This review aims to show the benefits of communication services and factors such as ISP, SCPP, and surgical intervention time in order to achieve positive long-term outcomes after an appropriate treatment method in SCI patients. The SCPP was found between 90 and 100 mmHg for the best outcome, MAP was found between 110 and 130 mmHg, and mean ISP is ≤20 mmHg after injury. Laminectomy alone cannot reduce the pressure between the dura and swollen cord. Durotomy and duroplasty considered as treatment choices after severe traumatic spinal cord injury (TSCI).
Collapse
Affiliation(s)
- Jamal Alshorman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Gomez A, Batson C, Froese L, Sainbhi AS, Zeiler FA. Utility of Transcranial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics. J Neurotrauma 2021; 38:2206-2220. [PMID: 33554739 PMCID: PMC8328046 DOI: 10.1089/neu.2020.7523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since its creation in the 1980s, transcranial Doppler (TCD) has provided a method of non-invasively monitoring cerebral physiology and has become an invaluable tool in neurocritical care. In this narrative review, we examine the role TCD has in the management of the moderate and severe traumatic brain injury (TBI) patient. We examine the principles of TCD and the ways in which it has been applied to gain insight into cerebral physiology following TBI, as well as explore the clinical evidence supporting these applications. Its usefulness as a tool to non-invasively determine intracranial pressure, detect post-traumatic vasospasm, predict patient outcome, and assess the state of cerebral autoregulation are all explored.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | | | - Frederick Adam Zeiler
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Center on Aging, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Kinaci A, van Thoor S, Redegeld S, Tooren M, van Doormaal TPC. Ex vivo evaluation of a multilayered sealant patch for watertight dural closure: cranial and spinal models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:85. [PMID: 34297226 PMCID: PMC8302489 DOI: 10.1007/s10856-021-06552-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cerebrospinal fluid leakage is a frequent complication after cranial and spinal surgery. To prevent this complication and seal the dura watertight, we developed Liqoseal, a dural sealant patch comprising a watertight polyesterurethane layer and an adhesive layer consisting of poly(DL-lactide-co-ε-caprolactone) copolymer and multiarmed N-hydroxylsuccinimide functionalized polyethylene glycol. We compared acute burst pressure and resistance to physiological conditions for 72 h of Liqoseal, Adherus, Duraseal, Tachosil, and Tisseel using computer-assisted models and fresh porcine dura. The mean acute burst pressure of Liqoseal in the cranial model (145 ± 39 mmHg) was higher than that of Adherus (87 ± 47 mmHg), Duraseal (51 ± 42 mmHg) and Tachosil (71 ± 16 mmHg). Under physiological conditions, cranial model resistance test results showed that 2 of 3 Liqoseal sealants maintained dural attachment during 72 hours as opposed to 3 of 3 for Adherus and Duraseal and 0 of 3 for Tachosil. The mean burst pressure of Liqoseal in the spinal model (233 ± 81 mmHg) was higher than that of Tachosil (123 ± 63 mmHg) and Tisseel (23 ± 16 mmHg). Under physiological conditions, spinal model resistance test results showed that 2 of 3 Liqoseal sealants maintained dural attachment for 72 hours as opposed to 3 of 3 for Adherus and 0 of 3 for Duraseal and Tachosil. This novel study showed that Liqoseal is capable of achieving a strong watertight seal over a dural defect in ex vivo models.
Collapse
Affiliation(s)
- A Kinaci
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Technology Institute, Utrecht, The Netherlands
| | - S van Thoor
- Brain Technology Institute, Utrecht, The Netherlands
| | - S Redegeld
- Brain Technology Institute, Utrecht, The Netherlands
| | - M Tooren
- Polyganics BV, Groningen, The Netherlands
| | - T P C van Doormaal
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Brain Technology Institute, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Ye J, Jin S, Cai W, Chen X, Zheng H, Zhang T, Lu W, Li X, Liang C, Chen Q, Wang Y, Gu X, Yu B, Chen Z, Wang X. Rationally Designed, Self-Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Adv Healthc Mater 2021; 10:e2100242. [PMID: 34029000 DOI: 10.1002/adhm.202100242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/25/2021] [Indexed: 01/03/2023]
Abstract
Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar- and cavity-free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one-step solution is proposed through a self-assembling, multifunctional hydrogel depot that punctually releases the anti-inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI. Synergistically releasing the anti-inflammatory drug MPSS and GFs in the hydrogel depot throughout SCI pathophysiology protects spared tissues/axons from secondary injury, promotes scar boundary- and cavity-free wound healing, and results in permissive bridges for remarkable axonal regrowth. Behavioral and electrophysiological studies indicate that remnants of spared axons, not regenerating axons, mediate functional recovery, strongly suggesting that additional interventions are still required to render the rebuilt neuronal circuits functional. These findings pave the way for the development of a systemic solution to treat acute SCI.
