1
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Zheng Q, Duan D, Xu J, Wang X, Ge Y, Xiong L, Yang J, Wulayin S, Luo X. Comparative safety of multiple doses of erythropoietin for the treatment of traumatic brain injury: A systematic review and network meta-analysis. Front Neurol 2022; 13:998320. [PMID: 36582613 PMCID: PMC9793776 DOI: 10.3389/fneur.2022.998320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Over the past few decades, advances in traumatic brain injury (TBI) pathology research have dynamically enriched our knowledge. Therefore, we aimed to systematically elucidate the safety and efficacy of erythropoietin (EPO) dosing regimens in patients with TBI. Methods Data search included PubMed, the Cochrane Library, Embase, Web of Science, and ClinicalTrials.gov for related research published before July 2022. The network meta-analysis was conducted using ADDIS 1.16.8, and the CINeMA tool was used to assess the quality level of evidence. Results A total of six RCTs involving 981 patients were included in the network meta-analysis. EPO did not significantly reduce mortality in patients with TBI, but its risk of death decreased with increasing dosage (odds ratio (OR) of 12,000u vs. placebo = 0.98, 95% CI: 0.03-40.34; OR of group 30,000u vs. placebo = 0.56, 95% CI: 0.06-5.88; OR of 40,000u vs. placebo = 0.35, 95% CI: 0.01-9.43; OR of 70,000u vs. placebo = 0.29, 95% CI: 0.01-9.26; OR of group 80,000u vs. placebo = 0.22, 95% CI: 0.00-7.45). A total of three studies involving 739 patients showed that EPO did not increase the incidence of deep vein thrombosis in patients with TBI. However, the risk tended to rise as the dosage increased. Another two studies demonstrated that EPO did not increase the incidence of pulmonary embolism. The quality of evidence for all outcomes was low to moderate. Conclusion Although the efficacy of EPO was not statistically demonstrated, we found a trend toward an association between EPO dosage and reduced mortality and increased embolic events in patients with TBI. More high-quality original studies should be conducted to obtain strong evidence on the optimal dosage of EPO. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=272500. The study protocol was registered with PROSPERO (CRD42021272500).
Collapse
Affiliation(s)
- Qingyong Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China,Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, Gansu, China,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Duan
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Xu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yonggui Ge
- Department of Rehabilitation, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Xiong
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Yang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Saimire Wulayin
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaofeng Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China,*Correspondence: Xiaofeng Luo
| |
Collapse
|
3
|
Li M, Huo X, Wang Y, Li W, Xiao L, Jiang Z, Han Q, Su D, Chen T, Xia H. Effect of drug therapy on nerve repair of moderate-severe traumatic brain injury: A network meta-analysis. Front Pharmacol 2022; 13:1021653. [PMID: 36408253 PMCID: PMC9666493 DOI: 10.3389/fphar.2022.1021653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Objective: This network meta-analysis aimed to explore the effect of different drugs on mortality and neurological improvement in patients with traumatic brain injury (TBI), and to clarify which drug might be used as a more promising intervention for treating such patients by ranking. Methods: We conducted a comprehensive search from PubMed, Medline, Embase, and Cochrane Library databases from the establishment of the database to 31 January 2022. Data were extracted from the included studies, and the quality was assessed using the Cochrane risk-of-bias tool. The primary outcome measure was mortality in patients with TBI. The secondary outcome measures were the proportion of favorable outcomes and the occurrence of drug treatment–related side effects in patients with TBI in each drug treatment group. Statistical analyses were performed using Stata v16.0 and RevMan v5.3.0. Results: We included 30 randomized controlled trials that included 13 interventions (TXA, EPO, progesterone, progesterone + vitamin D, atorvastatin, beta-blocker therapy, Bradycor, Enoxaparin, Tracoprodi, dexanabinol, selenium, simvastatin, and placebo). The analysis revealed that these drugs significantly reduced mortality in patients with TBI and increased the proportion of patients with favorable outcomes after TBI compared with placebo. In terms of mortality after drug treatment, the order from the lowest to the highest was progesterone + vitamin D, beta-blocker therapy, EPO, simvastatin, Enoxaparin, Bradycor, Tracoprodi, selenium, atorvastatin, TXA, progesterone, dexanabinol, and placebo. In terms of the proportion of patients with favorable outcomes after drug treatment, the order from the highest to the lowest was as follows: Enoxaparin, progesterone + vitamin D, atorvastatin, simvastatin, Bradycor, EPO, beta-blocker therapy, progesterone, Tracoprodi, TXA, selenium, dexanabinol, and placebo. In addition, based on the classification of Glasgow Outcome Scale (GOS) scores after each drug treatment, this study also analyzed the three aspects of good recovery, moderate disability, and severe disability. It involved 10 interventions and revealed that compared with placebo treatment, a higher proportion of patients had a good recovery and moderate disability after treatment with progesterone + vitamin D, Bradycor, EPO, and progesterone. Meanwhile, the proportion of patients with a severe disability after treatment with progesterone + vitamin D and Bradycor was also low. Conclusion: The analysis of this study revealed that in patients with TBI, TXA, EPO, progesterone, progesterone + vitamin D, atorvastatin, beta-blocker therapy, Bradycor, Enoxaparin, Tracoprodi, dexanabinol, selenium, and simvastatin all reduced mortality and increased the proportion of patients with favorable outcomes in such patients compared with placebo. Among these, the progesterone + vitamin D had not only a higher proportion of patients with good recovery and moderate disability but also a lower proportion of patients with severe disability and mortality. However, whether this intervention can be used for clinical promotion still needs further exploration.
