1
|
Fernandes de Oliveira Santos B, de Araujo Paz D, Fernandes VM, Dos Santos JC, Chaddad-Neto FEA, Sousa ACS, Oliveira JLM. Minimally invasive supratentorial neurosurgical approaches guided by Smartphone app and compass. Sci Rep 2021; 11:6778. [PMID: 33762597 PMCID: PMC7991647 DOI: 10.1038/s41598-021-85472-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
The precise location in the scalp of specifically planned points can help to achieve less invasive approaches. This study aims to develop a smartphone app, evaluate the precision and accuracy of the developed tool, and describe a series of cases using the referred technique. The application was developed with the React Native framework for Android and iOS. A phantom was printed based on the patient's CT scan, which was used for the calculation of accuracy and precision of the method. The points of interest were marked with an "x" on the patient's head, with the aid of the app and a compass attached to a skin marker pen. Then, two experienced neurosurgeons checked the plausibility of the demarcations based on the anatomical references. Both evaluators marked the frontal, temporal and parietal targets with a difference of less than 5 mm from the corresponding intended point, in all cases. The overall average accuracy observed was 1.6 ± 1.0 mm. The app was used in the surgical planning of trepanations for ventriculoperitoneal (VP) shunts and for drainage of abscesses, and in the definition of craniotomies for meningiomas, gliomas, brain metastases, intracranial hematomas, cavernomas, and arteriovenous malformation. The sample consisted of 88 volunteers who exhibited the following pathologies: 41 (46.6%) had brain tumors, 17 (19.3%) had traumatic brain injuries, 16 (18.2%) had spontaneous intracerebral hemorrhages, 2 (2.3%) had cavernomas, 1 (1.1%) had arteriovenous malformation (AVM), 4 (4.5%) had brain abscesses, and 7 (7.9%) had a VP shunt placement. In cases approached by craniotomy, with the exception of AVM, straight incisions and minicraniotomy were performed. Surgical planning with the aid of the NeuroKeypoint app is feasible and reliable. It has enabled neurological surgeries by craniotomy and trepanation in an accurate, precise, and less invasive manner.
Collapse
Affiliation(s)
- Bruno Fernandes de Oliveira Santos
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, SE, Brazil. .,Unimed Sergipe Hospital, Aracaju, SE, Brazil. .,Clinic and Hospital São Lucas / Rede D`Or São Luiz, Aracaju, SE, Brazil. .,Department of Neurosurgery, Hospital de Cirurgia, Aracaju, SE, Brazil.
| | - Daniel de Araujo Paz
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Antonio Carlos Sobral Sousa
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Internal Medicine, Federal University of Sergipe, Aracaju, SE, Brazil.,Division of Cardiology, University Hospital, Federal University of Sergipe, Aracaju, SE, Brazil.,Clinic and Hospital São Lucas / Rede D`Or São Luiz, Aracaju, SE, Brazil
| | - Joselina Luzia Menezes Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Internal Medicine, Federal University of Sergipe, Aracaju, SE, Brazil.,Division of Cardiology, University Hospital, Federal University of Sergipe, Aracaju, SE, Brazil.,Clinic and Hospital São Lucas / Rede D`Or São Luiz, Aracaju, SE, Brazil
| |
Collapse
|
2
|
Fredrickson VL, Lin M, Catapano JS, Attenello FJ. Commentary: Clinical Accuracy of Holographic Navigation Using Point-Based Registration on Augmented-Reality Glasses. Oper Neurosurg (Hagerstown) 2020; 17:E229-E230. [PMID: 31515566 DOI: 10.1093/ons/opz266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vance L Fredrickson
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Fomenko A, Serletis D. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review. Neurosurgery 2019; 83:642-650. [PMID: 29253265 DOI: 10.1093/neuros/nyx576] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/01/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. OBJECTIVE To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. METHODS Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. RESULTS Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. CONCLUSION We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies.
Collapse
Affiliation(s)
- Anton Fomenko
- Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Demitre Serletis
- Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Giller CA, Mornet P, Moreau JF. The first formulation of image-based stereotactic principles: the forgotten work of Gaston Contremoulins. J Neurosurg 2017; 127:1426-1435. [PMID: 28298020 DOI: 10.3171/2016.10.jns161966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although image-based human stereotaxis began with Spiegel and Wycis in 1947, the major principles of radiographic stereotaxis were formulated 50 years earlier by the French scientific photographer Gaston Contremoulins. In 1897, frustrated by the high morbidity of bullet extraction from the brain, the Parisian surgeon Charles Rémy asked Contremoulins to devise a method for bullet localization using the then new technology of x-rays. In doing so, Contremoulins conceived of many of the modern principles of stereotaxis, including the use of a reference frame, radiopaque fiducials for registration, images to locate the target in relation to the frame, phantom devices to locate the target in relation to the fiducial marks, and the use of an adjustable pointer to guide the surgical approach. Contremoulins' ideas did not emerge from science or medicine, but instead were inspired by his training in the fine arts. Had he been a physician instead of an artist, he might have never discovered his extraordinary methods. Contremoulins' "compass" and its variants enjoyed great success during World War I, but were abandoned by 1920 for simpler methods. Although Contremoulins was one of the most eminent radiographers in France, he was not a physician, and his personality was uncompromising. By 1940, both he and his methods were forgotten. It was not until 1988 that he was rediscovered by Moreau while reviewing the history of French radiology, and chronicled by Mornet in his extensive biography. The authors examine Contremoulins' stereotactic methods in historical context, describe the details of his devices, relate his discoveries to his training in the fine arts, and discuss how his prescient formulation of stereotaxis was forgotten for more than half a century.
Collapse
Affiliation(s)
- Cole A Giller
- Neurosurgery Department, Augusta University, Augusta, Georgia
| | | | - Jean-François Moreau
- Université & Faculté de Médecine Paris Descartes, PRES Sorbonne-Paris Cité, Paris, France
| |
Collapse
|