Collapse
Affiliation(s)
- Jingjia Ye
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Shuang Jin
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wanxiong Cai
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiangfeng Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Hanyu Zheng
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wujie Lu
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiaojian Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior CAS Key Laboratory of Brain Connectome and Manipulation the Brain Cognition and Brain Disease Institute (BCBCI) Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen Guangdong Province 518055 P. R. China
| | - Chengzhen Liang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Qixin Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Zuobing Chen
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong Jiangsu Province 226001 P. R. China
| |
Collapse
|
20
|
Hogg FRA, Kearney S, Gallagher MJ, Zoumprouli A, Papadopoulos MC, Saadoun S. Spinal Cord Perfusion Pressure Correlates with Anal Sphincter Function in a Cohort of Patients with Acute, Severe Traumatic Spinal Cord Injuries. Neurocrit Care 2021; 35:794-805. [PMID: 34100181 PMCID: PMC8692299 DOI: 10.1007/s12028-021-01232-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022]
Abstract
Background Acute, severe traumatic spinal cord injury often causes fecal incontinence. Currently, there are no treatments to improve anal function after traumatic spinal cord injury. Our study aims to determine whether, after traumatic spinal cord injury, anal function can be improved by interventions in the neuro-intensive care unit to alter the spinal cord perfusion pressure at the injury site. Methods We recruited a cohort of patients with acute, severe traumatic spinal cord injuries (American Spinal Injury Association Impairment Scale grades A–C). They underwent surgical fixation within 72 h of the injury and insertion of an intrathecal pressure probe at the injury site to monitor intraspinal pressure and compute spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure. Injury-site monitoring was performed at the neuro-intensive care unit for up to a week after injury. During monitoring, anorectal manometry was also conducted over a range of spinal cord perfusion pressures. Results Data were collected from 14 patients with consecutive traumatic spinal cord injury aged 22–67 years. The mean resting anal pressure was 44 cmH2O, which is considerably lower than the average for healthy patients, previously reported at 99 cmH2O. Mean resting anal pressure versus spinal cord perfusion pressure had an inverted U-shaped relation (Ȓ2 = 0.82), with the highest resting anal pressures being at a spinal cord perfusion pressure of approximately 100 mmHg. The recto-anal inhibitory reflex (transient relaxation of the internal anal sphincter during rectal distension), which is important for maintaining fecal continence, was present in 90% of attempts at high (90 mmHg) spinal cord perfusion pressure versus 70% of attempts at low (60 mmHg) spinal cord perfusion pressure (P < 0.05). During cough, the rise in anal pressure from baseline was 51 cmH2O at high (86 mmHg) spinal cord perfusion pressure versus 37 cmH2O at low (62 mmHg) spinal cord perfusion pressure (P < 0.0001). During anal squeeze, higher spinal cord perfusion pressure was associated with longer endurance time and spinal cord perfusion pressure of 70–90 mmHg was associated with stronger squeeze. There were no complications associated with anorectal manometry. Conclusions Our data indicate that spinal cord injury causes severe disruption of anal sphincter function. Several key components of anal continence (resting anal pressure, recto-anal inhibitory reflex, and anal pressure during cough and squeeze) markedly improve at higher spinal cord perfusion pressure. Maintaining too high of spinal cord perfusion pressure may worsen anal continence. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01232-1.
Collapse
Affiliation(s)
- Florence R A Hogg
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Siobhan Kearney
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK.,Neuroanaesthesia Department and Neuro Intensive Care Unit, St. George's Hospital, London, UK
| | - Mathew J Gallagher
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Argyro Zoumprouli
- Neuroanaesthesia Department and Neuro Intensive Care Unit, St. George's Hospital, London, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK.
| |
Collapse
|
21
|
Saadoun S, Papadopoulos MC. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty. Neurosurg Clin N Am 2021; 32:365-376. [PMID: 34053724 DOI: 10.1016/j.nec.2021.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We discuss 2 evolving management options for acute spinal cord injury that hold promise to further improve outcome: pressure monitoring from the injured cord and expansion duraplasty. Probes surgically implanted at the injury site can transduce intraspinal pressure, spinal cord perfusion pressure, and cord metabolism. Intraspinal pressure is not adequately reduced by bony decompression alone because the swollen, injured cord is compressed against the dura. Expansion duraplasty may be necessary to effectively decompress the injured cord. A randomized controlled trial called DISCUS is investigating expansion duraplasty as a novel treatment for acute, severe traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Marios C Papadopoulos
- Department of Neurosurgery, Atkinson Morley Wing, St. George's Hospital NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
22
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Lee YS, Kim KT, Kwon BK. Hemodynamic Management of Acute Spinal Cord Injury: A Literature Review. Neurospine 2020; 18:7-14. [PMID: 33211951 PMCID: PMC8021842 DOI: 10.14245/ns.2040144.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The goal of acute spinal cord injury (SCI) management is to reduce secondary injuries and improve neurological recovery after its occurrence. This review aimed to explore the literature regarding hemodynamic management to reduce ischemic secondary injury and improve neurologic outcome following acute SCI. The PubMed database was searched for studies investigating blood flow, mean arterial pressure (MAP), and spinal cord perfusion pressure after SCI. The 2013 guidelines of the American Association of Neurological Surgeons/Congress of Neurological Surgeons recommended maintaining MAP at 85-90 mmHg for 7 days after SCI to potentially improve outcome. However, this recommendation was based on weak evidence for neurologic benefit. The maintenance of MAP will typically require vasopressors, which may have their own set of complications. More recently, studies have suggested the potential importance of considering spinal cord perfusion pressure in addition to the MAP. Further research on the hemodynamic management of acute SCI is required to determine how to optimize neurologic recovery. Evidence-based guidelines for hemodynamic management should acknowledge the gaps in knowledge and the limitations of the current literature.
Collapse
Affiliation(s)
- Young-Seok Lee
- Department of Neurosurgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Significance of Omega-3 Fatty Acids in the Prophylaxis and Treatment after Spinal Cord Injury in Rodent Models. Mediators Inflamm 2020; 2020:3164260. [PMID: 32801994 PMCID: PMC7411484 DOI: 10.1155/2020/3164260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Polyunsaturated fatty acids (ω-3 acids, PUFAs) are essential components of cell membranes in all mammals. A multifactorial beneficial influence of ω-3 fatty acids on the health of humans and other mammals has been observed for many years. Therefore, ω-3 fatty acids and their function in the prophylaxis and treatment of various pathologies have been subjected to numerous studies. Regarding the documented therapeutic influence of ω-3 fatty acids on the nervous and immune systems, the aim of this paper is to present the current state of knowledge and the critical assessment of the role of ω-3 fatty acids in the prophylaxis and treatment of spinal cord injury (SCI) in rodent models. The prophylactic properties (pre-SCI) include the stabilization of neuron cell membranes, the reduction of the expression of inflammatory cytokines (IL-1β, TNF-α, IL-6, and KC/GRO/CINC), the improvement of local blood flow, reduced eicosanoid production, activation of protective intracellular transcription pathways (dependent on RXR, PPAR-α, Akt, and CREB), and increased concentration of lipids, glycogen, and oligosaccharides by neurons. On the other hand, the therapeutic properties (post-SCI) include the increased production of endogenous antioxidants such as carnosine and homocarnosine, the maintenance of elevated GSH concentrations at the site of injury, reduced concentrations of oxidative stress marker (MDA), autophagy improvement (via increasing the expression of LC3-II), and p38 MAPK expression reduction in the superficial dorsal horns (limiting the sensation of neuropathic pain). Paradoxically, despite the well-documented protective activity of ω-3 acids in rodents with SCI, the research does not offer an answer to the principal question of the optimal dose and treatment duration. Therefore, it is worth emphasizing the role of multicenter rodent studies with the implementation of standards which initially may even be based on arbitrary criteria. Additionally, basing on available research data, the authors of this paper make a careful attempt at referring some of the conclusions to the human population.
