1
|
Nakazaki M, Yokoyama T, Lankford KL, Hirota R, Kocsis JD, Honmou O. Mesenchymal Stem Cells and Their Extracellular Vesicles: Therapeutic Mechanisms for Blood-Spinal Cord Barrier Repair Following Spinal Cord Injury. Int J Mol Sci 2024; 25:13460. [PMID: 39769223 PMCID: PMC11677717 DOI: 10.3390/ijms252413460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier. Its restoration is a key therapeutic target for improving outcomes in SCI. Mesenchymal stromal/stem cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have gained attention for their regenerative, immunomodulatory, and anti-inflammatory properties in promoting BSCB repair. MSCs enhance BSCB integrity by improving endothelial-pericyte association, restoring tight junction proteins, and reducing inflammation. MSC-EVs, which deliver bioactive molecules, replicate many of MSCs' therapeutic effects, and offer a promising cell-free alternative. Preclinical studies have shown that both MSCs and MSC-EVs can reduce BSCB permeability, promote vascular stability, and support functional recovery. While MSC therapy is advancing in clinical trials, MSC-EV therapies require further optimization in terms of production, dosing, and delivery protocols. Despite these challenges, both therapeutic approaches represent significant potential for treating SCI by targeting BSCB repair and improving patient outcomes.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Takahiro Yokoyama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
Wang HK, Su YT, Ho YC, Lee YK, Chu TH, Chen KT, Wu CC. HDAC1 is Involved in Neuroinflammation and Blood-Brain Barrier Damage in Stroke Pathogenesis. J Inflamm Res 2023; 16:4103-4116. [PMID: 37745794 PMCID: PMC10516226 DOI: 10.2147/jir.s416239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Background Stroke is a common cause of disability and mortality worldwide; however, effective therapy remains limited. In stroke pathogenesis, ischemia/reperfusion injury triggers gliosis and neuroinflammation that further activates matrix metalloproteinases (MMPs), thereby damaging the blood-brain barrier (BBB). Increased BBB permeability promotes macrophage infiltration and brain edema, thereby worsening behavioral outcomes and prognosis. Histone deacetylase 1 (HDAC1) is a repressor of epigenomic gene transcription and participates in DNA damage and cell cycle regulation. Although HDAC1 is deregulated after stroke and is involved in neuronal loss and DNA repair, its role in neuroinflammation and BBB damage remains unknown. Methods The rats with cerebral ischemia were evaluated in behavioral outcomes, levels of inflammation in gliosis and cytokines, and BBB damage by using an endothelin-1-induced rat model with cerebral ischemia/reperfusion injury. Results The results revealed that HDAC1 dysfunction could promote BBB damage through the destruction of tight junction proteins, such as ZO-1 and occludin, after stroke in rats. HDAC1 inhibition also increased the levels of astrocyte and microglial gliosis, tumor necrosis factor-alpha, interleukin-1 beta, lactate dehydrogenase, and reactive oxygen species, further triggering MMP-2 and MMP-9 activity. Moreover, modified neurological severity scores for the cylinder test revealed that HDAC1 inhibition deteriorated behavioral outcomes in rats with cerebral ischemia. Discussion HDAC1 plays a crucial role in ischemia/reperfusion-induced neuroinflammation and BBB damage, thus indicating its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yu-Cheng Ho
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Kuang-Ti Chen
- Department of Veterinary Medicine, Nation Chung-Hsing University, Taichung City, Taiwan
| | - Cheng-Chun Wu
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
4
|
Barreto-Arce LJ, Kim HA, Chan ST, Lim R, Drummond GR, Ma H, Phan TG, Sobey CG, Zhang SR. Protection against brain injury after ischemic stroke by intravenous human amnion epithelial cells in combination with tissue plasminogen activator. Front Neurosci 2023; 17:1157236. [PMID: 37397458 PMCID: PMC10311557 DOI: 10.3389/fnins.2023.1157236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Thrombolytic agents such as tissue plasminogen activator (tPA) are the only drug class approved to treat ischemic stroke and are usually administered within 4.5 h. However, only ~20% of ischemic stroke patients are eligible to receive the therapy. We previously demonstrated that early intravenous administration of human amnion epithelial cells (hAECs) can limit brain inflammation and infarct growth in experimental stroke. Here, we have tested whether hAECs exert cerebroprotective effects in combination with tPA in mice. Methods Male C57Bl/6 mice were subjected to middle cerebral artery occlusion for 60 min followed by reperfusion. Immediately following reperfusion, vehicle (saline, n = 31) or tPA (10 mg/kg; n = 73) was administered intravenously. After 30 min of reperfusion, tPA-treated mice were injected intravenously with either hAECs (1×106; n = 32) or vehicle (2% human serum albumin; n = 41). A further 15 sham-operated mice were treated with vehicle (n = 7) or tPA + vehicle (n = 8). Mice were designated to be euthanised at 3, 6 or 24 h post-stroke (n = 21, 31, and 52, respectively), and brains were collected to assess infarct volume, blood-brain barrier (BBB) disruption, intracerebral bleeding and inflammatory cell content. Results There was no mortality within 6 h of stroke onset, but a high mortality occurred in tPA + saline-treated mice between 6 h and 24 h post-stroke in comparison to mice treated with tPA + hAECs (61% vs. 27%, p = 0.04). No mortality occurred within 24 h of sham surgery in mice treated with tPA + vehicle. We focused on early infarct expansion within 6 h of stroke and found that infarction was ~50% larger in tPA + saline- than in vehicle-treated mice (23 ± 3 mm3 vs. 15 ± 2 mm3, p = 0.02) but not in mice receiving tPA + hAECs (13 ± 2 mm3, p < 0.01 vs. tPA + saline) in which intracerebral hAECs were detected. Similar to the profiles of infarct expansion, BBB disruption and intracerebral bleeding in tPA + saline-treated mice at 6 h was 50-60% greater than in vehicle-treated controls (2.6 ± 0.5 vs. 1.6 ± 0.2, p = 0.05) but not after tPA + hAECs treatment (1.7 ± 0.2, p = 0.10 vs. tPA + saline). No differences in inflammatory cell content were detected between treatment groups. Conclusion When administered following tPA in acute stroke, hAECs improve safety and attenuate infarct growth in association with less BBB disruption and lower 24 h mortality.
