1
|
Khosdelazad S, van der Horn HJ, Jorna LS, Groen RJM, van der Hoorn A, Rakers SE, Buunk AM, Spikman JM. White matter abnormalities in aneurysmal and angiographically negative subarachnoid hemorrhage: A diffusion kurtosis imaging study. Neuroimage Clin 2024; 43:103662. [PMID: 39232414 DOI: 10.1016/j.nicl.2024.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) and angiographically negative subarachnoid hemorrhage (anSAH) cause an abrupt rise in intracranial pressure, resulting in shearing forces, causing damage to the white matter tracts. This study aims to investigate whole-brain white matter abnormalities with diffusion kurtosis imaging (DKI) after both aSAH and anSAH and explores whether these abnormalities are associated with impaired cognitive functioning. METHODS Five months post-ictus, 34 patients with aSAH, 24 patients with anSAH and 17 healthy controls (HC) underwent DKI MRI scanning and neuropsychological assessment (measuring verbal memory, psychomotor speed, executive control, and social cognition). Differences in DKI measures (fractional anisotropy, mean diffusivity, axial diffusivity [AD], radial diffusivity, and mean kurtosis) were examined using tract-based spatial statistics. Significant voxel masks were then correlated with neuropsychological scores. RESULTS All DKI measures differed significantly between patients with aSAH and HC, but no significant differences were found between patients with anSAH and HC. Although the two SAH groups did not differ significantly on all DKI parameters, effect sizes indicated that the anSAH group might be more similar to HC. Cognitive impairments were found for both SAH groups relative to HC. No significant associations were found between these impairments and white matter abnormalities in the aSAH group, but lower psychomotor speed scores were associated with higher AD values (r = -0.41, p = 0.04) in patients with anSAH. CONCLUSIONS Patients with aSAH showed significant white matter diffusion abnormalities, while the anSAH group, despite cognitive deficits, did not. However, there were no significant differences between the SAH groups, and no correlations between DKI metrics and cognitive measures, except for one test on psychomotor speed in the anSAH group. Overall, this study suggests that while anSAH may not be as severe as aSAH, it is still not a benign condition. Further research with larger anSAH cohorts is necessary to gain a more precise understanding of white matter injuries, particularly regarding their prevalence.
Collapse
Affiliation(s)
- Sara Khosdelazad
- Department of Neurology, unit Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.
| | - Harm J van der Horn
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Lieke S Jorna
- Department of Neurology, unit Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob J M Groen
- Department of Neurosurgery, University Medical Centre Groningen, University of Groningen, the Netherlands; Department of Neurosurgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Anouk van der Hoorn
- Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra E Rakers
- Department of Neurology, unit Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne M Buunk
- Department of Neurology, unit Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Neurosurgery, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neurology, unit Neuropsychology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Laaksonen M, Rinne J, Rahi M, Posti JP, Laitio R, Kivelev J, Saarenpää I, Laukka D, Frösen J, Ronkainen A, Bendel S, Långsjö J, Ala-Peijari M, Saunavaara J, Parkkola R, Nyman M, Martikainen IK, Dickens AM, Rinne J, Valtonen M, Saari TI, Koivisto T, Bendel P, Roine T, Saraste A, Vahlberg T, Tanttari J, Laitio T. Effect of xenon on brain injury, neurological outcome, and survival in patients after aneurysmal subarachnoid hemorrhage-study protocol for a randomized clinical trial. Trials 2023; 24:417. [PMID: 37337295 PMCID: PMC10280919 DOI: 10.1186/s13063-023-07432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is a neurological emergency, affecting a younger population than individuals experiencing an ischemic stroke; aSAH is associated with a high risk of mortality and permanent disability. The noble gas xenon has been shown to possess neuroprotective properties as demonstrated in numerous preclinical animal studies. In addition, a recent study demonstrated that xenon could attenuate a white matter injury after out-of-hospital cardiac arrest. METHODS The study is a prospective, multicenter phase II clinical drug trial. The study design is a single-blind, prospective superiority randomized two-armed parallel follow-up study. The primary objective of the study is to explore the potential neuroprotective effects of inhaled xenon, when administered within 6 h after the onset of symptoms of aSAH. The primary endpoint is the extent of the global white matter injury assessed with magnetic resonance diffusion tensor imaging of the brain. DISCUSSION Despite improvements in medical technology and advancements in medical science, aSAH mortality and disability rates have remained nearly unchanged for the past 10 years. Therefore, new neuroprotective strategies to attenuate the early and delayed brain injuries after aSAH are needed to reduce morbidity and mortality. TRIAL REGISTRATION ClinicalTrials.gov NCT04696523. Registered on 6 January 2021. EudraCT, EudraCT Number: 2019-001542-17. Registered on 8 July 2020.