Collapse
|
25
|
Hale C, Yonan J, Batarseh R, Chaar R, Jonak CR, Ge S, Binder D, Rodgers VGJ. Implantable Osmotic Transport Device Can Reduce Edema After Severe Contusion Spinal Cord Injury. Front Bioeng Biotechnol 2020; 8:806. [PMID: 32754586 PMCID: PMC7366393 DOI: 10.3389/fbioe.2020.00806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Recent findings from the ISCoPe study indicate that, after severe contusion to the spinal cord, edema originating in the spinal cord accumulates and compresses the tissue against the surrounding dura mater, despite decompressive laminectomy. It is hypothesized that this compression results in restricted flow of cerebrospinal fluid (CSF) in the subarachnoid space and central canal and ultimately collapses local vasculature, exacerbating ischemia and secondary injury. Here we developed a surgically mounted osmotic transport device (OTD) that rests on the dura and can osmotically remove excess fluid at the injury site. Tests were performed in 4-h studies immediately following severe (250 kD) contusion at T8 in rats using the OTD. A 3-h treatment with the OTD after 1-h post injury significantly reduced spinal cord edema compared to injured controls. A first approximation mathematical interpretation implies that this modest reduction in edema may be significant enough to relieve compression of local vasculature and restore flow of CSF in the region. In addition, we determined the progression of edema up to 28 days after insult in the rat for the same injury model. Results showed peak edema at 72 h. These preliminary results suggest that incorporating the OTD to operate continuously at the site of injury throughout the critical period of edema progression, the device may significantly improve recovery following contusion spinal cord injury.
Collapse
Affiliation(s)
- Christopher Hale
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Jennifer Yonan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ramsey Batarseh
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Roman Chaar
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Shaokui Ge
- Division of Biostatistics & Bioinformatics, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Victor G J Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
26
|
Acute Spinal Cord Injury: Correlations and Causal Relations Between Intraspinal Pressure, Spinal Cord Perfusion Pressure, Lactate-to-Pyruvate Ratio, and Limb Power. Neurocrit Care 2020; 34:121-129. [PMID: 32435965 PMCID: PMC7940162 DOI: 10.1007/s12028-020-00988-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND/OBJECTIVE We have recently developed monitoring from the injury site in patients with acute, severe traumatic spinal cord injuries to facilitate their management in the intensive care unit. This is analogous to monitoring from the brain in patients with traumatic brain injuries. This study aims to determine whether, after traumatic spinal cord injury, fluctuations in the monitored physiological, and metabolic parameters at the injury site are causally linked to changes in limb power. METHODS This is an observational study of a cohort of adult patients with motor-incomplete spinal cord injuries, i.e., grade C American spinal injuries association Impairment Scale. A pressure probe and a microdialysis catheter were placed intradurally at the injury site. For up to a week after surgery, we monitored limb power, intraspinal pressure, spinal cord perfusion pressure, and tissue lactate-to-pyruvate ratio. We established correlations between these variables and performed Granger causality analysis. RESULTS Nineteen patients, aged 22-70 years, were recruited. Motor score versus intraspinal pressure had exponential decay relation (intraspinal pressure rise to 20 mmHg was associated with drop of 11 motor points, but little drop in motor points as intraspinal pressure rose further, R2 = 0.98). Motor score versus spinal cord perfusion pressure (up to 110 mmHg) had linear relation (1.4 motor point rise/10 mmHg rise in spinal cord perfusion pressure, R2 = 0.96). Motor score versus lactate-to-pyruvate ratio (greater than 20) also had linear relation (0.8 motor score drop/10-point rise in lactate-to-pyruvate ratio, R2 = 0.92). Increased intraspinal pressure Granger-caused increase in lactate-to-pyruvate ratio, decrease in spinal cord perfusion, and decrease in motor score. Increased spinal cord perfusion Granger-caused decrease in lactate-to-pyruvate ratio and increase in motor score. Increased lactate-to-pyruvate ratio Granger-caused increase in intraspinal pressure, decrease in spinal cord perfusion, and decrease in motor score. Causality analysis also revealed multiple vicious cycles that amplify insults to the cord thus exacerbating cord damage. CONCLUSION Monitoring intraspinal pressure, spinal cord perfusion pressure, lactate-to-pyruvate ratio, and intervening to normalize these parameters are likely to improve limb power.
Collapse
|
27
|
Gallagher MJ, Hogg FRA, Kearney S, Kopp MA, Blex C, Serdani L, Sherwood O, Schwab JM, Zoumprouli A, Papadopoulos MC, Saadoun S. Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord. Sci Rep 2020; 10:8125. [PMID: 32415143 PMCID: PMC7229228 DOI: 10.1038/s41598-020-64944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI.
Collapse
Affiliation(s)
- Mathew J Gallagher
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Florence R A Hogg
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Siobhan Kearney
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Marcel A Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health, QUEST-Center for Transforming Biomedical Research, Berlin, Germany
| | - Christian Blex
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Leonarda Serdani
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Sherwood
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Jan M Schwab
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Belford Center for Spinal Cord Injury, Departments of Neurology, Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Argyro Zoumprouli
- Neuro-Anaesthesia and Neuro-Intensive Care Unit, St. George's Hospital, London, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK.