Collapse
Affiliation(s)
- Liz J. Barreto-Arce
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Grant R. Drummond
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Henry Ma
- Clinical Trials, Imaging and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Thanh G. Phan
- Clinical Trials, Imaging and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Christopher G. Sobey
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shenpeng R. Zhang
- Department of Microbiology, Anatomy, Physiology, and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
6
|
Qiu L, Cai Y, Geng Y, Yao X, Wang L, Cao H, Zhang X, Wu Q, Kong D, Ding D, Shi Y, Wang Y, Wu J. Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood-brain barrier disruption in murine ischemic stroke models. Acta Biomater 2022; 154:424-442. [PMID: 36367475 DOI: 10.1016/j.actbio.2022.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage following blood-brain barrier (BBB) disruption resulting from thrombolysis of ischemic stroke with tissue plasminogen activator (tPA) remains a critical clinical problem. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are promising nanotherapeutic agents that have the potential to repair the BBB after ischemic stroke; however, whether they can attenuate BBB disruption and hemorrhagic transformation after tPA thrombolysis is largely unknown. Here, we observed that MSC-EVs efficiently passed through the BBB and selectively accumulated in injured brain regions in ischemic stroke model mice in real time using aggregation-induced emission luminogens (AIEgens), which exhibit better tracking ability than the commercially available tracer DiR. Moreover, tPA administration promoted the homing of MSC-EVs to the ischemic brain and increased the uptake of MSC-EVs by astrocytes. Furthermore, the accumulated MSC-EVs attenuated the tPA-induced disruption of BBB integrity and alleviated hemorrhage by inhibiting astrocyte activation and inflammation. Mechanistically, miR-125b-5p delivered by MSC-EVs played an indispensable role in maintaining BBB integrity by targeting Toll-like receptor 4 (TLR4) and inhibiting nuclear transcription factor-kappaB (NF-κB) signaling in astrocytes. This study provides a noninvasive method for real-time tracking of MSC-EVs in the ischemic brain after tPA treatment and highlights the potential of MSC-EVs as thrombolytic adjuvants for ischemic stroke. STATEMENT OF SIGNIFICANCE: Although tPA thrombolysis is the most effective pharmaceutical strategy for acute ischemic stroke, its clinical application and therapeutic efficacy are challenged by tPA-induced BBB disruption and hemorrhagic transformation. Our study demonstrated that MSC-EVs can act as an attractive thrombolytic adjuvant to repair the BBB and improve thrombolysis in a mouse ischemic stroke model. Notably, by labeling MSC-EVs with AIEgens, we achieved accurate real-time imaging of MSC-EVs in the ischemic brain and therapeutic visualization. MSC-EVs inhibit astrocyte activation and associated inflammation through miR-125b-5p/TLR4/NF-κB pathway. Consequently, we revealed that MSC-EVs combined with tPA thrombolysis may be a promising approach for the treatment of ischemic stroke in clinical setting.
Collapse
Affiliation(s)
- Lina Qiu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Yanqin Geng
- Nankai University School of Medicine, Tianjin 300071, China
| | - Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lanxing Wang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Dan Ding
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Yang Shi
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China.
| | - Yuebing Wang
- Nankai University School of Medicine, Tianjin 300071, China; Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
7
|
Hirota R, Sasaki M, Kataoka-Sasaki Y, Oshigiri T, Kurihara K, Fukushi R, Oka S, Ukai R, Yoshimoto M, Kocsis JD, Yamashita T, Honmou O. Enhanced Network in Corticospinal Tracts after Infused Mesenchymal Stem Cells in Spinal Cord Injury. J Neurotrauma 2022; 39:1665-1677. [PMID: 35611987 PMCID: PMC9734021 DOI: 10.1089/neu.2022.0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although limited spontaneous recovery occurs after spinal cord injury (SCI), current knowledge reveals that multiple forms of axon growth in spared axons can lead to circuit reorganization and a detour or relay pathways. This hypothesis has been derived mainly from studies of the corticospinal tract (CST), which is the primary descending motor pathway in mammals. The major CST is the dorsal CST (dCST), being the major projection from cortex to spinal cord. Two other components often called "minor" pathways are the ventral and the dorsal lateral CSTs, which may play an important role in spontaneous recovery. Intravenous infusion of mesenchymal stem cells (MSCs) provides functional improvement after SCI with an enhancement of axonal sprouting of CSTs. Detailed morphological changes of CST pathways, however, have not been fully elucidated. The primary objective was to evaluate detailed changes in descending CST projections in SCI after MSC infusion. The MSCs were infused intravenously one day after SCI. A combination of adeno-associated viral vector (AAV), which is an anterograde and non-transsynaptic axonal tracer, was injected 14 days after SCI induction. The AAV with advanced tissue clearing techniques were used to visualize the distribution pattern and high-resolution features of the individual axons coursing from above to below the lesion. The results demonstrated increased observable axonal connections between the dCST and axons in the lateral funiculus, both rostral and caudal to the lesion core, and an increase in observable axons in the dCST below the lesion. This increased axonal network could contribute to functional recovery by providing greater input to the spinal cord below the lesion.
Collapse
Affiliation(s)
- Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA.,Address correspondence to: Masanori Sasaki, MD, PhD, Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S1W17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Oshigiri
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kota Kurihara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryunosuke Fukushi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Ukai
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D. Kocsis
- Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, and Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Maeda S, Kawamura T, Sasaki M, Shimamura K, Shibuya T, Harada A, Honmou O, Sawa Y, Miyagawa S. Intravenous infusion of bone marrow-derived mesenchymal stem cells improves tissue perfusion in a rat hindlimb ischemia model. Sci Rep 2022; 12:16986. [PMID: 36216855 PMCID: PMC9551049 DOI: 10.1038/s41598-022-18485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/12/2022] [Indexed: 12/29/2022] Open
Abstract
Intravenous infusion of stem cells is a minimally invasive cellular delivery method, though a few have been reported in a critical limb-threatening ischemia (CLTI) animal model or patients. In the present study, we hypothesized that intravenous infusion of bone-marrow derived mesenchymal stem cells (MSCs) improves tissue perfusion in a rat hindlimb ischemia model. Hindlimb ischemia was generated in Sprague-Dawley rats by femoral artery removal, then seven days after ischemic induction intravenous infusion of 1 × 106 MSCs (cell group) or vehicle (control group) was performed. As compared with the control, tissue perfusion was significantly increased in the cell group. Histological findings showed that capillary density was significantly increased in the cell group, with infused green fluorescent protein (GFP)-MSCs distributed in the ischemic limb. Furthermore, gene expression of vascular endothelial growth factor (VEGF) was significantly increased in ischemic hindlimb muscle tissues of rats treated with MSC infusion. In conclusion, intravenous infusion of bone-marrow derived MSCs improved tissue perfusion in ischemic hindlimbs through angiogenesis, suggesting that intravenous infusion of MSCs was a promising cell delivery method for treatment of CLTI.