Collapse
Affiliation(s)
- Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Jiang
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qian Han
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dongpo Su
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Tong Chen
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
- *Correspondence: Tong Chen, ; Hechun Xia,
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Tong Chen, ; Hechun Xia,
| |
Collapse
|
4
|
Current Clinical Trials in Traumatic Brain Injury. Brain Sci 2022; 12:brainsci12050527. [PMID: 35624914 PMCID: PMC9138587 DOI: 10.3390/brainsci12050527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity, disability and mortality across all age groups globally. Currently, only palliative treatments exist, but these are suboptimal and do little to combat the progressive damage to the brain that occurs after a TBI. However, multiple experimental treatments are currently available that target the primary and secondary biochemical and cellular changes that occur after a TBI. Some of these drugs have progressed to clinical trials and are currently being evaluated for their therapeutic benefits in TBI patients. The aim of this study was to identify which drugs are currently being evaluated in clinical trials for TBI. A search of ClinicalTrials.gov was performed on 3 December 2021 and all clinical trials that mentioned “TBI” OR “traumatic brain injury” AND “drug” were searched, revealing 362 registered trials. Of the trials, 46 were excluded due to the drug not being mentioned, leaving 138 that were completed and 116 that were withdrawn. Although the studies included 267,298 TBI patients, the average number of patients per study was 865 with a range of 5–200,000. Of the completed studies, 125 different drugs were tested in TBI patients but only 7 drugs were used in more than three studies, including amantadine, botulinum toxin A and tranexamic acid (TXA). However, previous clinical studies using these seven drugs showed variable results. The current study concludes that clinical trials in TBI have to be carefully conducted so as to reduce variability across studies, since the severity of TBI and timing of therapeutic interventions were key aspects of trial success.
Collapse
|
5
|
Semple BD, Raghupathi R. A Pro-social Pill? The Potential of Pharmacological Treatments to Improve Social Outcomes After Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:714253. [PMID: 34489853 PMCID: PMC8417315 DOI: 10.3389/fneur.2021.714253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young children worldwide, and social behavior impairments in this population are a significant challenge for affected patients and their families. The protracted trajectory of secondary injury processes triggered by a TBI during early life-alongside ongoing developmental maturation-offers an extended time window when therapeutic interventions may yield functional benefits. This mini-review explores the scarce but promising pre-clinical literature to date demonstrating that social behavior impairments after early life brain injuries can be modified by drug therapies. Compounds that provide broad neuroprotection, such as those targeting neuroinflammation, oxidative stress, axonal injury and/or myelination, may prevent social behavior impairments by reducing secondary neuropathology. Alternatively, targeted treatments that promote affiliative behaviors, exemplified by the neuropeptide oxytocin, may reduce the impact of social dysfunction after pediatric TBI. Complementary literature from other early life neurodevelopmental conditions such as hypoxic ischemic encephalopathy also provides avenues for future research in neurotrauma. Knowledge gaps in this emerging field are highlighted throughout, toward the goal of accelerating translational research to support optimal social functioning after a TBI during early childhood.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia.,Department of Neurology, Alfred Health, Prahran, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Effect of erythropoietin administration on the expression of brain-derived neurotrophic factor, stromal cell-derived Factor-1, and neuron-specific enolase in traumatic brain injury: A literature review. Ann Med Surg (Lond) 2021; 69:102666. [PMID: 34429948 PMCID: PMC8371185 DOI: 10.1016/j.amsu.2021.102666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and lifelong disability around the world that predominantly affects young and middle-aged people. Erythropoietin (EPO) is a promising therapeutic agent for a variety of neurological injuries including TBI due to its neuroprotective effects. Here we review the impact of exogenous erythropoietin administration on the expression of brain-derived neurotrophic factor (BDNF), stromal cell-derived factor-1 (SDF-1), and neuron-specific enolase (NSE) levels in cerebrospinal fluid after TBI as biomarkers for neuron regeneration and survival to predict TBI outcome.