| |
Collapse
|
28
|
Hogg FRA, Gallagher MJ, Kearney S, Zoumprouli A, Papadopoulos MC, Saadoun S. Acute Spinal Cord Injury: Monitoring Lumbar Cerebrospinal Fluid Provides Limited Information about the Injury Site. J Neurotrauma 2020; 37:1156-1164. [PMID: 32024422 DOI: 10.1089/neu.2019.6789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In some centers, monitoring lumbar cerebrospinal fluid (CSF) is used to guide management of patients with acute traumatic spinal cord injuries (TSCI) and draining lumbar CSF to improve spinal cord perfusion. Here, we investigate whether the lumbar CSF provides accurate information about the injury site and the effect of draining lumbar CSF on injury site perfusion. In 13 TSCI patients, we simultaneously monitored lumbar CSF pressure (CSFP) and intraspinal pressure (ISP) from the injury site. Using CSFP or ISP, we computed spinal cord perfusion pressure (SCPP), vascular pressure reactivity index (sPRx) and optimum SCPP (SCPPopt). We also assessed the effect on ISP of draining 10 mL CSF. Metabolites at the injury site were compared with metabolites in the lumbar CSF. We found that ISP was pulsatile, but CSFP had low pulse pressure and was non-pulsatile 21% of the time. There was weak or no correlation between CSFP versus ISP (R = -0.11), SCPP(csf) versus SCPP(ISP) (R = 0.39), and sPRx(csf) versus sPRx(ISP) (R = 0.45). CSF drainage caused no significant change in ISP in 7/12 patients and a significant drop of <5 mm Hg in 4/12 patients and of ∼8 mm Hg in 1/12 patients. Metabolite concentrations in the CSF versus the injury site did not correlate for lactate (R = 0.00), pyruvate (R = -0.12) or lactate-to-pyruvate ratio (R = -0.05) with weak correlations noted for glucose (R = 0.31), glutamate (R = 0.61), and glycerol (R = 0.56). We conclude that, after a severe TSCI, monitoring from the lumbar CSF provides only limited information about the injury site and that lumbar CSF drainage does not effectively reduce ISP in most patients.
Collapse
Affiliation(s)
- Florence R A Hogg
- Academic Neurosurgery Unit, St. George's Hospital, University of London, London, United Kingdom
| | - Mathew J Gallagher
- Academic Neurosurgery Unit, St. George's Hospital, University of London, London, United Kingdom
| | - Siobhan Kearney
- Academic Neurosurgery Unit, St. George's Hospital, University of London, London, United Kingdom
| | - Argyro Zoumprouli
- Neuro-intensive Care Unit, St. George's Hospital, University of London, London, United Kingdom
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's Hospital, University of London, London, United Kingdom
| | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's Hospital, University of London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
We review state-of-the-art monitoring techniques for acute, severe traumatic spinal cord injury (TSCI) to facilitate targeted perfusion of the injured cord rather than applying universal mean arterial pressure targets. Key concepts are discussed such as intraspinal pressure and spinal cord perfusion pressure (SCPP) at the injury site, respectively, analogous to intracranial pressure and cerebral perfusion pressure for traumatic brain injury. The concept of spinal cord autoregulation is introduced and quantified using spinal pressure reactivity index (sPRx), which is analogous to pressure reactivity index for traumatic brain injury. The U-shaped relationship between sPRx and SCPP defines the optimum SCPP as the SCPP that minimizes sPRx (i.e., maximizes autoregulation), and suggests that not only ischemia but also hyperemia at the injury site may be detrimental. The observation that optimum SCPP varies between patients and temporally in each patient supports individualized management. We discuss multimodality monitoring, which revealed strong correlations between SCPP and injury site metabolism (tissue glucose, lactate, pyruvate, glutamate, glycerol), monitored by surface microdialysis. Evidence is presented that the dura is a major, but unappreciated, cause of spinal cord compression after TSCI; we thus propose expansion duroplasty as a novel treatment. Monitoring spinal cord blood flow at the injury site has revealed novel phenomena, e.g., 3 distinct blood flow patterns, local steal, and diastolic ischemia. We conclude that monitoring from the injured spinal cord in the intensive care unit is a safe technique that appears to enable optimized and individualized spinal cord perfusion.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
30
|
Predictors of Intraspinal Pressure and Optimal Cord Perfusion Pressure After Traumatic Spinal Cord Injury. Neurocrit Care 2020; 30:421-428. [PMID: 30328047 PMCID: PMC6420421 DOI: 10.1007/s12028-018-0616-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background/Objectives We recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring. Methods Sixty-four TSCI patients, grades A–C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24 h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors. Results All patients underwent surgery to restore normal spinal alignment within 72 h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium–low, medium–high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt. Conclusions Elevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt. Electronic supplementary material The online version of this article (10.1007/s12028-018-0616-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Practical Application of Recent Advances in Diagnostic, Prognostic, and Therapeutic Modalities for Spinal Cord Injury. World Neurosurg 2020; 136:330-336. [PMID: 31931244 DOI: 10.1016/j.wneu.2020.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal cord injury remains a highly morbid entity, with limited treatment modalities in both acute and chronic settings. Clinical research efforts to improve therapeutic guidelines are confounded by initial evaluation inaccuracies, as presentations are frequently complicated by trauma and objective diagnostic and prognostic methods are poorly defined. The purpose of our study was to review recent practical advances for further delineation of these injuries and how such classification may benefit the development of novel treatments. METHODS A review was carried out of recent studies reported within the last 5 years for prognostic and diagnostic modalities of acute spinal cord injury. RESULTS Substantial efforts have been made to improve the timeliness and accuracy of the initial assessment, not only for the purpose of enhancing prognostication but also in determining the efficacy of new treatments. Whether it be applying traumatic brain injury principles to limit injury extent, external stimulators used for chronic pain conditions to enhance the effects of physical therapy, or creative algorithms incorporating various nerve or muscle transfer techniques, innovative and practical solutions continue to be developed in lieu of definitive treatment. Further development will benefit from enhanced stratification of injury from accurate and practical assessment modalities. CONCLUSIONS Recent advances in accurate, timely, and practical classification methods of acute spinal cord injury will assist in the development of novel treatment approaches for both acute and chronic injury alike.
Collapse
|
32
|
Gallagher MJ, López DM, Sheen HV, Hogg FRA, Zoumprouli A, Papadopoulos MC, Saadoun S. Heterogeneous effect of increasing spinal cord perfusion pressure on sensory evoked potentials recorded from acutely injured human spinal cord. J Crit Care 2019; 56:145-151. [PMID: 31901650 DOI: 10.1016/j.jcrc.2019.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate the effect of increasing spinal cord perfusion pressure (SCPP) on sensory evoked potentials (SEPs) and injury site metabolism in patients with severe traumatic spinal cord injury TSCI. MATERIALS AND METHODS In 12 TSCI patients we placed a pressure probe, a microdialysis catheter and a strip electrode with 8 contacts on the surface of the injured cord. We monitored SCPP, lactate-to-pyruvate ratio (LPR) and SEPs (after median or posterior tibial nerve stimulation). RESULTS Increase in SCPP by ~20 mmHg produced a heterogeneous response in SEPs and injury site metabolism. In some patients, SEP amplitudes increased and the LPR decreased indicating improved tissue metab olism. In others, SEP amplitudes decreased and the LPR increased indicating more impaired metabolism. Compared with patients who did not improve at follow-up, those who improved had significantly more electrode contacts with SEP amplitude increase in response to increasing SCPP. CONCLUSIONS Increasing SCPP after acute, severe TSCI may be beneficial (if associated with increase in SEP amplitude) or detrimental (if associated with decrease in SEP amplitude). Our findings support individualized management of patients with acute, severe TSCI guided by monitoring from the injury site rather than applying universal blood pressure targets as is current clinical practice.