Collapse
Affiliation(s)
- Shusaku Maeda
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takuji Kawamura
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Masanori Sasaki
- grid.263171.00000 0001 0691 0855Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido Japan
| | - Kazuo Shimamura
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takashi Shibuya
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akima Harada
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Osamu Honmou
- grid.263171.00000 0001 0691 0855Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido Japan
| | - Yoshiki Sawa
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shigeru Miyagawa
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
9
|
Sheykhhasan M, Poondla N. Bone marrow mesenchymal stem cell treatment improves post-stroke cerebral function recovery by regulating gut microbiota in rats. World J Stem Cells 2022; 14:680-683. [PMID: 36157909 PMCID: PMC9453271 DOI: 10.4252/wjsc.v14.i8.680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Early intervention with bone marrow mesenchymal stem cells to change the form and function of the gut microbiota may help rats regain neurological function after a stroke.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
10
|
Takemura M, Sasaki M, Kataoka-Sasaki Y, Kiyose R, Nagahama H, Oka S, Ukai R, Yokoyama T, Kocsis JD, Ueba T, Honmou O. Repeated intravenous infusion of mesenchymal stem cells for enhanced functional recovery in a rat model of chronic cerebral ischemia. J Neurosurg 2022; 137:402-411. [PMID: 34861644 DOI: 10.3171/2021.8.jns21687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stroke is a major cause of long-term disability, and there are few effective treatments that improve function in patients during the chronic phase of stroke. Previous research has shown that single systemic infusion of mesenchymal stem cells (MSCs) improves motor function in acute and chronic cerebral ischemia models in rats. A possible mechanism that could explain such an event includes the enhanced neural connections between cerebral hemispheres that contribute to therapeutic effects. In the present study, repeated infusions (3 times at weekly intervals) of MSCs were administered in a rat model of chronic stroke to determine if multiple dosing facilitated plasticity in neural connections. METHODS The authors induced middle cerebral artery occlusion (MCAO) in rats and, 8 weeks thereafter, used them as a chronic stroke model. The rats with MCAO were randomized and intravenously infused with vehicle only (vehicle group); with MSCs at week 8 (single administration: MSC-1 group); or with MSCs at weeks 8, 9, and 10 (3 times, repeated administration: MSC-3 group) via femoral veins. Ischemic lesion volume and behavioral performance were examined. Fifteen weeks after induction of MCAO, the thickness of the corpus callosum (CC) was determined using Nissl staining. Immunohistochemical analysis of the CC was performed using anti-neurofilament antibody. Interhemispheric connections through the CC were assessed ex vivo by diffusion tensor imaging. RESULTS Motor recovery was better in the MSC-3 group than in the MSC-1 group. In each group, there was no change in the ischemic volume before and after infusion. However, both thickness and optical density of neurofilament staining in the CC were greater in the MSC-3 group, followed by the MSC-1 group, and then the vehicle group. The increased thickness and optical density of neurofilament in the CC correlated with motor function at 15 weeks following induction of MCAO. Preserved neural tracts that ran through interhemispheric connections via the CC were also more extensive in the MSC-3 group, followed by the MSC-1 group and then the vehicle group, as observed ex vivo using diffusion tensor imaging. CONCLUSIONS These results indicate that repeated systemic administration of MSCs over 3 weeks resulted in greater functional improvement as compared to single administration and/or vehicle infusion. In addition, administration of MSCs is associated with promotion of interhemispheric connectivity through the CC in the chronic phase of cerebral infarction.
Collapse
Affiliation(s)
- Mitsuhiro Takemura
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
- 3Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
- Departments of4Neurology and
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Ryo Kiyose
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Hiroshi Nagahama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
- 2Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Hokkaido
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Ryo Ukai
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Takahiro Yokoyama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Jeffery D Kocsis
- Departments of4Neurology and
- 5Neuroscience, Yale University School of Medicine, New Haven; and
- 6Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Tetsuya Ueba
- 3Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
- Departments of4Neurology and
| |
Collapse
|
11
|
Oka S, Yamaki T, Sasaki M, Ukai R, Takemura M, Yokoyama T, Kataoka-Sasaki Y, Onodera R, Ito YM, Kobayashi S, Kocsis JD, Iwadate Y, Honmou O. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in chronic brain injury patients: a study protocol for a Phase II trial (Preprint). JMIR Res Protoc 2022; 11:e37898. [PMID: 35793128 PMCID: PMC9301565 DOI: 10.2196/37898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Objective Methods Results Conclusions Trial Registration International Registered Report Identifier (IRRID)
Collapse
Affiliation(s)
- Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiro Yamaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, Chiba, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Ryo Ukai
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Takemura
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Yokoyama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeki Kobayashi
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, Chiba, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Advanced Regenerative Therapeutics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Mesenchymal Stem Cells: Therapeutic Mechanisms for Stroke. Int J Mol Sci 2022; 23:ijms23052550. [PMID: 35269692 PMCID: PMC8910569 DOI: 10.3390/ijms23052550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to aging of the world’s population, stroke has become increasingly prevalent, leading to a rise in socioeconomic burden. In the recent past, stroke research and treatment have become key scientific issues that need urgent solutions, with a sharp focus on stem cell transplantation, which is known to treat neurodegenerative diseases related to traumatic brain injuries, such as stroke. Indeed, stem cell therapy has brought hope to many stroke patients, both in animal and clinical trials. Mesenchymal stem cells (MSCs) are most commonly utilized in biological medical research, due to their pluripotency and universality. MSCs are often obtained from adipose tissue and bone marrow, and transplanted via intravenous injection. Therefore, this review will discuss the therapeutic mechanisms of MSCs and extracellular vehicles (EVs) secreted by MSCs for stroke, such as in attenuating inflammation through immunomodulation, releasing trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing the infarct volume, and replacing damaged cells.
