1
|
Rodgers LT, Maloney BJ, Hartz AMS, Bauer B. Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors. Cancers (Basel) 2025; 17:734. [PMID: 40075583 PMCID: PMC11898961 DOI: 10.3390/cancers17050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Most preclinical studies on glioblastoma (GBM) fail to provide translational utility in the clinic. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) improves tumor resection, disease prognosis, and, thus, patient outcomes. Given the critical role of surgery in managing recurrent GBM, it is essential to incorporate surgical elements into preclinical models to accurately reflect clinical scenarios and enhance translational success. However, existing protocols for 5-ALA-guided resection in preclinical models are limited and often lack clinical relevance. Methods: To address this gap, we developed a novel protocol for the 5-ALA-guided resection in two mouse GBM models: TRP-mCherry-FLuc and GL261 Red-FLuc. Results: The resection of TRP-mCherry-FLuc tumors significantly extended survival and mitigated weight loss compared to controls. Similarly, GL261 Red-FLuc tumor resection increased survival, reduced body weight loss, and slowed tumor progression. Conclusions: This study presents a clinically relevant protocol for 5-ALA-guided resection in preclinical GBM models, providing a platform for future research to integrate adjuvant therapies and enhance their potential translation into clinical practice.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bryan J. Maloney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Stuckey LA, Holland EE, Gurra MG, Aaby D, Kahn JH. Craniectomy and Cranioplasty Effects on Balance and Gait in Rehabilitation: A Retrospective Study. Arch Rehabil Res Clin Transl 2024; 6:100375. [PMID: 39822205 PMCID: PMC11733811 DOI: 10.1016/j.arrct.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Objective To analyze changes in balance and gait in patients undergoing rehabilitation postcraniectomy and postcranioplasty, including comparison of outcomes across time periods, rate of change, and among diagnoses. Design Retrospective cohort study. Setting Inpatient rehabilitation. Participants Fifty-three patients (mean age 52.3±16.9y; 62% male) with stroke, traumatic, or nontraumatic brain injury postcraniectomy or postcranioplasty. Interventions Not applicable. Main Outcome Measures Berg Balance Scale (BBS), Functional Gait Assessment (FGA), 6-minute walk test (6MWT), and 10-meter walk test (10MWT) were collected at baseline, first discharge, readmission, and final discharge. Results Across the full rehabilitation course, all 4 outcomes improved: BBS, 17.9 points (95% confidence interval [CI], 12.7-23.2); FGA, 7.8 points (95% CI, 0.6-15.0); 6MWT, 141.0 m (95% CI, 89.0-192.0); and 10MWT, 0.381 m/s (95% CI, 0.188-0.575). All outcomes improved at postcraniectomy admission: BBS, 13.0 points (95% CI, 8.4-17.5); FGA, 4.0 points (95% CI. -1.65 to 9.65); 6MWT, 100.0 m (95% CI, 58.2-142.0); and 10MWT, 0.160 m/s (95% CI, 0.004-0.316). During leave of absence from rehabilitation, BBS decreased 6.3 points (95% CI, -11.8 to -0.8); FGA decreased 6.6 points (95% CI, -13.8 to 0.6); 6MWT decreased 19.2 m (95% CI, -73.5 to 35.2); and 10MWT increased 0.089 m/s (95% CI, -0.097 to 0.276). All outcomes improved at postcranioplasty admission: BBS, 11.3 points (95% CI, 6.6-16.0); FGA, 10.4 points (95% CI, 4.8-16.1); 6MWT, 59.4 m (95% CI, 14.1-105.0); and 10MWT, 0.132 m/s (95% CI, -0.039 to 0.303). Diagnosis was not associated with changes in outcomes. Conclusions Gait and balance outcomes improved during postcraniectomy and postcranioplasty rehabilitation admissions but not immediately post cranioplasty.