Collapse
Affiliation(s)
- Mikael Laaksonen
- Department of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, P.O. Box 52, FIN-20521, Turku, Finland.
| | - Jaakko Rinne
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Melissa Rahi
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Ruut Laitio
- Department of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Juri Kivelev
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilkka Saarenpää
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Dan Laukka
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhana Frösen
- Department of Neurosurgery, Faculty of Medicine and Health Technology, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Antti Ronkainen
- Department of Neurosurgery, Faculty of Medicine and Health Technology, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Stepani Bendel
- Department of Intensive Care, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Långsjö
- Department of Anesthesiology and Intensive Care, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Marika Ala-Peijari
- Department of Anesthesiology and Intensive Care, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Mikko Nyman
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilkka K Martikainen
- Department of Radiology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Alex M Dickens
- Analysis of the metabolomics, University of Turku, Turku BioscienceTurku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Mika Valtonen
- Department of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Teijo I Saari
- Department of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| | - Timo Koivisto
- Department of Neurosurgery, Kuopio University Hospital, University of Eastern Finland, NeurocenterKuopio, Finland
| | - Paula Bendel
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Antti Saraste
- Heart Centre, Turku University Hospital, Turku University Hospital and University of Turku, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Juha Tanttari
- Technical Analysis, Elomatic Consulting & Engineering, Thane, India
| | - Timo Laitio
- Department of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, P.O. Box 52, FIN-20521, Turku, Finland
| |
Collapse
|
3
|
Nwafor DC, Kirby BD, Ralston JD, Colantonio MA, Ibekwe E, Lucke-Wold B. Neurocognitive Sequelae and Rehabilitation after Subarachnoid Hemorrhage: Optimizing Outcomes. JOURNAL OF VASCULAR DISEASES 2023; 2:197-211. [PMID: 37082756 PMCID: PMC10111247 DOI: 10.3390/jvd2020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a medical emergency that requires immediate intervention. The etiology varies between cases; however, rupture of an intracranial aneurysm accounts for 80% of medical emergencies. Early intervention and treatment are essential to prevent long-term complications. Over the years, treatment of SAH has drastically improved, which is responsible for the rapid rise in SAH survivors. Post-SAH, a significant number of patients exhibit impairments in memory and executive function and report high rates of depression and anxiety that ultimately affect daily living, return to work, and quality of life. Given the rise in SAH survivors, rehabilitation post-SAH to optimize patient outcomes becomes crucial. The review addresses the current rehabilitative strategies to combat the neurocognitive and behavioral issues that may arise following SAH.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Brandon D. Kirby
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Jacob D. Ralston
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Mark A. Colantonio
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Elochukwu Ibekwe
- Department of Neurology and Neurocritical Care, The Ohio State University, Columbus, OH 43210, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
White Matter Injury: An Emerging Potential Target for Treatment after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3842493. [PMID: 36798684 PMCID: PMC9928519 DOI: 10.1155/2023/3842493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) refers to vascular brain injury mainly from a ruptured aneurysm, which has a high lifetime risk and imposes a substantial burden on patients, families, and society. Previous studies on SAH mainly focused on neurons in gray matter (GM). However, according to literature reports in recent years, in-depth research on the mechanism of white matter (WM) is of great significance to injury and recovery after SAH. In terms of functional recovery after SAH, all kinds of cells in the central nervous system (CNS) should be protected. In other words, it is necessary to protect not only GM but also WM, not only neurons but also glial cells and axons, and not only for the lesion itself but also for the prevention and treatment of remote damage. Clarifying the mechanism of white matter injury (WMI) and repair after SAH is of great importance. Therefore, this present review systematically summarizes the current research on WMI after SAH, which might provide therapeutic targets for treatment after SAH.