Collapse
Affiliation(s)
- Mathew J Gallagher
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - David Martín López
- Department of Neurophysiology, St. George's Hospital, Blackshaw Road, Tooting, London SW17 0QT, UK
| | - Helen V Sheen
- Department of Neurophysiology, St. George's Hospital, Blackshaw Road, Tooting, London SW17 0QT, UK
| | - Florence R A Hogg
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Argyro Zoumprouli
- Department of Anaesthesia (Neuro-anaesthesia), St. George's Hospital, Blackshaw Road, Tooting, London SW17 0QT, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| |
Collapse
|
33
|
Martinez-Tejada I, Arum A, Wilhjelm JE, Juhler M, Andresen M. B waves: a systematic review of terminology, characteristics, and analysis methods. Fluids Barriers CNS 2019; 16:33. [PMID: 31610775 PMCID: PMC6792201 DOI: 10.1186/s12987-019-0153-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022] Open
Abstract
Background Although B waves were introduced as a concept in the analysis of intracranial pressure (ICP) recordings nearly 60 years ago, there is still a lack consensus on precise definitions, terminology, amplitude, frequency or origin. Several competing terms exist, addressing either their probable physiological origin or their physical characteristics. To better understand B wave characteristics and ease their detection, a literature review was carried out. Methods A systematic review protocol including search strategy and eligibility criteria was prepared in advance. A literature search was carried out using PubMed/MEDLINE, with the following search terms: B waves + review filter, slow waves + review filter, ICP B waves, slow ICP waves, slow vasogenic waves, Lundberg B waves, MOCAIP. Results In total, 19 different terms were found, B waves being the most common. These terminologies appear to be interchangeable and seem to be used indiscriminately, with some papers using more than five different terms. Definitions and etiologies are still unclear, which makes systematic and standardized detection difficult. Conclusions Two future lines of action are available for automating macro-pattern identification in ICP signals: achieving strict agreement on morphological characteristics of “traditional” B waveforms, or starting a new with a fresh computerized approach for recognition of new clinically relevant patterns.
Collapse
Affiliation(s)
- Isabel Martinez-Tejada
- Clinic of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark. .,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Alexander Arum
- Clinic of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens E Wilhjelm
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marianne Juhler
- Clinic of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Andresen
- Clinic of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
34
|
Rashnavadi T, Macnab A, Cheung A, Shadgan A, Kwon BK, Shadgan B. Monitoring spinal cord hemodynamics and tissue oxygenation: a review of the literature with special focus on the near-infrared spectroscopy technique. Spinal Cord 2019; 57:617-625. [PMID: 31164734 DOI: 10.1038/s41393-019-0304-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023]
Abstract
STUDY DESIGN Review. OBJECTIVES Clinical studies have shown that the hemodynamic management of patients following acute spinal cord injury (SCI) is an important aspect of their treatment for maintaining spinal cord (SC) perfusion and minimizing ischemic secondary injury to the SC. While this highlights the importance of ensuring adequate perfusion and oxygenation to the injured cord, a method for the real-time monitoring of these hemodynamic measures within the SC is lacking. The purpose of this review is to discuss current and potential methods for SC hemodynamic monitoring with special focus on applications using near-infrared spectroscopy (NIRS). METHODS A literature search using the PubMed database. All peer-reviewed articles on NIRS monitoring of SC published from inception to May 2019 were reviewed. RESULTS Among 125 papers related to SC hemodynamics monitoring, 26 focused on direct/indirect NIRS monitoring of the SC. DISCUSSION Current options for continuous, non-invasive, and real-time monitoring of SC hemodynamics are challenging and limited in scope. As a relatively new technique, NIRS has been successfully used for monitoring human cerebral hemodynamics, and has shown promising results in intraoperative assessment of SC hemodynamics in both human and animal models. Although utilizing NIRS to monitor the SC has been validated, applying NIRS clinically following SCI requires further development and investigation. CONCLUSIONS NIRS is a promising non-invasive technique with the potential to provide real-time monitoring of relevant parameters in the SC. Currently, in its first developmental stages, further clinical and experimental studies are mandatory to ensure the validity and safety of NIRS techniques.