Collapse
|
13
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Hong L, Chen W, He L, Tan H, Peng D, Zhao G, Shi X, Wang L, Liu M, Jiang H. Effect of Naoluoxintong on the NogoA/RhoA/ROCK pathway by down-regulating DNA methylation in MCAO rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114559. [PMID: 34461189 DOI: 10.1016/j.jep.2021.114559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naoluoxintong (NLXT) is a traditional Chinese Medicine (TCM) prescription that is clinically used in the treatment of ischemic stroke (IS). However, its therapeutic mechanism remains unclear. AIM OF THE STUDY To obtain the mechanism of NLXT by observing the protective effects of NLXT on the NogoA/RhoA/Rock pathway in a rat model of IS by regulating DNA methylation. MATERIALS AND METHODS Rats were divided into five groups using a random number table: normal group, model group, NLXT group, blocker group I (NLXT + SGI-1027) and blocker group II (NLXT + Y27632). The right middle cerebral artery occlusion-reperfusion (MCAO/R) rat model was made, and the regional cerebral blood flow (rCBF) of each group was detected using laser Doppler. The methylation levels of CpG sites of neurite outgrowth inhibitor protein-A (Nogo-A), Nogo receptor (NgR), ras homolog gene family member A (RhoA) and rho-associated coiled-coil protein kinase 2 (ROCK2) genes in rat brain tissue were detected using the bisulfite method. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect NogoA, RhoA, NgR1, NgR2 and ROCK2 mRNA expression in rat brain tissue. NogoA, RhoA, NgR1, NgR2 and ROCK2 proteins were detected using immunoblotting in rat brain tissue. RESULTS After the modeling of middle cerebral artery occlusion (MCAO), neurological deficit test was made to ensure the success of the modeling. At each time point after surgery, the rCBF of the other groups decreased compared with the normal group (P < 0.01 or P < 0.05). Meanwhile, the rCBF increased in blocker group I as well as blocker group II after 3 days (P < 0.05). There were differences in the DNA methylation sites of NogoA, RhoA, NgR and ROCK2 genes between the model group and the NLXT group (P < 0.05). Compared with the normal group, NogoA, NgR1, NgR2, RhoA and ROCK2 gene expression in the model group increased observably (P < 0.01). In comparison with the model group, NogoA and NgR1 gene expression in the blocker group II was prominently observed on the 1st day. NogoA, NgR1, NgR2, RhoA and ROCK2 gene expression remarkably reduced (P < 0.01) on the 3rd and 7th days. Compared with the normal group, NogoA, RhoA, NgR1, NgR2 and ROCK2 protein expression in the model group increased observably (P < 0.01). In comparison with the model group, NogoA, RhoA, NgR1, NgR2 and ROCK2 protein expression in the other groups declined prominently (P < 0.01). CONCLUSION NLXT can reduce the DNA methylation level of NogoA pathway after IS, thus inhibit the expression of NogoA/RhoA/ROCK pathway from producing anti-cerebral ischemia pharmacological effect.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Ling He
- Key Laboratory of Xin'an Medicine Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Hui Tan
- Key Laboratory of Xin'an Medicine Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Huaibei, Anhui, 235000, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
15
|
Yang L, Qian J, Yang B, He Q, Wang J, Weng Q. Challenges and Improvements of Novel Therapies for Ischemic Stroke. Front Pharmacol 2021; 12:721156. [PMID: 34658860 PMCID: PMC8514732 DOI: 10.3389/fphar.2021.721156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Stroke is the third most common disease all over the world, which is regarded as a hotspot in medical research because of its high mortality and morbidity. Stroke, especially ischemic stroke, causes severe neural cell death, and no effective therapy is currently available for neuroregeneration after stroke. Although many therapies have been shown to be effective in preclinical studies of ischemic stroke, almost none of them passed clinical trials, and the reasons for most failures have not been well identified. In this review, we focus on several novel methods, such as traditional Chinese medicine, stem cell therapy, and exosomes that have not been used for ischemic stroke till recent decades. We summarize the proposed basic mechanisms underlying these therapies and related clinical results, discussing advantages and current limitations for each therapy emphatically. Based on the limitations such as side effects, narrow therapeutic window, and less accumulation at the injury region, structure transformation and drug combination are subsequently applied, providing a deep understanding to develop effective treatment strategies for ischemic stroke in the near future.
Collapse
Affiliation(s)
- Lijun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
García-Belda P, Prima-García H, Aliena-Valero A, Castelló-Ruiz M, Ulloa-Navas MJ, Ten-Esteve A, Martí-Bonmatí L, Salom JB, García-Verdugo JM, Gil-Perotín S. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102464. [PMID: 34583057 DOI: 10.1016/j.nano.2021.102464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cell therapy after stroke is a promising option investigated in animal models and clinical trials. The intravenous route is commonly used in clinical settings guaranteeing an adequate safety profile although low yields of engraftment. In this report, rats subjected to ischemic stroke were injected with adipose-derived stem cells (ADSCs) labeled with superparamagnetic iron oxide nanoparticles (SPIONs) applying an external magnetic field in the skull to retain the cells. Although most published studies demonstrate viability of ADSCs, only a few have used ultrastructural techniques. In our study, the application of a local magnetic force resulted in a tendency for higher yields of SPION-ADSCs targeting the brain. However, grafted cells displayed morphological signs of death, one day after administration, and correlative microscopy showed active microglia and astrocytes associated in the process of scavenging. Thus, we conclude that, although successfully targeted within the brain, SPION-ADSCs viability was rapidly compromised.
Collapse
Affiliation(s)
- Paula García-Belda
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, Valencia, Spain
| | - Helena Prima-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain; Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain; Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
| | | | - Sara Gil-Perotín
- Laboratory of Central Neuroimmunology, IIS Hospital La Fe, Valencia, Spain.