Collapse
|
5
|
García AO, Brambati SM, Desautels A, Marcotte K. Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures. J Neurol Sci 2022; 441:120377. [DOI: 10.1016/j.jns.2022.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
6
|
Chen F, Kang Y, Yu T, Lin Y, Dai L, Yu L, Wang D, Sun X, Kang D. Altered functional connectivity within default mode network after rupture of anterior communicating artery aneurysm. Front Aging Neurosci 2022; 14:905453. [PMID: 35959287 PMCID: PMC9357996 DOI: 10.3389/fnagi.2022.905453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rupture of anterior communicating artery (ACoA) aneurysm often leads to cognitive impairment, especially memory complaints. The medial superior frontal gyrus (SFGmed), a node of the default mode network (DMN), has been extensively revealed to participate in various cognitive processes. However, the functional connectivity (FC) characteristics of SFGmed and its relationship with cognitive performance remain unknown after the rupture of the ACoA aneurysm. Methods Resting-state functional MRI (fMRI) and cognitive assessment were acquired in 27 eligible patients and 20 controls. Seed-based FC between unilateral SFGmed and the rest of the brain was calculated separately, and then compared their intensity differences between the two groups. Furthermore, we analyzed the correlation between abnormal FC and cognitive function in patients with ruptured ACoA aneurysm. Results Cognitive impairment was confirmed in 51.9% of the patients. Compared with the controls, patients suffering from ruptured ACoA aneurysm exhibited a similar FC decline between each side of SFGmed and predominant nodes within DMN, including the precuneus, angular gyrus, cingulate cortex, left hippocampus, left amygdala, left temporal pole (TPO), and left medial orbitofrontal cortex (mOFC). Besides, significantly decreased FC of left SFGmed and left insula, right middle temporal gyrus (MTG), as well as right mOFC, were also found. In addition, only enhanced insular connectivity with right SFGmed was determined, whereas increased FC of the left SFGmed was not observed. Correlation analyses showed that lower total cognitive performance or stronger subjective memory complaints were related to reduced connectivity in the SFGmed and several cortical regions such as the angular gyrus and middle cingulate cortex (MCC). Conclusion Our results suggest that patients with ruptured ACoA aneurysm exist long-term cognitive impairment and intrinsic hypoconnectivity of cognition-related brain regions within DMN. Deactivation of DMN may be a potential neural mechanism leading to cognitive deficits in these patients.