Collapse
Affiliation(s)
- Leandra A. Stuckey
- Shirley Ryan AbilityLab, Chicago, IL
- Northwestern University Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL
| | - Elizabeth E. Holland
- Shirley Ryan AbilityLab, Chicago, IL
- Northwestern University Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL
| | - Miranda G. Gurra
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Division of Biostatistis, Chicago, IL
| | - David Aaby
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Division of Biostatistis, Chicago, IL
| | - Jennifer H. Kahn
- Northwestern University Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL
| |
Collapse
|
3
|
Agrawal M, Mishra K. Neurocognitive outcome post cranioplasty: The role of cerebral hemodynamics and cerebrospinal fluid dynamics. Surg Neurol Int 2024; 15:204. [PMID: 38974537 PMCID: PMC11225513 DOI: 10.25259/sni_1003_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Background Cranioplasty has been useful in treating the symptoms associated with the "Sunken skin flap syndrome" post decompressive craniectomy, for which various mechanisms have been proposed. In this study, we aim to assess the changes in the cerebral blood flow and intracranial cerebrospinal fluid (CSF) dynamics post cranioplasty and correlate with the improvement in the neurocognitive status. Methods Computed tomography perfusion and cine magnetic resonance imaging studies were done to study the changes in cerebral perfusion and CSF flow dynamics postcranioplasty. The cognitive status was assessed using Montreal cognitive assessment, mini-mental state examination, and frontal assessment battery scores in the preoperative period and at 1 and 6 months follow-up. Results There was a significant change in cognitive status postcranioplasty, both at 1 and 6 months follow-up, which was associated with a significant improvement in cerebral blood flow, decreased mean transit time, and improvement in the mean and peak CSF flow velocities at the foramen of Magendie and aqueduct of Sylvius. Conclusion Cranioplasty leads to a marked improvement in cerebral hemodynamics, which is more significant on the ipsilateral side. It also leads to increased CSF turnover and improved CSF circulation. Improved cerebral perfusion and, more importantly, CSF dynamics may be responsible for the demonstrable improvement in the neurocognition in the postcranioplasty period.
Collapse
Affiliation(s)
- Manish Agrawal
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| | - Keshav Mishra
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Chen R, Ye G, Zheng Y, Zhang Y, Zheng S, Fang W, Mei W, Xie B. Optimal Timing of Cranioplasty and Predictors of Overall Complications After Cranioplasty: The Impact of Brain Collapse. Neurosurgery 2023; 93:84-94. [PMID: 36706042 DOI: 10.1227/neu.0000000000002376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/27/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The optimal timing of cranioplasty (CP) and predictors of overall postoperative complications are still controversial. OBJECTIVE To determine the optimal timing of CP. METHODS Patients were divided into collapsed group and noncollapsed group based on brain collapse or not, respectively. Brain collapse volume was calculated in a 3-dimensional way. The primary outcomes were overall complications and outcomes at the 12-month follow-up after CP. RESULTS Of the 102 patients in this retrospective observation cohort study, 56 were in the collapsed group, and 46 were in the noncollapsed group. Complications were noted in 30.4% (n = 31), 24 (42.9%) patients in the collapsed group and 7 (15.2%) patients in the noncollapsed group, with a significant difference ( P = .003). Thirty-three (58.9%) patients had good outcomes (modified Rankin Scale 0-3) in the collapsed group, and 34 (73.9%) patients had good outcomes in the noncollapsed group without a statistically significant difference ( P = .113). Brain collapse ( P = .005) and Karnofsky Performance Status score at the time of CP ( P = .025) were significantly associated with overall postoperative complications. The cut-off value for brain collapse volume was determined as 11.26 cm 3 in the receiver operating characteristic curve. The DC-CP interval was not related to brain collapse volume or postoperative complications. CONCLUSION Brain collapse and lower Karnofsky Performance Status score at the time of CP were independent predictors of overall complications after CP. The optimal timing of CP may be determined by tissue window based on brain collapse volume instead of time window based on the decompressive craniectomy-CP interval.
