1
|
Nicotera AG, Spoto G, Amore G, Butera A, Di Rosa G. Comprehensive review of status gelasticus: Diagnostic challenges and therapeutic insights. Epilepsy Behav 2024; 153:109719. [PMID: 38428176 DOI: 10.1016/j.yebeh.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Status gelasticus is a rare form of status epilepticus characterized by prolonged and/or clustered gelastic seizures. The review encompasses an analysis of cases reported in the literature, focusing on causes, clinical-electroencephalographic features, and therapeutic interventions. The study reveals the challenges in defining and understanding status gelasticus due to its diverse etiologies and limited reported cases. The association with hypothalamic hamartomas and other brain abnormalities underscores the importance of thorough evaluations. The review also discusses new treatments, including medications and less invasive surgeries. While progress has been made, the study points out challenges in diagnosing and managing this complex condition, highlighting the importance of ongoing research.
Collapse
Affiliation(s)
- Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy; Department of Biomedical Sciences, Dental Sciences & Morpho-functional Imaging, University of Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy.
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy; Department of Biomedical Sciences, Dental Sciences & Morpho-functional Imaging, University of Messina, Italy
| |
Collapse
|
2
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Green TE, Motelow JE, Bennett MF, Ye Z, Bennett CA, Griffin NG, Damiano JA, Leventer RJ, Freeman JL, Harvey AS, Lockhart PJ, Sadleir LG, Boys A, Scheffer IE, Major H, Darbro BW, Bahlo M, Goldstein DB, Kerrigan JF, Heinzen EL, Berkovic SF, Hildebrand MS. Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions. Hum Mol Genet 2022; 31:2307-2316. [PMID: 35137044 PMCID: PMC9307310 DOI: 10.1093/hmg/ddab366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Joshua E Motelow
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Zimeng Ye
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Caitlin A Bennett
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Nicole G Griffin
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Jeremy L Freeman
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - Amber Boys
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Heather Major
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52246, USA
| | - Benjamin W Darbro
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52246, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - John F Kerrigan
- Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85013, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Fan L, Jin P, Qian Y, Shen G, Shen X, Dong M. Case Report: Prenatal Diagnosis of Postaxial Polydactyly With Bi-Allelic Variants in Smoothened (SMO). Front Genet 2022; 13:887082. [PMID: 35812756 PMCID: PMC9257524 DOI: 10.3389/fgene.2022.887082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Postaxial polydactyly is a common congenital malformation which involves complex genetic factors. This retrospective study analyzed the cytogenetic and molecular results of a Chinese fetus diagnosed with postaxial polydactyly of all four limbs. Fetal karyotyping and chromosomal microarray analysis (CMA) did not find any abnormality while trio whole-exome sequencing (trio-WES) identified bi-allelic variants in smoothened (SMO) and (NM_005631.5: c.1219C > G, NP_005622.1: p. Pro407Ala, and NM_005631.5: c.1619C > T, NP_005622.1: p. Ala540Val). Sanger sequencing validated these variants. The mutations are highly conserved across multiple species. In-depth bioinformatics analysis and familial co-segregation implied the compound heterozygous variants as the likely cause of postaxial polydactyly in this fetus. Our findings provided the basis for genetic counseling and will contribute to a better understanding of the complex genetic mechanism that underlies postaxial polydactyly.
Collapse
Affiliation(s)
- Lihong Fan
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Pengzhen Jin
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Guosong Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Xueping Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
6
|
Bi-allelic SMO variants in hypothalamic hamartoma: a recessive cause of Pallister-Hall syndrome. Eur J Hum Genet 2022; 30:384-388. [PMID: 35034092 PMCID: PMC8904774 DOI: 10.1038/s41431-021-01023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Pallister-Hall syndrome, typically caused by germline or de novo variants within the GLI3 gene, has key features of hypothalamic hamartoma and polydactyly. Recently, a few similar cases have been described with bi-allelic SMO variants. We describe two siblings born to non-consanguineous unaffected parents presenting with hypothalamic hamartoma, post-axial polydactyly, microcephaly amongst other developmental anomalies. Previous clinical diagnostic exome analysis had excluded a pathogenic variant in GLI3. We performed exome sequencing re-analysis and identified bi-allelic SMO variants including a missense and synonymous variant in both affected siblings. We functionally characterised this synonymous variant showing it induces exon 8 skipping within the SMO transcript. Our results confirm bi-allelic SMO variants as an uncommon cause of Pallister-Hall syndrome and describe a novel exon-skipping mechanism, expanding the molecular architecture of this new clinico-molecular disorder.