| |
Collapse
|
17
|
Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J Extracell Vesicles 2021; 10:e12137. [PMID: 34478241 PMCID: PMC8408371 DOI: 10.1002/jev2.12137] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats. We found that sEVs were released by MSCs in vivo, trafficked to the injury site, associated specifically with M2 macrophages and co-localized with exosome markers. Furthermore, while a single MSC injection was sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3 days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs mimicked the effects of single dose MSC infusion on multiple parameters including: increased expression of M2 macrophage markers, upregulation of transforming growth factor-beta (TGF-β), TGF-β receptors and tight junction proteins, and reduction in BSCB permeability. These data suggest that release of sEVs by MSCs over time induces a cascade of cellular responses leading to improved functional recovery.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Tomonori Morita
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Karen L. Lankford
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Philip W Askenase
- Section of Rheumatology, Allergy and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineConnecticutUSA
| | - Jeffery D. Kocsis
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
18
|
Nakazaki M, Oka S, Sasaki M, Kataoka-Sasaki Y, Nagahama H, Hashi K, Kocsis JD, Honmou O. Prolonged lifespan in a spontaneously hypertensive rat (stroke prone) model following intravenous infusion of mesenchymal stem cells. Heliyon 2021; 6:e05833. [PMID: 33392407 PMCID: PMC7773587 DOI: 10.1016/j.heliyon.2020.e05833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 10/28/2022] Open
Abstract
Intravenous infusion of mesenchymal stem cells (MSCs) has been reported to provide therapeutic efficacy via microvascular remodeling in a spontaneously hypertensive rat. In this study, we demonstrate that intravenous infusion of MSCs increased the survival rate in a spontaneously hypertensive (stroke prone) rat model in which organs including kidney, brain, heart and liver are damaged during aging due to spontaneous hypertension. Gene expression analysis indicated that infused MSCs activates transforming growth factor-β1-smad3/forkhead box O1 signaling pathway. Renal dysfunction was recovered after MSC infusion. Collectively, intravenous infusion of MSC may extend lifespan in this model system.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kazuo Hashi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, 06516, USA
| |
Collapse
|
19
|
Nagahama H, Sasaki M, Kiyose R, Yasuda N, Honmou O. [3. Magnetic Resonance Imaging for Analysis of Neural Plasticity Induced by Neuroregenerative Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1238-1244. [PMID: 34670933 DOI: 10.6009/jjrt.2021_jsrt_77.10.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Hiroshi Nagahama
- Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Ryo Kiyose
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Naomi Yasuda
- Department of Cardiovascular Surgery, Sapporo Medical University School of Medicine
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
20
|
Gao L, Song Z, Mi J, Hou P, Xie C, Shi J, Li Y, Manaenko A. The Effects and Underlying Mechanisms of Cell Therapy on Blood-Brain Barrier Integrity After Ischemic Stroke. Curr Neuropharmacol 2020; 18:1213-1226. [PMID: 32928089 PMCID: PMC7770640 DOI: 10.2174/1570159x18666200914162013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Zhenghong Song
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Jianhua Mi
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Pinpin Hou
- Central Laboratory, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 201112, China
| | - Chong Xie
- Departmeng of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianquan Shi
- Departmeng of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yansheng Li
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Intravenous delivery of mesenchymal stem cells protects both white and gray matter in spinal cord ischemia. Brain Res 2020; 1747:147040. [DOI: 10.1016/j.brainres.2020.147040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
22
|
Age-related cerebral small vessel disease and inflammaging. Cell Death Dis 2020; 11:932. [PMID: 33127878 PMCID: PMC7603301 DOI: 10.1038/s41419-020-03137-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
The continued increase in global life expectancy predicts a rising prevalence of age-related cerebral small vessel diseases (CSVD), which requires a better understanding of the underlying molecular mechanisms. In recent years, the concept of "inflammaging" has attracted increasing attention. It refers to the chronic sterile low-grade inflammation in elderly organisms and is involved in the development of a variety of age-related chronic diseases. Inflammaging is a long-term result of chronic physiological stimulation of the immune system, and various cellular and molecular mechanisms (e.g., cellular senescence, immunosenescence, mitochondrial dysfunction, defective autophagy, metaflammation, gut microbiota dysbiosis) are involved. With the deepening understanding of the etiological basis of age-related CSVD, inflammaging is considered to play an important role in its occurrence and development. One of the most critical pathophysiological mechanisms of CSVD is endothelium dysfunction and subsequent blood-brain barrier (BBB) leakage, which gives a clue in the identification of the disease by detecting circulating biological markers of BBB disruption. The regional analysis showed blood markers of vascular inflammation are often associated with deep perforating arteriopathy (DPA), while blood markers of systemic inflammation appear to be associated with cerebral amyloid angiopathy (CAA). Here, we discuss recent findings in the pathophysiology of inflammaging and their effects on the development of age-related CSVD. Furthermore, we speculate the inflammaging as a potential target for future therapeutic interventions to delay or prevent the progression of the age-related CSVD.
Collapse
|
23
|
Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, Zhang J. Stroke treatment: Is exosome therapy superior to stem cell therapy? Biochimie 2020; 179:190-204. [PMID: 33010339 DOI: 10.1016/j.biochi.2020.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Stroke is one of the most common causes of disability and death, and currently, ideal clinical treatment is lacking. Stem cell transplantation is a widely-used treatment approach for stroke. When compared with other types of stem cells, bone marrow mesenchymal stem cells (BMSCs) have been widely studied because of their many advantages. The paracrine effect is the primary mechanism for stem cells to play their role, and exosomes play an essential role in the paracrine effect. When compared with cell therapy, cell-free exosome therapy can prevent many risks and difficulties, and therefore, represents a promising and novel approach for treatment. In this study, we reviewed the research progress in the application of BMSCs-derived exosomes (BMSCs-exos) and BMSCs in the treatment of stroke. In addition, the advantages and disadvantages of cell therapy and cell-free exosome therapy were described, and the possible factors that hinder the introduction of these two treatments into the clinic were analyzed. Furthermore, we reviewed the current optimization methods of cell therapy and cell-free exosome therapy. Taken together, we hypothesize that cell-free exosome therapy will have excellent research prospects in the future, and therefore, it is worth further exploring. There are still some issues that need to be further addressed. For example, differences between the in vivo microenvironment and in vitro culture conditions will affect the paracrine effect of stem cells. Most importantly, we believe that more preclinical and clinical design studies are required to compare the efficacy of stem cells and exosomes.
Collapse
Affiliation(s)
- Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wanying Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingzhi Xu
- Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Xiaodan Bai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|
24
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Nakazaki M, Oka S, Sasaki M, Kataoka-Sasaki Y, Onodera R, Komatsu K, Iihoshi S, Hiroura M, Kawaguchi A, Kocsis JD, Honmou O. Prevention of neointimal hyperplasia induced by an endovascular stent via intravenous infusion of mesenchymal stem cells. J Neurosurg 2019; 133:1773-1785. [PMID: 31585431 DOI: 10.3171/2019.7.jns19575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In-stent restenosis after percutaneous transluminal angioplasty and stenting (PTAS) due to neointimal hyperplasia is a potential cause of clinical complications, including repeated revascularization and ischemic events. Neointimal hyperplasia induced by an inflammatory response to the stent strut may be a possible mechanism of in-stent restenosis. Intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) has been reported to show therapeutic efficacy for cerebral stroke, presumably by an antiinflammatory effect. This study aimed to determine whether MSCs can reduce or prevent neointimal hyperplasia induced by an endovascular stent. METHODS In this study, two types of bare metal stents were deployed using a porcine (mini-pig) model. One stent was implanted in the common carotid artery (CCA), which is considered quite similar to the human CCA, and the other was inserted in the superficial cervical artery (SCA), which is similar in size to the human middle cerebral artery. Angiographic images, intravascular ultrasound (IVUS) imaging, and microscopic images were used for analysis. RESULTS Angiographic images and IVUS studies revealed that intravenous infusion of MSCs immediately after deployment of stents prevented in-stent stenosis of the CCA and SCA. Histological analysis also confirmed that inflammatory responses around the stent struts were reduced in both the stented CCA and SCA in the mini-pig. CONCLUSIONS Intravenous infusion of MSCs inhibited the inflammatory reaction to an implanted stent strut, and prevented progressive neointimal hyperplasia in the stented CCA and SCA in a porcine model. Thus, MSC treatment could attenuate the recurrence of cerebral ischemic events after stenting.