Collapse
Affiliation(s)
- Renlong Chen
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Gengzhao Ye
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanlong Zhang
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shufa Zheng
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenhua Fang
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenzhong Mei
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bingsen Xie
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Wang Z, Zhang R, Han Z, Zhang Y, Wang J, Wang B, Liu B, Yang W. Intracranial peak pressure as a predictor for perioperative mortality after spontaneous intracerebral hemorrhage evacuation and decompressive craniectomy. Chin Neurosurg J 2023; 9:2. [PMID: 36653808 PMCID: PMC9847089 DOI: 10.1186/s41016-023-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND An optimal intracranial pressure (ICP) management target is not well defined in patients with spontaneous intracerebral hemorrhage. The aim of this study was to explore the association between perioperative ICP monitoring parameters and mortality of patients with spontaneous intracerebral hematoma undergoing emergency hematoma removal and decompressive craniectomy (DC), to provide evidence for a target-oriented ICP management. METHODS The clinical and radiological features of 176 consecutive patients with spontaneous intracerebral hemorrhage that underwent emergent hematoma evacuation and DC were reviewed. The Glasgow Coma Scale (GCS) and Glasgow Outcome Scale (GOS) scores were assessed 2 weeks after surgery. Multivariate logistic regression analysis was performed to identify predictors for perioperative death. RESULTS Forty-four cases (25.0%) were assigned to the ICP group. In patients with an ICP monitor, the median peak ICP value was 25.5 mmHg; 50% of them had a peak ICP value of more than 25 mmHg. The median duration of ICP > 25 mmHg was 2 days. Without a target-specific ICP management, the mortality at 2 weeks after surgery was similar between patients with or without an ICP monitor (27.3% versus 18.2%, p = 0.20). In multivariable analysis, the peak ICP value (OR 1.11, 95% CI 1.004-1.234, p = 0.04) was significantly associated with perioperative death in the ICP group. The area under ROC curve of peak ICP value was 0.78 (95%CI 0.62-0.94) for predicting mortality, with a cut-off value of 31 mmHg. CONCLUSION Compared with a persistent hyperintracranial pressure, a high ICP peak value might provide a better prediction for the mortality of patients with spontaneous intracerebral hemorrhage evacuation and DC, suggesting a tailored ICP management protocol to decrease ICP peak value.
Collapse
Affiliation(s)
- Zhong Wang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Ruijian Zhang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Zhitong Han
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Yisong Zhang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Junqing Wang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Bo Wang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Baiyu Liu
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| | - Weiran Yang
- grid.440229.90000 0004 1757 7789Department of Neurosurgery, Inner Mongolia People’s Hospital, 20 ZhaoWooda Road, Hohhot, Inner Mongolia People’s Republic of China
| |
Collapse
|
6
|
Rossitto CP, Devarajan A, Price G, Ali M, Kellner CP. Neuroimaging through Sonolucent Cranioplasty: A Systematic Scoping Review Protocol. Methods Protoc 2022; 5:80. [PMID: 36287052 PMCID: PMC9612145 DOI: 10.3390/mps5050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Cranioplasty is a neurosurgical procedure in which the skull bone is repaired after craniectomy. Recently, studies have suggested that sonolucent synthetic materials are safe and useful for cranioplasty. Sonolucent cranioplasty (SC) implants provide unprecedented opportunity in adult neurosurgery to monitor neuroanatomy, assess hemodynamics, view devices located within the implant, and conduct focused ultrasound treatments. Current research on SC includes proof-of-concept cadaveric studies, patient-related safety and feasibility studies, and case series demonstrating transcranioplasty ultrasonography (TCUS). The purpose of this protocol is to investigate the current literature on SC use and outcomes in TCUS. We will perform a systematic literature search following PRISMA-ScR guidelines. The search will be conducted using Ovid Embase, Ovid Medline, and Web of Science Core Collection databases. Titles, abstracts, and full texts will be screened. Joanna Briggs Institute critical appraisal tools will be utilized. Data extraction points will include subject characteristics, SC implant characteristics, ultrasound characteristics, and sonographic findings. These findings will provide a comprehensive review of the literature on sonolucent cranioplasty and directions for future research.