Collapse
Affiliation(s)
- Tahereh Rashnavadi
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, V6T 1Z1, Canada
| | - Andrew Macnab
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada
| | - Amanda Cheung
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada
| | - Armita Shadgan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Brian K Kwon
- International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada.,Department of Orthopaedics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Babak Shadgan
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, V6T 1Z1, Canada. .,International Collaborations on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, Vancouver, Canada. .,Department of Orthopaedics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
35
|
Ellingson BM, Woodworth DC, Leu K, Salamon N, Holly LT. Spinal Cord Perfusion MR Imaging Implicates Both Ischemia and Hypoxia in the Pathogenesis of Cervical Spondylosis. World Neurosurg 2019; 128:e773-e781. [PMID: 31077900 DOI: 10.1016/j.wneu.2019.04.253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Although a number of studies have implicated ischemia and hypoxia in the pathogenesis of cervical spondylosis, quantification remains difficult and the role of ischemia and hypoxia on disease progression and disease severity in human cervical spondylosis remains largely unknown. Therefore, the objective of this study was to assess spinal cord perfusion and oxygenation in human cervical spondylosis and examine the relationship between perfusion, degree of spinal cord compression, and neurological status. METHODS Twenty-two patients with cervical spondylosis with or without myelopathy received a dynamic susceptibility contrast perfusion MRI exam consisting of a novel spin-and-gradient echo echoplanar acquisition before, during, and following gadolinium-based contrast injection. Estimation of relative spinal cord blood volume (rSCBV), the reversible relaxation rate (R2á), and relative oxygen extraction fraction (rOEF = R2á/rSCBV) was performed at the site of compression and compared with anterior-posterior spinal cord diameter and modified Japanese Orthopedic Association (mJOA) score, a measure of neurological impairment. RESULTS rSCBV was linearly correlated with both anterior-posterior cord diameter (R2 = 0.4667, P = 0.0005) and mJOA (R2 = 0.2274, P = 0.0248). R2á was linearly correlated with mJOA (R2 = 0.3998, P = 0.0016) but not cord diameter (R2 = 0.055; P = 0.2950). Also, rOEF was correlated with both cord diameter (R2 = 0.3440, P = 0.0041) and mJOA (R2 = 0.4699, P = 0.0004). CONCLUSIONS Results support the hypothesis that spinal cord compression results in ischemia and hypoxia, and the degree of ischemia and hypoxia is proportional to the degree of neurological impairment.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Davis C Woodworth
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kevin Leu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
36
|
Gallagher MJ, Hogg FR, Zoumprouli A, Papadopoulos MC, Saadoun S. Spinal Cord Blood Flow in Patients with Acute Spinal Cord Injuries. J Neurotrauma 2019; 36:919-929. [DOI: 10.1089/neu.2018.5961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mathew J. Gallagher
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Florence R.A. Hogg
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Argyro Zoumprouli
- Neuro-intensive Care Unit, St. George's Hospital, London, United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| |
Collapse
|
37
|
Chen S, Gallagher MJ, Hogg F, Papadopoulos MC, Saadoun S. Visibility Graph Analysis of Intraspinal Pressure Signal Predicts Functional Outcome in Spinal Cord Injured Patients. J Neurotrauma 2018; 35:2947-2956. [DOI: 10.1089/neu.2018.5775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Suliang Chen
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Mathew J. Gallagher
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Florence Hogg
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| |
Collapse
|
38
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
39
|
Markedly Deranged Injury Site Metabolism and Impaired Functional Recovery in Acute Spinal Cord Injury Patients With Fever. Crit Care Med 2018; 46:1150-1157. [DOI: 10.1097/ccm.0000000000003134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Chen S, Gallagher MJ, Papadopoulos MC, Saadoun S. Non-linear Dynamical Analysis of Intraspinal Pressure Signal Predicts Outcome After Spinal Cord Injury. Front Neurol 2018; 9:493. [PMID: 29997566 PMCID: PMC6028604 DOI: 10.3389/fneur.2018.00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022] Open
Abstract
The injured spinal cord is a complex system influenced by many local and systemic factors that interact over many timescales. To help guide clinical management, we developed a technique that monitors intraspinal pressure from the injury site in patients with acute, severe traumatic spinal cord injuries. Here, we hypothesize that spinal cord injury alters the complex dynamics of the intraspinal pressure signal quantified by computing hourly the detrended fluctuation exponent alpha, multiscale entropy, and maximal Lyapunov exponent lambda. 49 patients with severe traumatic spinal cord injuries were monitored within 72 h of injury for 5 days on average to produce 5,941 h of intraspinal pressure data. We computed the spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure and the vascular pressure reactivity index as the running correlation coefficient between intraspinal pressure and arterial blood pressure. Mean patient follow-up was 17 months. We show that alpha values are greater than 0.5, which indicates that the intraspinal pressure signal is fractal. As alpha increases, intraspinal pressure decreases and spinal cord perfusion pressure increases with negative correlation between the vascular pressure reactivity index vs. alpha. Thus, secondary insults to the injured cord disrupt intraspinal pressure fractality. Our analysis shows that high intraspinal pressure, low spinal cord perfusion pressure, and impaired pressure reactivity strongly correlate with reduced multi-scale entropy, supporting the notion that secondary insults to the injured cord cause de-complexification of the intraspinal pressure signal, which may render the cord less adaptable to external changes. Healthy physiological systems are characterized by edge of chaos dynamics. We found negative correlations between the percentage of hours with edge of chaos dynamics (−0.01 ≤ lambda ≤ 0.01) vs. high intraspinal pressure and vs. low spinal cord perfusion pressure; these findings suggest that secondary insults render the intraspinal pressure more regular or chaotic. In a multivariate logistic regression model, better neurological status on admission, higher intraspinal pressure multi-scale entropy and more frequent edge of chaos intraspinal pressure dynamics predict long-term functional improvement. We conclude that spinal cord injury is associated with marked changes in non-linear intraspinal pressure metrics that carry prognostic information.
Collapse
Affiliation(s)
- Suliang Chen
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Mathew J Gallagher
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Samira Saadoun
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| |
Collapse
|
41
|
Bertram-Ralph E, Horner D. Bet 1: Can induced hypertension improve outcome following acute traumatic spinal cord injury? Arch Emerg Med 2018; 35:270-272. [DOI: 10.1136/emermed-2018-207608.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 11/03/2022]
Abstract
A shortcut review was carried out to establish whether augmentation of blood pressure to a high mean arterial pressure (MAP) target in the early phase of traumatic spinal cord injury (SCI) could lead to improvements in morbidity or mortality. 23 directly relevant papers were found using the reported search strategy. Of these, two systematic reviews collated the best evidence to answer the clinical question. The author, date and country of publication; patient group studied; study type; relevant outcomes; results and study weaknesses of the best papers are tabulated. It is concluded that data from observational cohort studies support high MAP targets and avoidance of hypotension in the early stages of traumatic SCI, but there are insufficient trial data to support routine use as best practice. Given the intervention carries risk, induced hypertension requires careful consideration on a case-by-case basis.