Collapse
|
7
|
Liu M, Wang AJ, Chen Y, Zhao G, Jiang Z, Wang X, Shi D, Zhang T, Sun B, He H, Williams Z, Hu K. Efficacy and safety of erythropoietin for traumatic brain injury. BMC Neurol 2020; 20:399. [PMID: 33138778 PMCID: PMC7604969 DOI: 10.1186/s12883-020-01958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies regarding the effects of erythropoietin (EPO) for treating traumatic brain injury (TBI) have been inconsistent. This study conducts a meta-analysis of randomized controlled trials (RCTs) to assess the safety and efficacy of EPO for TBI patients at various follow-up time points. METHODS A literature search was performed using PubMed, Web of Science, MEDLINE, Embase, Google Scholar and the Cochrane Library for RCTs studying EPO in TBI patients published through March 2019. Non-English manuscripts and non-human studies were excluded. The assessed outcomes include mortality, neurological recovery and associated adverse effects. Dichotomous variables are presented as risk ratios (RR) with a 95% confidence interval (CI). RESULTS A total of seven RCTs involving 1197 TBI patients (611 treated with EPO, 586 treated with placebo) were included in this study. Compared to the placebo arm, treatment with EPO did not improve acute hospital mortality or short-term mortality. However, there was a significant improvement in mid-term (6 months) follow-up survival rates. EPO administration was not associated with neurological function improvement. Regarding adverse effects, EPO treatment did not increase the incidence of thromboembolic events or other associated adverse events. CONCLUSIONS This meta-analysis indicates a slight mortality benefit for TBI patients treated with EPO at mid-term follow-up. EPO does not improve in-hospital mortality, nor does it increase adverse events including thrombotic, cardiovascular and other associated complications. Our analysis did not demonstrate a significant beneficial effect of EPO intervention on the recovery of neurological function. Future RCTs are required to further characterize the use of EPO in TBI.
Collapse
Affiliation(s)
- Motao Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Amy J Wang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhifeng Jiang
- Department of Neurosurgery, Ji Zhong Energy Fengfeng Group General hospital, Handan City, 056200, China
| | - Xinbang Wang
- Department of Neurosurgery, The PLA Navy Anqing Hospital, Anqing City, 246000, China
| | - Dongliang Shi
- Department of Neurosurgery, No.904th Hospital of The People's Liberation Army Joint Logistics Support Force, Wuxi, 214000, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing-an District Central Hospital, Shanghai, 200437, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China. .,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Abstract
Therapeutic strategies for traumatic injuries in the central nervous system (CNS) are largely limited to the efficiency of drug delivery. Despite the disrupted blood-CNS barrier during the early phase after injury, the drug administration faces a variety of obstacles derived from homeostatic imbalance at the injury site. In the late phase after CNS injury, the restoration of the blood-CNS barrier integrity varies depending on the injury severity resulting in inconsistent delivery of therapeutics. This review intends to characterize those different challenges of the therapeutic delivery in acute and chronic phases after injury and discuss recent advances in various approaches to explore novel strategies for the treatment of traumatic CNS injury.
Collapse
|
9
|
Esfahani K, Dunn LK, Naik BI. Blood Conservation for Complex Spine and Intracranial Procedures. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Fu C, Wu Q, Zhang Z, Xia Z, Ji H, Lu H, Wang Y. UPLC-ESI-IT-TOF-MS metabolomic study of the therapeutic effect of Xuefu Zhuyu decoction on rats with traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112149. [PMID: 31401321 DOI: 10.1016/j.jep.2019.112149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
It has been widely reported that Xuefu Zhuyu decoction (XFZYD), a traditional Chinese medicine, is effective in the treatment of traumatic brain injury (TBI). However, the mechanism of the therapeutic process is still not fully understood. Metabolomic technique can be used to explore the mechanisms underlying the treatment of TBI with XFZYD. The purpose of this work was to investigate the metabolic characteristics of blood samples from rats with and without XFZYD treatment and the dynamic changes in metabolite profiles on days 1, 3, 7, 14 and 21 after injury (within the severe phase of TBI) based on untargeted UPLC-ESI-IT-TOF-MS analysis. Pattern recognition, clustering analysis and metabolic pathway analysis were used to analyse the metabolomic data of three groups (a sham-operated group, a TBI model, and an XFZYD-treated TBI model). The results showed that XFZYD reversed the abnormalities in the levels of small-molecule metabolites (such as L-acetylcarnitine, L-tryptophan, indoleacrylic acid, γ-aminobutyric acid, hypotaurine, LysoPC(18:1)(11Z), creatine, L-phenylalanine and L-leucine) in TBI rats through six metabolic pathways (including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; valine, leucine and isoleucine biosynthesis; taurine and hypotaurine metabolism; tryptophan metabolism; and alanine, aspartate and glutamate metabolism) involved in the therapy process. XFZYD regulated the metabolic disorders of endogenous markers by the possible mechanisms of neuroprotection, energy metabolism, inflammatory response and oxidative stress. This study revealed the holistic and dynamic metabolic changes caused by XFZYD in rats with TBI and provided important research methods and approaches for exploring the multiple metabolites and metabolic pathways involved in the therapeutic effect of XFZYD on TBI.
