2
|
Astner-Rohracher A, Zimmermann G, Avigdor T, Abdallah C, Barot N, Brázdil M, Doležalová I, Gotman J, Hall JA, Ikeda K, Kahane P, Kalss G, Kokkinos V, Leitinger M, Mindruta I, Minotti L, Mizera MM, Oane I, Richardson M, Schuele SU, Trinka E, Urban A, Whatley B, Dubeau F, Frauscher B. Development and Validation of the 5-SENSE Score to Predict Focality of the Seizure-Onset Zone as Assessed by Stereoelectroencephalography. JAMA Neurol 2021; 79:70-79. [PMID: 34870697 PMCID: PMC8649918 DOI: 10.1001/jamaneurol.2021.4405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Stereoelectroencephalography (SEEG) has become the criterion standard in case of inconclusive noninvasive presurgical epilepsy workup. However, up to 40% of patients are subsequently not offered surgery because the seizure-onset zone is less focal than expected or cannot be identified. Objective To predict focality of the seizure-onset zone in SEEG, the 5-point 5-SENSE score was developed and validated. Design, Setting, and Participants This was a monocentric cohort study for score development followed by multicenter validation with patient selection intervals between February 2002 to October 2018 and May 2002 to December 2019. The minimum follow-up period was 1 year. Patients with drug-resistant epilepsy undergoing SEEG at the Montreal Neurological Institute were analyzed to identify a focal seizure-onset zone. Selection criteria were 2 or more seizures in electroencephalography and availability of complete neuropsychological and neuroimaging data sets. For validation, patients from 9 epilepsy centers meeting these criteria were included. Analysis took place between May and July 2021. Main Outcomes and Measures Based on SEEG, patients were grouped as focal and nonfocal seizure-onset zone. Demographic, clinical, electroencephalography, neuroimaging, and neuropsychology data were analyzed, and a multiple logistic regression model for developing a score to predict SEEG focality was created and validated in an independent sample. Results A total of 128 patients (57 women [44.5%]; median [range] age, 31 [13-58] years) were analyzed for score development and 207 patients (97 women [46.9%]; median [range] age, 32 [16-70] years) were analyzed for validation. The score comprised the following 5 predictive variables: focal lesion on structural magnetic resonance imaging, absence of bilateral independent spikes in scalp electroencephalography, localizing neuropsychological deficit, strongly localizing semiology, and regional ictal scalp electroencephalography onset. The 5-SENSE score had an optimal mean (SD) probability cutoff for identifying a focal seizure-onset zone of 37.6 (3.5). Area under the curve, specificity, and sensitivity were 0.83, 76.3% (95% CI, 66.7-85.8), and 83.3% (95% CI, 72.30-94.1), respectively. Validation showed 76.0% (95% CI, 67.5-84.0) specificity and 52.3% (95% CI, 43.0-61.5) sensitivity. Conclusions and Relevance High specificity in score development and validation confirms that the 5-SENSE score predicts patients where SEEG is unlikely to identify a focal seizure-onset zone. It is a simple and useful tool for assisting clinicians to reduce unnecessary invasive diagnostic burden on patients and overutilization of limited health care resources.