Collapse
Affiliation(s)
- Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Katsuya Komatsu
- 2Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido
| | - Satoshi Iihoshi
- 2Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido
| | - Manabu Hiroura
- 3NIPRO Life Science Site, NIPRO Corporation, Kusatsu, Shiga, Japan
| | - Akira Kawaguchi
- 3NIPRO Life Science Site, NIPRO Corporation, Kusatsu, Shiga, Japan
| | - Jeffery D Kocsis
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
26
|
Namioka T, Namioka A, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Onodera R, Suzuki J, Sasaki Y, Nagahama H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a rat model of chronic cerebral infarction. J Neurosurg 2019; 131:1289-1296. [PMID: 30485210 DOI: 10.3171/2018.5.jns18140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intravenous infusion of mesenchymal stem cells (MSCs) derived from adult bone marrow improves behavioral function in rat models of cerebral infarction. Although clinical studies are ongoing, most studies have focused on the acute or subacute phase of stroke. In the present study, MSCs derived from bone marrow of rats were intravenously infused 8 weeks after the induction of a middle cerebral artery occlusion (MCAO) to investigate whether delayed systemic injection of MSCs improves functional outcome in the chronic phase of stroke in rats. METHODS Eight weeks after induction of the MCAO, the rats were randomized and intravenously infused with either MSCs or vehicle. Ischemic volume and behavioral performance were examined. Blood-brain barrier (BBB) integrity was assessed by quantifying the leakage of Evans blue into the brain parenchyma after intravenous infusion. Immunohistochemical analysis was also performed to evaluate the stability of the BBB. RESULTS Motor recovery was better in the MSC-treated group than in the vehicle-treated group, with rapid improvement (evident at 1 week post-infusion). In MSC-treated rats, reduced BBB leakage and increased microvasculature/repair and neovascularization were observed. CONCLUSIONS These results indicate that the systemic infusion of MSCs results in functional improvement, which is associated with structural changes in the chronic phase of cerebral infarction, including in the stabilization of the BBB.
Collapse
Affiliation(s)
- Takahiro Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ai Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junpei Suzuki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuichi Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- 2Department of Neurology, Yale University School of Medicine, New Haven; and
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
27
|
Namioka A, Namioka T, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Onodera R, Suzuki J, Sasaki Y, Nagahama H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells for protection against brainstem infarction in a persistent basilar artery occlusion model in the adult rat. J Neurosurg 2019; 131:1308-1316. [PMID: 30485204 DOI: 10.3171/2018.4.jns173121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Morbidity and mortality in patients with posterior circulation stroke remains an issue despite advances in acute stroke therapies. The intravenous infusion of mesenchymal stem cells (MSCs) elicits therapeutic efficacy in experimental supratentorial stroke models. However, since there are few reliable animal models of ischemia in the posterior circulation, the therapeutic approach with intravenous MSC infusion has not been tested. The objective of this study was to test the hypothesis that intravenously infused MSCs provide functional recovery in a newly developed model of brainstem infarction in rats. METHODS Basilar artery (BA) occlusion (BAO) was established in rats by selectively ligating 4 points of the proximal BA with 10-0 nylon monofilament suture. The intravenous infusion of MSCs was performed 1 day after BAO induction. MRI and histological examinations were performed to assess ischemic lesion volume, while multiple behavioral tests were performed to evaluate functional recovery. RESULTS The MSC-treated group exhibited a greater reduction in ischemic lesion volume, while behavioral testing indicated that the MSC-infused group had greater improvement than the vehicle group 28 days after the MSC infusion. Accumulated infused MSCs were observed in the ischemic brainstem lesion. CONCLUSIONS Infused MSCs may provide neuroprotection to facilitate functional outcomes and reduce ischemic lesion volume as evaluated in a newly developed rat model of persistent BAO.
Collapse
Affiliation(s)
- Ai Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Namioka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junpei Suzuki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuichi Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- 2Department of Neurology, Yale University School of Medicine, New Haven; and
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- 3Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
28
|
Fernández-Susavila H, Bugallo-Casal A, Castillo J, Campos F. Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment. Front Neurol 2019; 10:908. [PMID: 31555195 PMCID: PMC6722184 DOI: 10.3389/fneur.2019.00908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Stroke is the main cause of disability and death in the world within neurological diseases. Despite such a huge impact, enzymatic, and mechanical recanalization are the only treatments available so far for ischemic stroke, but only <20% of patients can benefit from them. The use of stem cells as a possible cell therapy in stroke has been tested for years. The results obtained from these studies, although conflicting or controversial in some aspects, are promising. In the last few years, the recent development of the induced pluripotent stem cells has opened new possibilities to find new cell therapies against stroke. In this review, we will provide an overview of the state of the art of cell therapy in stroke. We will describe the current situation of the most employed stem cells and the use of induced pluripotent stem cells in stroke pathology. We will also present a summary of the different clinical trials that are being carried out or that already have results on the use of stem cells as a potential therapeutic intervention for stroke.
Collapse
Affiliation(s)
- Héctor Fernández-Susavila
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
29
|
Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Suzuki J, Sasaki Y, Nagahama H, Hashi K, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience 2019; 408:361-377. [DOI: 10.1016/j.neuroscience.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
30
|
Cui L, Moisan A, Jolkkonen J. Intravascular cell therapy in stroke: predicting the future trends. Regen Med 2018; 14:63-68. [PMID: 30561248 DOI: 10.2217/rme-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This short review examines the trends that have taken place during the last two decades in selecting delivery route and cell product in confirmatory preclinical stroke research. If there had been a major change, this might indicate a strategy with a high potential to enter early-phase clinical studies. The retrospective data show that intravenous cell delivery of mesenchymal stem cells remains the most popular approach in experimental research, clearly dominating early phase clinical studies. The advantages and risks of current practices are discussed in the hope that these will improve translational success and accelerate clinical development of safe and efficient cell products.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anaïck Moisan
- Inserm U1216, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, French Blood Company, Etablissement Français du Sang, Saint-Ismier, France
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Namestnikova DD, Tairova RT, Sukhinich KK, Cherkashova EA, Gubskiy IL, Gubskiy LV, Yarygin KN. [Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-75. [PMID: 30499563 DOI: 10.17116/jnevro201811809269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The literature review addresses the use of stem cells (SC) in ischemic stroke (IS). Part 1 of the paper overviews the results of experimental animal studies. Characteristics of different SC types and results of their studies in experimental models of IS are presented in the first section, the second section considers pros and cons of the methods of SC injection.