Collapse
Affiliation(s)
- Chunyan Fu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China; College of Pharmacy, Shaoyang University, Hunan, Shaoyang, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Zian Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, PR China
| | - Hongchao Ji
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China.
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, PR China.
| |
Collapse
|
11
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
13
|
Yokobori S, Sasaki K, Kanaya T, Igarashi Y, Nakae R, Onda H, Masuno T, Suda S, Sowa K, Nakajima M, Spurlock MS, Onn Chieng L, Hazel TG, Johe K, Gajavelli S, Fuse A, Bullock MR, Yokota H. Feasibility of Human Neural Stem Cell Transplantation for the Treatment of Acute Subdural Hematoma in a Rat Model: A Pilot Study. Front Neurol 2019; 10:82. [PMID: 30809187 PMCID: PMC6379455 DOI: 10.3389/fneur.2019.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Human neural stem cells (hNSCs) transplantation in several brain injury models has established their therapeutic potential. However, the feasibility of hNSCs transplantation is still not clear for acute subdural hematoma (ASDH) brain injury that needs external decompression. Thus, the aim of this pilot study was to test feasibility using a rat ASDH decompression model with two clinically relevant transplantation methods. Two different methods, in situ stereotactic injection and hNSC-embedded matrix seating on the brain surface, were attempted. Athymic rats were randomized to uninjured or ASDH groups (F344/NJcl-rnu/rnu, n = 7-10/group). Animals in injury group were subjected to ASDH, and received decompressive craniectomy and 1-week after decompression surgery were transplanted with green fluorescent protein (GFP)-transduced hNSCs using one of two approaches. Histopathological examinations at 4 and 8 weeks showed that the GFP-positive hNSCs survived in injured brain tissue, extended neurite-like projections resembling neural dendrites. The in situ transplantation group had greater engraftment of hNSCs than matrix embedding approach. Immunohistochemistry with doublecortin, NeuN, and GFAP at 8 weeks after transplantation showed that transplanted hNSCs remained as immature neurons and did not differentiate toward to glial cell lines. Motor function was assessed with rotarod, compared to control group (n = 10). The latency to fall from the rotarod in hNSC in situ transplanted rats was significantly higher than in control rats (median, 113 s in hNSC vs. 69 s in control, P = 0.02). This study first demonstrates the robust engraftment of in situ transplanted hNSCs in a clinically-relevant ASDH decompression rat model. Further preclinical studies with longer study duration are warranted to verify the effectiveness of hNSC transplantation in amelioration of TBI induced deficits.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro Kanaya
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidetaka Onda
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomohiko Masuno
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kota Sowa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masataka Nakajima
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Markus S. Spurlock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lee Onn Chieng
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Karl Johe
- Neuralstem, Inc., Germantown, MD, United States
| | - Shyam Gajavelli
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Akira Fuse
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - M. Ross Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
14
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
15
|
Li X, Wang H, Gao Y, Li L, Tang C, Wen G, Zhou Y, Zhou M, Mao L, Fan Y. Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway. PLoS One 2016; 11:e0164237. [PMID: 27780244 PMCID: PMC5079551 DOI: 10.1371/journal.pone.0164237] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023] Open
Abstract
The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in mitochondrial biogenesis. Recently, quercetin has been proved to have a protective effect against mitochondria damage after traumatic brain injury (TBI). However, its precise role and underlying mechanisms in traumatic brain injury are not yet fully understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism of these effects in a weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administrated 30 min after TBI. In this experiment, ICR mice were divided into four groups: A sham group, TBI group, TBI + vehicle group, and TBI + quercetin group. Brain samples were collected 24 h later for analysis. Quercetin treatment resulted in an upregulation of Nrf2 expression and cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were restored by quercetin treatment. Quercetin markedly promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus. These observations suggest that quercetin improves mitochondrial function in TBI models, possibly by activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Guodao Wen
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China
| |
Collapse
|