Collapse
Affiliation(s)
- Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Yaqing Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting Yu
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Linsun Dai
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Lianghong Yu
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Sun
- School of Information Engineering, Nanyang Institute of Technology, Nanyang, China
- *Correspondence: Xi Sun,
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Affiliated Hospital, Fujian Provincial Institutes of Brain Disorders and Brain Sciences, Fujian Medical University, Fuzhou, China
- Dezhi Kang,
| |
Collapse
|
7
|
Karakatsani ME, Pouliopoulos AN, Liu M, Jambawalikar SR, Konofagou EE. Contrast-Free Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Diffusion Tensor Imaging. IEEE Trans Biomed Eng 2021; 68:2499-2508. [PMID: 33360980 DOI: 10.1109/tbme.2020.3047575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Focused ultrasound (FUS) has emerged as a non-invasive technique to locally and reversibly disrupt the blood-brain barrier (BBB). Here, we investigate the use of diffusion tensor imaging (DTI) as a means of detecting FUS-induced BBB opening at the absence of an MRI contrast agent. A non-human primate (NHP) was repeatedly treated with FUS and preformed circulating microbubbles to transiently disrupt the BBB (n = 4). T1- and diffusion-weighted MRI scans were acquired after the ultrasound treatment, with and without gadolinium-based contrast agent, respectively. Both scans were registered with a high-resolution T1-weighted scan of the NHP to investigate signal correlations. DTI detected an increase in fractional anisotropy from 0.21 ± 0.02 to 0.38 ± 0.03 (82.6 ± 5.2% change) within the targeted area one hour after BBB opening. Enhanced DTI contrast overlapped by 77.22 ± 9.2% with hyper-intense areas of gadolinium-enhanced T1-weighted scans, indicating diffusion anisotropy enhancement only within the BBB opening volume. Diffusion was highly anisotropic and unidirectional within the treated brain region, as indicated by the direction of the principal diffusion eigenvectors. Polar and azimuthal angle ranges decreased by 35.6% and 82.4%, respectively, following BBB opening. Evaluation of the detection methodology on a second NHP (n = 1) confirmed the across-animal feasibility of the technique. In conclusion, DTI may be used as a contrast-free MR imaging modality in lieu of contrast-enhanced T1 mapping for detecting BBB opening during focused-ultrasound treatment or evaluating BBB integrity in brain-related pathologies.
Collapse
|
8
|
Cho MK, Jang SH. Diffusion Tensor Imaging Studies on Spontaneous Subarachnoid Hemorrhage-Related Brain Injury: A Mini-Review. Front Neurol 2020; 11:283. [PMID: 32411076 PMCID: PMC7198780 DOI: 10.3389/fneur.2020.00283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate diagnosis of the presence and severity of neural injury in patients with subarachnoid hemorrhage (SAH) is important in neurorehabilitation because it is essential for establishing appropriate therapeutic strategies and developing a prognosis. Diffusion tensor imaging has a unique advantage in the identification of microstructural white matter abnormalities which are not usually detectable on conventional brain magnetic resonance imaging. In this mini-review article, 12 diffusion tensor imaging studies on SAH-related brain injury were reviewed. These studies have demonstrated SAH-related brain injuries in various neural tracts or structures including the cingulum, fornix, hippocampus, dorsolateral prefrontal region, corticospinal tract, mamillothalamic tract, corticoreticular pathway, ascending reticular activating system, Papez circuit, optic radiation, and subcortical white matter. We believe that these reviewed studies provide information that would be helpful in science-based neurorehabilitation of patients with SAH. Furthermore, the results of these reviewed studies would also be useful for clarification of the pathophysiological mechanisms associated with SAH-related brain injury. However, considering the large number of neural tracts or neural structures in the brain, more research on SAH-related brain injury in other neural tracts or structures should be encouraged.
Collapse
Affiliation(s)
- Min Kyeong Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
9
|
Fragata I, Canhão P. Imaging predictors of outcome in acute spontaneous subarachnoid hemorrhage: a review of the literature. Acta Radiol 2019; 60:247-259. [PMID: 29792042 DOI: 10.1177/0284185118778877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for about 5% of strokes, but has a very high morbidity and mortality. Many survivors are left with important cognitive impairment and are severely incapacitated. Prediction of complications such as vasospasm and delayed cerebral ischemia, and of clinical outcome after SAH, is challenging. Imaging studies are essential in the initial evaluation of SAH patients and are increasingly relevant in assessing for complications and prognosis. In this article, we reviewed the role of imaging studies in evaluating early brain injury and predicting complications as well as clinical and neuropsychological prognosis after acute SAH.
Collapse
Affiliation(s)
- Isabel Fragata
- Neuroradiology Department, Hospital São José, Centro Hospitalar Lisboa Central, Lisbon, Portugal
| | - Patrícia Canhão
- Department of Neurosciences and Mental Health, Department of Neurology, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| |
Collapse
|