Collapse
|
42
|
|
43
|
Intraspinal Pressure Monitoring and Extensive Duroplasty in the Acute Phase of Traumatic Spinal Cord Injury: A Systematic Review. World Neurosurg 2017; 105:145-152. [PMID: 28578120 DOI: 10.1016/j.wneu.2017.05.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The prognosis in cervical spinal cord injury is poor, and surgical and neurointensive care management need further improvement. Monitoring of the intraspinal pressure (ISP) at an early stage after traumatic spinal cord injury (tSCI) is useful clinically. MATERIALS AND METHODS Obtaining continuous spinal cord perfusion pressure (SCPP) measurements based on the difference between mean arterial pressure and ISP allows offering best medical and surgical treatment during this critical phase of tSCI. A search was carried out with PubMed, Embase, and Google Scholar up to January 10, 2017. Articles resulting from these searches and relevant references cited in those articles were reviewed. RESULTS The optimal SCPP was found to be between 90 and 100 mm Hg and mean arterial pressure of 110-130. Laminectomy alone was found to be ineffective in the reduction of ISP because it does not lower the pressure exerted by dura on the swollen spinal cord. Therefore, bony decompression with durotomy or duroplasty seems to be the procedure of choice to reduce the ISP less than 20 mm Hg. CONCLUSIONS A randomized controlled trial is required to determine whether laminectomy with durotomy and monitoring of ISP with SCPP optimization improve neurological recovery after tSCI.
Collapse
|
44
|
Chen S, Smielewski P, Czosnyka M, Papadopoulos MC, Saadoun S. Continuous Monitoring and Visualization of Optimum Spinal Cord Perfusion Pressure in Patients with Acute Cord Injury. J Neurotrauma 2017; 34:2941-2949. [PMID: 28351230 DOI: 10.1089/neu.2017.4982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The optimum spinal cord perfusion pressure (SCPP) after traumatic spinal cord injury (TSCI) is unknown. Here, we describe techniques to compute and display the optimum SCPP in real time. We recruited adults within 72 h of severe TSCI (American Spinal Injuries Association [ASIA] grades A-C). A pressure probe and a microdialysis catheter were placed on the injured cord. SCPP was computed as mean arterial pressure (MAP) minus intraspinal pressure (ISP), spinal pressure reactivity index (sPRx) as the running ISP/MAP correlation coefficient, and continuous optimum SCPP (cSCPPopt) as the SCPP that minimizes sPRx in a moving 4-h window. In 45 patients, we monitored ISP and blood pressure. In 14 patients, we also monitored injury site metabolism. cSCPPopt could be computed 45% of the time. Mean cSCPPopt varied by up to 60 mm Hg between patients. Each patient's cSCPPopt varied with time (standard deviation 10-20 mm Hg). Color-coded maps showing the sPRx/SCPP curve evolution enhanced visualization of cSCPPopt. Periods when SCPP ≈ cSCPPopt were associated with low injury site glucose, high pyruvate, and high lactate. Mean SCPP deviation from cSCPPopt correlated with worse neurological outcome at 9-12 months: ASIA grade improved in 30% of patients with <5 mm Hg deviation, 10% of patients with 5-15 mm Hg deviation, and no one with >15 mm Hg deviation. We conclude that real-time computation and visualization of cSCPPopt after TSCI are feasible. cSCPPopt appears to enhance glucose utilization at the injury site and varies widely between and within patients. Our data suggest that targeting cSCPPopt after TSCI might improve neurological outcome.
Collapse
Affiliation(s)
- Suliang Chen
- 1 Academic Neurosurgery Unit, St. George's, University of London , London, United Kingdom
| | - Peter Smielewski
- 2 Department of Clinical Neurosciences, Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Marek Czosnyka
- 2 Department of Clinical Neurosciences, Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom .,3 Institute of Electronic Systems, Warsaw University of Technology , Warsaw, Poland
| | - Marios C Papadopoulos
- 1 Academic Neurosurgery Unit, St. George's, University of London , London, United Kingdom
| | - Samira Saadoun
- 1 Academic Neurosurgery Unit, St. George's, University of London , London, United Kingdom
| |
Collapse
|
45
|
Saadoun S, Papadopoulos MC. Spinal cord injury: is monitoring from the injury site the future? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:308. [PMID: 27716379 PMCID: PMC5050726 DOI: 10.1186/s13054-016-1490-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper challenges the current management of acute traumatic spinal cord injury based on our experience with monitoring from the injury site in the neurointensive care unit. We argue that the concept of bony decompression is inadequate. The concept of optimum spinal cord perfusion pressure, which differs between patients, is introduced. Such variability suggests individualized patient treatment. Failing to optimize spinal cord perfusion limits the entry of systemically administered drugs into the injured cord. We conclude that monitoring from the injury site helps optimize management and should be subjected to a trial to determine whether it improves outcome.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
46
|
Khaing ZZ, Ehsanipour A, Hofstetter CP, Seidlits SK. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure. Cells Tissues Organs 2016; 202:67-84. [DOI: 10.1159/000446697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology. Recent reports of increasing intraspinal pressure after SCI suggest that this physiological change can contribute to injury expansion, also known as secondary injury. Hydrogels contain high water content similar to native tissue, and many hydrogels absorb water and swell after formation. In the case of injectable hydrogels for the spinal cord, this process often occurs in or around the spinal cord tissue, and thus may affect intraspinal pressure. In the future, predictable swelling properties of hydrogels may be leveraged to control intraspinal pressure after injury. Here, we review the physiology of SCI, with special attention to the current clinical and experimental literature, underscoring the importance of controlling intraspinal pressure after SCI. We then discuss how hydrogel fabrication, injection, and swelling can impact intraspinal pressure in the context of developing injectable biomaterials for SCI treatment.
Collapse
|
47
|
Epstein NE. Effect of spinal cord compression on local vascular blood flow and perfusion capacity by Alshareef M, Krishna V, Ferdous J, Aishareef A, Kindy M, Kolachalama VB, et al. Surg Neurol Int 2016; 7:S682-S685. [PMID: 27843686 PMCID: PMC5054644 DOI: 10.4103/2152-7806.191077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Different degrees of blood flow/vascular compromise occur with anterior, posterior, or circumferential spinal cord compression/spinal cord injury (SCI). SCI is also divided into primary and secondary injury. Primary SCI refers to the original neurological damage to tissues, whereas secondary injury reflects interruption of normal blood flow leading to further inflammatory response/other local changes which contribute to additional neurological injury. METHODS The authors developed a quantitative "3-D finite element fluid structure interaction model" of spinal cord blood flow to better document the mechanisms of secondary ischemic damage occurring in the spinal cord anteriorly, posteriorly, or circumferentially. This included assessment of the anterior spinal artery (ASA) and five arterial branches (L1, L2, L3, R1, R2), but excluded the microvasculature. RESULTS Different locations of cord compression resulted in alternative patterns of spinal cord ischemia. Anterior spinal artery (ASA) flow was substantially reduced by direct anterior compression, but resulted in the least vascular compromise. Alternatively, posterior compression resulted in a significant and critical reduction of distal ASA blood flow and, therefore, correlated with the greatest susceptibility to acute ischemia. Counterintuitively, they concluded "at equivalent degrees of dural occlusion, the loss of branch blood flow under anterior posterior compression was intermediate to predictions for purely posterior or anterior loading." CONCLUSION Utilizing a computational three-dimensional model, Alshareef et al. observed that anterior cervical cord compression resulted in the least severe compromise of ASA blood flow to the spinal cord, whereas posterior cord compression/SCI maximally reduced distal ASA blood flow potentiating acute ischemia. Therefore, the latter warranted the earliest surgical intervention.