Collapse
Affiliation(s)
- Christina P. Rossitto
- Department of Neurosurgery, Icahn School of Medicine, 1468 Madison Avenue, Annenberg Building, 8th Floor, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
7
|
Valle D, Villarreal XP, Lunny C, Chalamgari A, Wajid M, Mahmood A, Buthani S, Lucke-Wold B. Surgical Management of Neurotrauma: When to Intervene. JOURNAL OF CLINICAL TRIALS AND REGULATIONS 2022; 4:41-55. [PMID: 36643025 PMCID: PMC9840531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurotrauma, often defined as abrupt damage to the brain or spinal cord, is a substantial cause of mortality and morbidity that is widely recognized. As such, establishing an effective course of action is crucial to the enhancement of neurotrauma guidelines and patient outcomes in healthcare worldwide. Following the onset of neurotraumatic injuries, time is perhaps the most critical facet in diminishing mortality and morbidity rates. Thus, procuring the airway should be of utmost priority in a patient to allow for optimal ventilation, with a shift in focus resorting to surgical interventions after the patient reaches a suitable care facility. In particular, ventriculoperitoneal shunt (VPS) procedures have long been utilized to treat traumatic brain and spinal cord injuries to direct additional cerebrospinal fluid (CSF) from the lateral ventricles through a ventricular catheter attached to a valve that is further connected to a distal catheter. Decompressive cranio omie (DCs), cranioplasties, and intracranial pressure measurements (ICP) are also frequently performed in combination with VPS to manage intracranial hypertension and cerebral edema. Although the current surgical methods utilized in the treatment of neurotrauma prove to be highly efficacious in the prevention of adverse outcomes, emergent therapies are growing in popularity. Of interest, the Three Pillars Expansive Craniotomy, cisternostomy, and external lumbar drainages are cutting-edge procedures with promising results that can potentially usher change in the neurosurgical industry but require additional examination.
Collapse
Affiliation(s)
- Daisy Valle
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Xuban Palau Villarreal
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Caroline Lunny
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Anjalika Chalamgari
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Manahil Wajid
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Arman Mahmood
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Siya Buthani
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Brandon Lucke-Wold
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| |
Collapse
|
8
|
Kroczek K, Turek P, Mazur D, Szczygielski J, Filip D, Brodowski R, Balawender K, Przeszłowski Ł, Lewandowski B, Orkisz S, Mazur A, Budzik G, Cebulski J, Oleksy M. Characterisation of Selected Materials in Medical Applications. Polymers (Basel) 2022; 14:1526. [PMID: 35458276 PMCID: PMC9027145 DOI: 10.3390/polym14081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is an interdisciplinary field of science that has developed very intensively in recent years. The first part of this review describes materials with medical and dental applications from the following groups: metals, polymers, ceramics, and composites. Both positive and negative sides of their application are presented from the point of view of medical application and mechanical properties. A variety of techniques for the manufacture of biomedical components are presented in this review. The main focus of this work is on additive manufacturing and 3D printing, as these modern techniques have been evaluated to be the best methods for the manufacture of medical and dental devices. The second part presents devices for skull bone reconstruction. The materials from which they are made and the possibilities offered by 3D printing in this field are also described. The last part concerns dental transitional implants (scaffolds) for guided bone regeneration, focusing on polylactide-hydroxyapatite nanocomposite due to its unique properties. This section summarises the current knowledge of scaffolds, focusing on the material, mechanical and biological requirements, the effects of these devices on the human body, and their great potential for applications.
