1
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
2
|
Ni Y, Yang L, Han R, Guo G, Huang S, Weng L, Wang X, Li Z, Huang D, Hu R, Zhou H. Implantable Peripheral Nerve Stimulation for Trigeminal Neuropathic Pain: A Systematic Review and Meta-Analysis. Neuromodulation 2021; 24:983-991. [PMID: 34008282 DOI: 10.1111/ner.13421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Implantable peripheral nerve stimulation has been increasingly used to treat neuropathic pain. This neuromodulation strategy may be an alternative option for intractable trigeminal neuropathic pain; however, evidence for this treatment approach remains limited. A systematic review was conducted to identify studies of patients that underwent peripheral nerve stimulation implantation for trigeminal neuropathic pain. MATERIALS AND METHODS Databases including, PubMed, EMBASE, and Cochrane Library were searched up to October 5, 2020. The primary outcomes were changes in pain scores and response rates of neuromodulation therapy. A random effects model was used for meta-analysis. Subgroup analysis was performed to examine the source of heterogeneity. RESULTS Thirteen studies including 221 participants were evaluated. The estimated response rate of neuromodulation treatment was 61.3% (95% CI: 44.4-75.9%, I2 = 70.733%, p < 0.0001) at the last follow-up. The overall reduction in pain scores was 2.363 (95% CI: 1.408-3.319, I2 = 85.723%, p < 0.0001). Subgroup analysis further confirmed that stimulation target (peripheral branch vs. trigeminal ganglion vs. trigeminal nerve root) contributed the heterogeneity across enrolled studies. Better clinical outcome was associated with stimulation of the trigeminal peripheral branch (p < 0.0001). CONCLUSION Peripheral nerve stimulation may be a promising approach in the management of trigeminal neuropathic pain, especially for patients intractable to conventional therapy.
Collapse
Affiliation(s)
- Yuncheng Ni
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Liuqing Yang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Rui Han
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Gangwen Guo
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Shitong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Lili Weng
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Xun Wang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Zhenxing Li
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
| |
Collapse
|