Collapse
Affiliation(s)
- D D Namestnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - R T Tairova
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K K Sukhinich
- Kol'tsov Institute of Development Biology, Moscow, Russia
| | - E A Cherkashova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - L V Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K N Yarygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
32
|
Sakai T, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Fukumura S, Kobayashi M, Tsutsumi H, Kocsis JD, Honmou O. Functional recovery after the systemic administration of mesenchymal stem cells in a rat model of neonatal hypoxia-ischemia. J Neurosurg Pediatr 2018; 22:513-522. [PMID: 30074448 DOI: 10.3171/2018.5.peds1845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 01/26/2023]
Abstract
The authors intravenously infused mesenchymal stem cells (MSCs) into a rat model of neonatal hypoxia-ischemia and found improvements in functional outcome, increased brain volume, and enhanced synaptogenesis. The results of this animal study suggest that the intravenous administration of MSCs should be further explored as a potential treatment for patients suffering from cerebral palsy after hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Takuro Sakai
- 1Department of Pediatrics
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Masanori Sasaki
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Shinichi Oka
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Masahito Nakazaki
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Shinobu Fukumura
- 1Department of Pediatrics
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Masaki Kobayashi
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 3Department of Perinatal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Jeffery D Kocsis
- 4Department of Neurology, Yale University School of Medicine, New Haven; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 2Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
33
|
Knecht T, Borlongan C, Dela Peña I. Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circ 2018; 4:99-108. [PMID: 30450415 PMCID: PMC6187940 DOI: 10.4103/bc.bc_21_18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Tissue plasminogen activator (tPA) thrombolysis continues to be the gold standard therapy for ischemic stroke. Due to the time-limited treatment window, within 4.5 h of stroke onset, and a variety of potentially deadly complications related to delayed administration, particularly hemorrhagic transformation (HT), clinical use of tPA is limited. Combination therapies with other interventions, drug or nondrug, have been hypothesized as a logical approach to enhancing tPA effectiveness. Here, we discuss various potential pharmacological and nondrug treatments to minimize adverse effects, primarily HT, associated with delayed tPA administration. Pharmacological interventions include many that support the integrity of the blood–brain barrier (i.e., atorvastatin, batimastat, candesartan, cilostazol, fasudil, and minocycline), promote vascularization and preserve cerebrovasculature (i.e., coumarin derivative IMM-H004 and granulocyte-colony stimulating factor), employing other mechanisms of action (i.e., oxygen transporters and ascorbic acid). Nondrug treatments are comprised of stem cell transplantation and gas therapies with multi-faceted approaches. Combination therapy with tPA and the aforementioned treatments demonstrated promise for mitigating the adverse complications associated with delayed tPA treatment and rescuing stroke-induced behavioral deficits. Therefore, the conjunctive therapy method is a novel therapeutic approach that can attempt to minimize the limitations of tPA treatment and possibly increase the therapeutic window for ischemic stroke treatment.
Collapse
Affiliation(s)
- Talia Knecht
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
34
|
Nagahama H, Suzuki J, Sasaki M, Nakazaki M, Honmou O. [8. Evaluation of the Therapeutic Mechanisms in Regeneration Therapy for Cerebral Infarction Using Pre-clinical Magnetic Resonance Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74:722-725. [PMID: 30033967 DOI: 10.6009/jjrt.2018_jsrt_74.7.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroshi Nagahama
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital.,Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Junpei Suzuki
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital.,Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
35
|
Nagahama H, Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Namioka T, Namioka A, Oka S, Onodera R, Suzuki J, Sasaki Y, Kocsis JD, Honmou O. Preservation of interhemispheric cortical connections through corpus callosum following intravenous infusion of mesenchymal stem cells in a rat model of cerebral infarction. Brain Res 2018; 1695:37-44. [PMID: 29802840 DOI: 10.1016/j.brainres.2018.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) following cerebral infarction exerts functional improvements. Previous research has suggested potential therapeutic mechanisms that promote neuroprotection and synaptogenesis. These include secretion of neurotrophic factors, remodeling of neural circuits, restoration of the blood brain barrier, reduction of inflammatory infiltration and demyelination, and elevation of trophic factors. In addition to these mechanisms, we hypothesized that restored interhemispheric bilateral motor cortex connectivity might be an additional mechanism of functional recovery. In the present study, we have shown, with both MRI diffusion tensor imaging (DTI) and neuroanatomical tracing techniques using an adeno-associated virus (AAV) expressing GFP, that there was anatomical restoration of cortical interhemispheric connections through the corpus callosum after intravenous infusion of MSCs in a rat middle cerebral artery occlusion (MCAO) stroke model. Moreover, the degree of connectivity was greater in the MSC-treated group than in the vehicle-infused group. In accordance, both the thickness of corpus callosum and synaptic puncta in the contralateral (non-infarcted) motor cortex connected to the corpus callosum were greater in the MSC-treated group than in the vehicle group. Together, these results suggest that distinct preservation of interhemispheric cortical connections through corpus callosum was promoted by intravenous infusion of MSCs. This anatomical preservation of the motor cortex in the contralateral hemisphere may contribute to functional improvements following MSC therapy for cerebral stroke.
Collapse
Affiliation(s)
- Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takahiro Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ai Namioka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Rie Onodera
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Junpei Suzuki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yuichi Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
36
|
The Novel miRNA N-72 Regulates EGF-Induced Migration of Human Amnion Mesenchymal Stem Cells by Targeting MMP2. Int J Mol Sci 2018; 19:ijms19051363. [PMID: 29734654 PMCID: PMC5983717 DOI: 10.3390/ijms19051363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Human amnion mesenchymal stem cells (hAMSCs) are promising sources of stem cells in regenerative medicine. The migration stimulated by cytokines is critical for mesenchymal stem cells (MSCs)-based cytotherapy, while the regulatory mechanisms of EGF (epidermal growth factor)-induced hAMSC migration are largely unclear. Here, a novel miRNA N-72 (GenBank accession number: MH269369) has been discovered, and its function on EGF-induced migration in hAMSCs was investigated. High-purity hAMSCs were isolated and cultured in vitro, which were characterized by flow cytometry and trilineage differentiation. The N-72 located on chromosome three was conserved, and pri-N-72 owned the ability to form a stem-loop secondary structure, which was predicated by bioinformatic programs. The expression of mature N-72 was verified in several human cells including hAMSC by real-time PCR. In EGF-stimulated hAMSC, N-72 showed a significant reduction in a PI3K and p38 MAPK-dependent manner, and N-72 mimics transfection-inhibited EGF-induced migration, which was verified by scratch assay and transwell assay. Further, the predicated target gene MMP2 was proved to be a direct target of N-72 via luciferase reporter assay, real-time PCR, and Western blotting. The results that MMP2 silencing repressed hAMSC migration suggested MMP2 as a functional downstream target of N-72. In summary, we have discovered the novel N-72, and it was crucial for EGF-induced migration by targeting MMP2 in hAMSCs.