Collapse
Affiliation(s)
- Kacper Kroczek
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Damian Mazur
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Jacek Szczygielski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66123 Saarbrücken, Germany
| | - Damian Filip
- Institute of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Robert Brodowski
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Krzysztof Balawender
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Łukasz Przeszłowski
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Bogumił Lewandowski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Stanisław Orkisz
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Artur Mazur
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Józef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Mariusz Oleksy
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| |
Collapse
|
9
|
Kim MJ, Lee HB, Ha SK, Lim DJ, Kim SD. Predictive Factors of Surgical Site Infection Following Cranioplasty: A Study Including 3D Printed Implants. Front Neurol 2021; 12:745575. [PMID: 34795630 PMCID: PMC8592932 DOI: 10.3389/fneur.2021.745575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
In patients who have undergone decompressive craniectomy (DC), subsequent cranioplasty is required to reconstruct cranial defects. Surgical site infection (SSI) following cranioplasty is a devastating complication that can lead to cranioplasty failure. The aim of the present study, therefore, was to identify predictive factors for SSI following cranioplasty by reviewing procedures performed over a 10-year period. A retrospective analysis was performed for all patients who underwent cranioplasty following DC between 2010 and 2020 at a single institution. The patients were divided into two groups, non-SSI and SSI, in order to identify clinical variables that are significantly correlated with SSI following cranioplasty. Cox proportional hazards regression analyses were then performed to identify predictive factors associated with SSI following cranioplasty. A total of 172 patients who underwent cranioplasty, including 48 who received customized three-dimensional (3D) printed implants, were enrolled in the present study. SSI occurred in 17 patients (9.9%). Statistically significant differences were detected between the non-SSI and SSI groups with respect to presence of fluid collections on CT scans before and after cranioplasty. Presence of fluid collections on computed tomography (CT) scan before (p = 0.0114) and after cranioplasty (p < 0.0000) showed significant association with event-free survival rate for SSI. In a univariate analysis, significant predictors for SSI were fluid collection before (p = 0.0172) and after (p < 0.0001) cranioplasty. In a multivariate analysis, only the presence of fluid collection after cranioplasty was significantly associated with the occurrence of SSI (p < 0.0001). The present study investigated predictive factors that may help identify patients at risk of SSI following cranioplasty and provide guidelines associated with the procedure. Based on the results of the present study, only the presence of fluid collection on CT scan after cranioplasty was significantly associated with the occurrence of SSI. Further investigation with long-term follow-up and large-scale prospective studies are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Myung Ji Kim
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| | - Hae-Bin Lee
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| | - Sung-Kon Ha
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| | - Dong-Jun Lim
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| |
Collapse
|
10
|
Clinical improvement after cranioplasty and its relation to body position and cerebral hemodynamics. Neurosurg Rev 2021; 45:1463-1472. [PMID: 34626266 DOI: 10.1007/s10143-021-01668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Cranioplasty after decompressive craniectomy (DC) has been found to improve the neurological condition. The underlying mechanisms are still unknown. The aim of this study is to investigate the roles of the postural changes and atmospheric pressure (AP) in the brain hemodynamics and their relationship with clinical improvement. Seventy-eight patients were studied before and 72 h after cranioplasty with cervical and transcranial color Doppler ultrasound (TCCS) in the sitting and supine positions. Craniectomy size, shape, and force exerted by the AP (torque) were calculated. Neurological condition was assessed with the National Institutes of Health Stroke Scale (NIHSS) and the Barthel index. Twenty-eight patients improved after cranioplasty. Their time elapsed from the DC was shorter (214 vs 324 days), preoperative Barthel was worse (54 vs 77), internal carotid artery (ICA) mean velocity of the defect side was lower while sitting (14.4 vs 20.9 cm/s), and torque over the craniectomy was greater (2480.3 vs 1464.3 N*cm). Multivariate binary logistic regression showed the consistency of these changes. TCCS findings were no longer present postoperatively. Lower ICA (defect side) velocity in the sitting position correlates significantly with clinical improvement. Greater torque exerted by the AP might explain different susceptibilities to postural changes, corrected by cranioplasty.
Collapse
|
11
|
Syndrome of the trephined: clinical spectrum, risk factors, and impact of cranioplasty on neurologic recovery in a prospective cohort. Neurosurg Rev 2021; 45:1431-1443. [PMID: 34618250 PMCID: PMC8976790 DOI: 10.1007/s10143-021-01655-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023]
Abstract
Syndrome of the trephined (SoT) is an underrecognized complication after decompressive craniectomy. We aimed to investigate SoT incidence, clinical spectrum, risk factors, and the impact of the cranioplasty on neurologic recovery. Patients undergoing a large craniectomy (> 80 cm2) and cranioplasty were prospectively evaluated using modified Rankin score (mRS), cognitive (attention/processing speed, executive function, language, visuospatial), motor (Motricity Index, Jamar dynamometer, postural score, gait assessment), and radiologic evaluation within four days before and after a cranioplasty. The primary outcome was SoT, diagnosed when a neurologic improvement was observed after the cranioplasty. The secondary outcome was a good neurologic outcome (mRS 0–3) 4 days and 90 days after the cranioplasty. Logistic regression models were used to evaluate the risk factors for SoT and the impact of cranioplasty timing on neurologic recovery. We enrolled 40 patients with a large craniectomy; 26 (65%) developed SoT and improved after the cranioplasty. Brain trauma, hemorrhagic lesions, and shifting of brain structures were associated with SoT. After cranioplasty, a shift towards a good outcome was observed within 4 days (p = 0.025) and persisted at 90 days (p = 0.005). Increasing delay to cranioplasty was associated with decreased odds of improvement when adjusting for age and baseline disability (odds ratio 0.96; 95% CI, 0.93–0.99, p = 0.012). In conclusion, SoT is frequent after craniectomy and interferes with neurologic recovery. High suspicion of SoT should be exercised in patients who fail to progress or have a previous trauma, hemorrhage, or shifting of brain structures. Performing the cranioplasty earlier was associated with improved and quantifiable neurologic recovery.