Collapse
Affiliation(s)
- Nancy E. Epstein
- Department of Neuroscience, Winthrop Neuroscience, Winthrop University Hospital, Mineola, New York, USA
| |
Collapse
|
48
|
Phang I, Papadopoulos MC. Intraspinal Pressure Monitoring in a Patient with Spinal Cord Injury Reveals Different Intradural Compartments: Injured Spinal Cord Pressure Evaluation (ISCoPE) Study. Neurocrit Care 2016; 23:414-8. [PMID: 26136148 DOI: 10.1007/s12028-015-0153-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND We recently described a technique for monitoring intraspinal pressure (ISP) after traumatic spinal cord injury (TSCI). This is analogous to intracranial pressure monitoring after brain injury. We showed that, after severe TSCI, ISP at the injury site is elevated as the swollen cord is compressed against the dura. METHODS In a patient with complete thoracic TSCI, we sequentially monitored subdural ISP above the injury, at the injury site, and below the injury intraoperatively. Postoperatively, we simultaneously monitored subdural ISP and intraparenchymal ISP at the injury site and compared the two ISP signals as well as their Fast Fourier Transform spectra. RESULTS Subdural ISP recorded from the injury site was higher than subdural ISP recorded from above or below the injury site by more than 10 mmHg. The subdural and intraparenchymal ISP signals recorded from the injury site had comparable amplitudes and Fast Fourier Transform spectra. Intraparenchymal pulse pressure was twofold larger than subdural pulse pressure. CONCLUSION After severe TSCI, three intradural compartments form (space above injury, injury site, space below injury) with different ISPs. At the level of maximum spinal cord swelling (injury site), subdural ISP is comparable to intraparenchymal ISP.
Collapse
Affiliation(s)
- Isaac Phang
- Academic Neurosurgery Unit, St George's University of London, Room 0.136 Jenner Wing, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St George's University of London, Room 0.136 Jenner Wing, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
49
|
Phang I, Zoumprouli A, Saadoun S, Papadopoulos MC. Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. J Neurosurg Spine 2016; 25:398-405. [DOI: 10.3171/2016.1.spine151317] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
A novel technique for monitoring intraspinal pressure and spinal cord perfusion pressure in patients with traumatic spinal cord injury was recently described. This is analogous to monitoring intracranial pressure and cerebral perfusion pressure in patients with traumatic brain injury. Because intraspinal pressure monitoring is a new technique, its safety profile and impact on early patient care and long-term outcome after traumatic spinal cord injury are unknown. The object of this study is to review all patients who had intraspinal pressure monitoring to date at the authors' institution in order to define the accuracy of intraspinal pressure probe placement and the safety of the technique.
METHODS
At the end of surgery to fix spinal fractures, a pressure probe was inserted intradurally to monitor intraspinal pressure at the injury site. Postoperatively, CT scanning was performed within 48 hours and MRI at 2 weeks and 6 months. Neurointensive care management and complications were reviewed. The American Spinal Injury Association Impairment Scale (AIS) grade was determined on admission and at 2 to 4 weeks and 12 to 18 months postoperation.
RESULTS
To date, 42 patients with severe traumatic spinal cord injuries (AIS Grades A–C) had undergone intraspinal pressure monitoring. Monitoring started within 72 hours of injury and continued for up to a week. Based on postoperative CT and MRI, the probe position was acceptable in all patients, i.e., the probe was located at the site of maximum spinal cord swelling. Complications were probe displacement in 1 of 42 patients (2.4%), CSF leakage that required wound resuturing in 3 of 42 patients (7.1%), and asymptomatic pseudomeningocele that was diagnosed in 8 of 42 patients (19.0%). Pseudomeningocele was diagnosed on MRI and resolved within 6 months in all patients. Based on the MRI and neurological examination results, there were no serious probe-related complications such as meningitis, wound infection, hematoma, wound breakdown, or neurological deterioration. Within 2 weeks postoperatively, 75% of patients were extubated and 25% underwent tracheostomy. Norepinephrine was used to support blood pressure without complications. Overall, the mean intraspinal pressure was around 20 mm Hg, and the mean spinal cord perfusion pressure was around 70 mm Hg. In laminectomized patients, the intraspinal pressure was significantly higher in the supine than lateral position by up to 18 mm Hg after thoracic laminectomy and 8 mm Hg after cervical laminectomy. At 12 to 18 months, 11.4% of patients had improved by 1 AIS grade and 14.3% by at least 2 AIS grades.
CONCLUSIONS
These data suggest that after traumatic spinal cord injury intradural placement of the pressure probe is accurate and intraspinal pressure monitoring is safe for up to a week. In patients with spinal cord injury who had laminectomy, the supine position should be avoided in order to prevent rises in intraspinal pressure.
Collapse
Affiliation(s)
- Isaac Phang
- 1Academic Neurosurgery Unit, St. George's, University of London; and
| | - Argyro Zoumprouli
- 2Neurointensive Care Unit, St. George's Hospital, London, United Kingdom
| | - Samira Saadoun
- 1Academic Neurosurgery Unit, St. George's, University of London; and
| | | |
Collapse
|
50
|
Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S. Microdialysis to Optimize Cord Perfusion and Drug Delivery in Spinal Cord Injury. Ann Neurol 2016; 80:522-31. [DOI: 10.1002/ana.24750] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Isaac Phang
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| | - Argyro Zoumprouli
- Neurointensive Care Unit, St. George's Hospital; London United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| |
Collapse
|