Collapse
|
7
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
8
|
Arribat Y, Mysiak KS, Lescouzères L, Boizot A, Ruiz M, Rossel M, Bomont P. Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy. J Clin Invest 2020; 129:5312-5326. [PMID: 31503551 DOI: 10.1172/jci129788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.
Collapse
Affiliation(s)
- Yoan Arribat
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Karolina S Mysiak
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Léa Lescouzères
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Alexia Boizot
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Maxime Ruiz
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Mireille Rossel
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Le TL, Sribudiani Y, Dong X, Huber C, Kois C, Baujat G, Gordon CT, Mayne V, Galmiche L, Serre V, Goudin N, Zarhrate M, Bole-Feysot C, Masson C, Nitschké P, Verheijen FW, Pais L, Pelet A, Sadedin S, Pugh JA, Shur N, White SM, El Chehadeh S, Christodoulou J, Cormier-Daire V, Hofstra RMW, Lyonnet S, Tan TY, Attié-Bitach T, Kerstjens-Frederikse WS, Amiel J, Thomas S. Bi-allelic Variations of SMO in Humans Cause a Broad Spectrum of Developmental Anomalies Due to Abnormal Hedgehog Signaling. Am J Hum Genet 2020; 106:779-792. [PMID: 32413283 DOI: 10.1016/j.ajhg.2020.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.
Collapse
Affiliation(s)
- Thuy-Linh Le
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Yunia Sribudiani
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands; Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Xiaomin Dong
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Céline Huber
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France
| | - Chelsea Kois
- Albany Medical Center, 43 New Scotland Ave, Albany, NY 12208, USA
| | - Geneviève Baujat
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Christopher T Gordon
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Valerie Mayne
- Department of Medical Imaging, Royal Children's Hospital, Melbourne, Australia 3052
| | - Louise Galmiche
- Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Valérie Serre
- Université de Paris, Institut Jacques Monod, UMR7592 CNRS, 15 Rue Hélène Brion, 75013 Paris, France
| | - Nicolas Goudin
- Université de Paris, Imagine Institute, Cell Imaging, INSERM UMR 1163, 75015 Paris, France
| | - Mohammed Zarhrate
- Université de Paris, Imagine Institute, Structure Fédérative de Recherche Necker, Genomic Platform, INSERM UMR 1163 and INSERM US24, Centre National de la Recherche Scientifique UMS3633, 75015 Paris, France
| | - Christine Bole-Feysot
- Université de Paris, Imagine Institute, Structure Fédérative de Recherche Necker, Genomic Platform, INSERM UMR 1163 and INSERM US24, Centre National de la Recherche Scientifique UMS3633, 75015 Paris, France
| | - Cécile Masson
- Université de Paris, Imagine Institute, Bioinformatics Platform, INSERM UMR 1163, 75015 Paris, France
| | - Patrick Nitschké
- Université de Paris, Imagine Institute, Bioinformatics Platform, INSERM UMR 1163, 75015 Paris, France
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - Anna Pelet
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Simon Sadedin
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - John A Pugh
- Albany Medical Center, 43 New Scotland Ave, Albany, NY 12208, USA
| | - Natasha Shur
- Children's National, 111 Michigan Ave NW, Washington, D.C. 20010, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia 3052
| | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, 67098 Strasbourg, France
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Valérie Cormier-Daire
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - R M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Stanislas Lyonnet
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia 3052
| | - Tania Attié-Bitach
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France; Université de Paris, Imagine Institute, Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR 1163, 75015 Paris, France
| | | | - Jeanne Amiel
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Sophie Thomas
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|