Graphical abstract ![]()
Collapse
|
12
|
Barami K. Letter to the Editor. Intracranial physiology and ICP. J Neurosurg 2021; 135:980. [PMID: 33862591 DOI: 10.3171/2020.12.jns204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting. Brain Sci 2020; 10:brainsci10121005. [PMID: 33352857 PMCID: PMC7765929 DOI: 10.3390/brainsci10121005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Collapse
|
14
|
ANGHELESCU A, MIHĂESCU AS, MAGDOIU AM, ONOSE G. "Eppur si muove" - Clinical case: evolutionary "saga" during the last 6 years: posttraumatic subdural hematoma, decompressive craniectomy, right hemiplegia and aphasia, cranioplasty, hydrocephalus and porencephaly, post-traumatic encephalopathy - in remission. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The case reports a 59-year-old male patient who suffered a severe head injury (affirmative by accidental fall from 3 m) with multiple hemorrhagic lesions (bifrontal, bioccipital, biparieto-temporal) and left cerebral subdural hematoma, requiring a large fronto- temporo-parietal decompressive craniotomy for the mass lesion evacuation. Cranioplasty was performed after 6 months.
The paper synthesizes the evolution over six years of follow-up (12 in-patient admissions and 4 out-patient evaluations), like in a neurorehabilitation cinematographic “saga”. The posttraumatic encephalopathy had a peculiar evolution, sugestively compared with the humps of a camel: the brain injury (determined coma, right hemiplegia and mixed aphasia, intense psycho-motor agitation, severe dysphagia for solids and liquids, neurogenic bladder, anemia), was followed by a slowly progressive favorable neuro-psychological evolution (after the decompressive craniectomy). A brutal neurological fall-down was noticed after the cranioplasty, and finally a gradually favorable ascending trend, towards a global neuro-psichological stabilization (with an almost imperceptible sequelary ataxic hemiparesis). The paper discusses the pathophisiological aspects focused on the decompressive craniectomy and cranioplasty, correlated to the patient’s evolution. Complications of each neurosurgical procedures are succinctly depicted. The traumatic encephalopathy was complicated with post-traumatic seizures (therapeutically controlled) and active internal hydrocephalus with interstitial edema and an ischemic lesion. Finally it was a "happyend", with favorable clinical evolution, towards a stable and stationary normotensive asymmetric hydrocephalus, with a gigantic and deforming porencephaly. The paper advocates for a carefully follow-up and prompt intervention in order to prevent recurrences and/ or complications (secondary and tertiary prophylaxis).
Keywords: traumatic brain injury, subdural hematoma, decompressive craniectomy; cranioplasty; internal hydrocephalus; post-traumatic encephalopathy; seizures; neurorehabilitation,
Collapse
Affiliation(s)
- Aurelian ANGHELESCU
- 1.Teaching Emergency Clinical Hospital “Bagdasar Arseni”, in Bucharest, Romania 2. University of Medicine and Pharmacy “Carol Davila”, in Bucharest, Romania
| | - Anca Sanda MIHĂESCU
- 1.Teaching Emergency Clinical Hospital “Bagdasar Arseni”, in Bucharest, Romania
| | | | - Gelu ONOSE
- 1.Teaching Emergency Clinical Hospital “Bagdasar Arseni”, in Bucharest, Romania 2. University of Medicine and Pharmacy “Carol Davila”, in Bucharest, Romania
| |
Collapse
|