Collapse
|
37
|
Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin 2018; 39:695-712. [PMID: 29671416 DOI: 10.1038/aps.2018.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Stroke can lead to long-term neurological deficits. Adult neurogenesis, the continuous generation of newborn neurons in distinct regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following ischemic stroke. However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal experiments and some pilot clinical trials. While the effects of cell-based therapy on neurological function during recovery remains unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy. In this review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies. Specifically, we discussed drugs that enhance proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral function and improve outcomes in stroke patients.
Collapse
|
38
|
Fukumura S, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Nagahama H, Morita T, Sakai T, Tsutsumi H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells reduces epileptogenesis in a rat model of status epilepticus. Epilepsy Res 2018; 141:56-63. [PMID: 29475054 DOI: 10.1016/j.eplepsyres.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Status epilepticus (SE) causes neuronal cell death, aberrant mossy fiber sprouting (MFS), and cognitive deteriorations. The present study tested the hypothesis that systemically infused mesenchymal stem cells (MSCs) reduce epileptogenesis by inhibiting neuronal cell death and suppressing aberrant MFS, leading to cognitive function preservation in a rat model of epilepsy. METHODS SE was induced using the lithium-pilocarpine injection model. The seizure frequency was scored using a video-monitoring system and the Morris water maze test was carried out to evaluate cognitive function. Comparisons were made between MSCs- and vehicle-infused rats. Immunohistochemical staining was performed to detect Green fluorescent protein (GFP)+ MSCs and to quantify the number of GAD67+ and NeuN+ neurons in the hippocampus. Manganese-enhanced magnetic resonance imaging (MEMRI) and Timm staining were also performed to assess the MFS. RESULTS MSC infusion inhibited epileptogenesis and preserved cognitive function after SE. The infused GFP+ MSCs were accumulated in the hippocampus and were associated with the preservation of GAD67+ and NeuN+ hippocampal neurons. Furthermore, the MSC infusion suppressed the aberrant MFS in the hippocampus as evidenced by MEMRI and Timm staining. CONCLUSIONS This study demonstrated that the intravenous infusion of MSCs mitigated epileptogenesis, thus advancing MSCs as an effective approach for epilepsy in clinical practice.
Collapse
Affiliation(s)
- Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tomonori Morita
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takuro Sakai
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
39
|
Matsuda Y, Sasaki M, Kataoka-Sasaki Y, Takayanagi A, Kobayashi K, Oka S, Nakazaki M, Masumori N, Kocsis JD, Honmou O. Intravenous Infusion of Bone Marrow-Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats. Sex Med 2017; 6:49-57. [PMID: 29275062 PMCID: PMC5815969 DOI: 10.1016/j.esxm.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Intravenous preload (delivered before cavernous nerve [CN] injury) of bone marrow–derived mesenchymal stem cells (MSCs) can prevent or decrease postoperative erectile dysfunction (J Sex Med 2015;12:1713–1721). In the present study, the potential therapeutic effects of intravenously administered MSCs on postoperative erectile dysfunction were evaluated in a rat model of CN injury. Methods Male Sprague-Dawley rats were randomized into 2 groups after electric CN injury. Intravenous infusion of bone marrow–derived MSCs (1.0 × 106 cells in Dulbecco's modified Eagle's medium 1 mL) or vehicle (Dulbecco's modified Eagle's medium 1 mL) was performed 3 hours after electrocautery-induced CN injury. Main Outcome Measures To assess erectile function, we measured intracavernous pressure at 4 weeks after MSC or vehicle infusion. Histologic examinations were performed to investigate neuronal innervation and inhibition of smooth muscle atrophy. Green fluorescent protein–positive bone marrow–derived MSCs were used for cell tracking. To investigate mRNA expression levels of neurotrophins in the major pelvic ganglia (MPGs), quantitative real-time polymerase chain reaction was performed. Results The decrease of intracavernous pressure corrected for arterial pressure and area under the curve of intracavernous pressure in the bone marrow–derived MSC group was significantly lower than that in the vehicle group at 4 weeks after infusion (P < .05). Retrograde neuronal tracing indicated that the MSC group had a larger number of FluoroGold-positive neurons in the MPGs compared with the vehicle group. The ratio of smooth muscle to collagen in the MSC group was significantly higher than in the vehicle group. Green fluorescent protein–positive bone marrow–derived MSCs were detected in the MPGs and injured CNs using confocal microscopy, indicating homing of cells to the MPGs and injured CNs. Brain-derived neurotrophic factor and glial cell-derived neurotrophic factor expression levels in the MPGs were significantly higher in the MSC group than in the vehicle group (P < .01). Conclusion Intravenous infusion of bone marrow–derived MSCs after CN injury might have therapeutic efficacy in experimental erectile dysfunction. Matsuda Y, Sasaki M, Kataoka-Sasaki Y, et al. Intravenous Infusion of Bone Marrow–Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats. Sex Med 2018;6:49–57.
Collapse
Affiliation(s)
- Yohei Matsuda
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Takayanagi
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ko Kobayashi
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
40
|
Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment. Int J Mol Sci 2017; 18:ijms18122756. [PMID: 29257093 PMCID: PMC5751355 DOI: 10.3390/ijms18122756] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022] Open
Abstract
Tissue plasminogen activator (tPA) thrombolysis remains the gold standard treatment for ischemic stroke. A time-constrained therapeutic window, with the drug to be given within 4.5 h after stroke onset, and lethal side effects associated with delayed treatment, most notably hemorrhagic transformation (HT), limit the clinical use of tPA. Co-administering tPA with other agents, including drug or non-drug interventions, has been proposed as a practical strategy to address the limitations of tPA. Here, we discuss the pharmacological and non-drug approaches that were examined to mitigate the complications-especially HT-associated with delayed tPA treatment. The pharmacological treatments include those that preserve the blood-brain barrier (e.g., atovarstatin, batimastat, candesartan, cilostazol, fasudil, minocycline, etc.), enhance vascularization and protect the cerebrovasculature (e.g., coumarin derivate IMM-H004 and granulocyte-colony stimulating factor (G-CSF)), and exert their effects through other modes of action (e.g., oxygen transporters, ascorbic acid, etc.). The non-drug approaches include stem cell treatments and gas therapy with multi-pronged biological effects. Co-administering tPA with the abovementioned therapies showed promise in attenuating delayed tPA-induced side effects and stroke-induced neurological and behavioral deficits. Thus, adjunctive treatment approach is an innovative therapeutic modality that can address the limitations of tPA treatment and potentially expand the time window for ischemic stroke therapy.
Collapse
|
41
|
Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Transl Stroke Res 2017; 9:356-374. [PMID: 29075984 DOI: 10.1007/s12975-017-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|