1
|
Zhou W, Jiang Y, Xu Q, Chen L, Qiao H, Wang YX, Lai JC, Zhong D, Zhang Y, Li W, Du Y, Wang X, Lei J, Dong G, Guan X, Ma S, Kang P, Yuan L, Zhang M, Tok JBH, Li D, Bao Z, Jia W. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat Biomed Eng 2023; 7:1270-1281. [PMID: 37537304 DOI: 10.1038/s41551-023-01069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
In microneurosurgery, it is crucial to maintain the structural and functional integrity of the nerve through continuous intraoperative identification of neural anatomy. To this end, here we report the development of a translatable system leveraging soft and stretchable organic-electronic materials for continuous intraoperative neurophysiological monitoring. The system uses conducting polymer electrodes with low impedance and low modulus to record near-field action potentials continuously during microsurgeries, offers higher signal-to-noise ratios and reduced invasiveness when compared with handheld clinical probes for intraoperative neurophysiological monitoring and can be multiplexed, allowing for the precise localization of the target nerve in the absence of anatomical landmarks. Compared with commercial metal electrodes, the neurophysiological monitoring system allowed for enhanced post-operative prognoses after tumour-resection surgeries in rats. Continuous recording of near-field action potentials during microsurgeries may allow for the precise identification of neural anatomy through the entire procedure.
Collapse
Affiliation(s)
- Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Qin Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Weining Li
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuecheng Wang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
- Department of Neurotomy, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
- Department of Neurotomy, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
2
|
Understanding the Molecular Mechanism of Vestibular Schwannoma for Hearing Preservation Surgery: Otologists’ Perspective from Bedside to Bench. Diagnostics (Basel) 2022; 12:diagnostics12051044. [PMID: 35626200 PMCID: PMC9140016 DOI: 10.3390/diagnostics12051044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Vestibular schwannoma is a clinically benign schwannoma that arises from the vestibulocochlear nerve that causes sensorineural hearing loss. This tumor is clinically and oncologically regarded as a benign tumor as it does not metastasize or invade surrounding tissues. Despite being a benign tumor, its management is difficult and controversial due to the potential serious complications, such as irreversible sensorineural hearing loss, of current interventions. Therefore, preventing hearing loss due to the natural course of the disease and complications of surgery is a challenging issue for an otologist. Improvements have been reported recently in the treatment of vestibular schwannomas. These include advances in intraoperative monitoring systems for vestibular schwannoma surgery where the risk of hearing loss as a complication is decreased. Precise genomic analysis of the tumor would be helpful in determining the characteristics of the tumor for each patient, leading to a better hearing prognosis. These procedures are expected to help improve the treatment of vestibular schwannomas. This review summarizes recent advances in vestibular schwannoma management and treatment, especially in hearing preservation. In addition, recent advances in the understanding of the molecular mechanisms underlying vestibular schwannomas and how these advances can be applied in clinical practice are outlined and discussed, respectively. Moreover, the future directions from the bedside to the bench side are presented from the perspective of otologists.
Collapse
|
3
|
Bălaşa AF, Hurghiş CI, Tămaş F, Şerban GM, Kövecsi A, Florian IA, Chinezu R. Gross-total versus near-total resection of large vestibular schwannomas. An institutional experience. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:485-492. [PMID: 33544800 PMCID: PMC7864290 DOI: 10.47162/rjme.61.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We will report our experience of the surgical treatment of large vestibular schwannomas (VSs). PATIENTS, MATERIALS AND METHODS We conducted a retrospective study of patients operated on for Koos grade IV VS between 2007 and 2015 at the Department of Neurosurgery, Emergency County Hospital, Târgu Mureş, Romania. We studied the general preoperatory clinical data, the preoperative and postoperative facial nerve status, preoperative hearing on the affected side, and any postoperative complications, including death. RESULTS Sixty-six cases were included in our study. The mean age was 52.95 years and 66.7% (n=44) of the sample were female. All patients had suffered from tinnitus and this had been followed by loss of serviceable hearing on the affected side in 89.4% (n=59) of cases. Preoperative facial palsy was found in 53% (n=35) of patients. The mean tumor size was 40.35 mm. Gross-total resection (GTR) was achieved in 24 (36.36%) cases, while near-total resection (NTR) was obtained in 42 (63.64%) cases. New-onset facial palsy or degradation of the preoperative facial deficit occurred in 12 (18.18%) cases, most of whom were patients with a GTR (n=9, 37.5%). This was statistically significant. There were no significant postoperative differences between the GTR and NTR groups. There was one death in the GTR group. CONCLUSIONS We conclude that near-total tumor removal provides good surgical results and better postsurgical quality of life for patients when compared to gross-total tumor resection. Therefore, this should be the end goal of the resection of large VSs.
Collapse
Affiliation(s)
- Adrian Florian Bălaşa
- Department of Neurosurgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Romania;
| | | | | | | | | | | | | |
Collapse
|