Collapse
Affiliation(s)
- Alexandra Astner-Rohracher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology, Christian Doppler University Hospital, Centre for Cognitive Neuroscience Paracelsus Medical University Hospital Salzburg, affiliated Member of the Epicare Reference Network, Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Tamir Avigdor
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Chifaou Abdallah
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Nirav Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Milan Brázdil
- Department of Neurology, Faculty of Medicine, Masaryk University and St Ann's University Hospital, Brno, Czech Republic
| | - Irena Doležalová
- Department of Neurology, Faculty of Medicine, Masaryk University and St Ann's University Hospital, Brno, Czech Republic
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jeffery Alan Hall
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Kirsten Ikeda
- Dalhousie University and Hospital, Division of Neurology, Halifax, Nova Scotia, Canada
| | - Philippe Kahane
- CHU Grenoble-Alpes, Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Gudrun Kalss
- Department of Neurology, Christian Doppler University Hospital, Centre for Cognitive Neuroscience Paracelsus Medical University Hospital Salzburg, affiliated Member of the Epicare Reference Network, Salzburg, Austria
| | | | - Markus Leitinger
- Department of Neurology, Christian Doppler University Hospital, Centre for Cognitive Neuroscience Paracelsus Medical University Hospital Salzburg, affiliated Member of the Epicare Reference Network, Salzburg, Austria
| | - Ioana Mindruta
- Neurology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Lorella Minotti
- CHU Grenoble-Alpes, Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Irina Oane
- Neurology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston
| | | | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Centre for Cognitive Neuroscience Paracelsus Medical University Hospital Salzburg, affiliated Member of the Epicare Reference Network, Salzburg, Austria.,Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience Paracelsus Medical University Hospital Salzburg, Salzburg, Austria.,Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria.,Department of Public Health, Health Services Research and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall in Tirol, Austria
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin Whatley
- Dalhousie University and Hospital, Division of Neurology, Halifax, Nova Scotia, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Fitzgerald Z, Morita-Sherman M, Hogue O, Joseph B, Alvim MKM, Yasuda CL, Vegh D, Nair D, Burgess R, Bingaman W, Najm I, Kattan MW, Blumcke I, Worrell G, Brinkmann BH, Cendes F, Jehi L. Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings. Epilepsia 2021; 62:2439-2450. [PMID: 34338324 PMCID: PMC8488002 DOI: 10.1111/epi.17024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to evaluate the role of scalp electroencephalography (EEG; ictal and interictal patterns) in predicting resective epilepsy surgery outcomes. We use the data to further develop a nomogram to predict seizure freedom. METHODS We retrospectively reviewed the scalp EEG findings and clinical data of patients who underwent surgical resection at three epilepsy centers. Using both EEG and clinical variables categorized into 13 isolated candidate predictors and 6 interaction terms, we built a multivariable Cox proportional hazards model to predict seizure freedom 2 years after surgery. Harrell's step-down procedure was used to sequentially eliminate the least-informative variables from the model until the change in the concordance index (c-index) with variable removal was less than 0.01. We created a separate model using only clinical variables. Discrimination of the two models was compared to evaluate the role of scalp EEG in seizure-freedom prediction. RESULTS Four hundred seventy patient records were analyzed. Following internal validation, the full Clinical + EEG model achieved an optimism-corrected c-index of 0.65, whereas the c-index of the model without EEG data was 0.59. The presence of focal to bilateral tonic-clonic seizures (FBTCS), high preoperative seizure frequency, absence of hippocampal sclerosis, and presence of nonlocalizable seizures predicted worse outcome. The presence of FBTCS had the largest impact for predicting outcome. The analysis of the models' interactions showed that in patients with unilateral interictal epileptiform discharges (IEDs), temporal lobe surgery cases had a better outcome. In cases with bilateral IEDs, abnormal magnetic resonance imaging (MRI) predicted worse outcomes, and in cases without IEDs, patients with extratemporal epilepsy and abnormal MRI had better outcomes. SIGNIFICANCE This study highlights the value of scalp EEG, particularly the significance of IEDs, in predicting surgical outcome. The nomogram delivers an individualized prediction of postoperative outcome, and provides a unique assessment of the relationship between the outcome and preoperative findings.
Collapse
Affiliation(s)
| | | | - Olivia Hogue
- Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Boney Joseph
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Deborah Vegh
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Burgess
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Michael W. Kattan
- Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ingmar Blumcke
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Steinbart D, Steinbrenner M, Oltmanns F, Holtkamp M. Prediction of seizure freedom after epilepsy surgery - Critical reappraisal of significance of intracranial EEG parameters. Clin Neurophysiol 2020; 131:2682-2690. [PMID: 33002730 DOI: 10.1016/j.clinph.2020.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To analyze the significance of intracranial electroencephalography (iEEG) parameters such as seizure onset patterns (SOP) and size of seizure onset zone (SOZ) with respect to prediction of seizure freedom after resective epilepsy surgery. METHODS All patients who underwent iEEG with subdural electrodes between January 2006 and December 2015 in our epilepsy-center were included. Various iEEG parameters were retrospectively analyzed regarding their predictive value to post-operative seizure freedom. Furthermore, associations of specific SOPs with underlying histopathology and brain regions of the SOZ were examined. RESULTS Eighty-one patients (34 female) with 324 seizures were assessed. Low-voltage fast activity (37%) and sharp activity <13 Hz (30%) were the most frequent SOPs. Focal SOZ (≤2 cm) was the only iEEG parameter independently associated with 1-year post-operative seizure freedom (OR 4.1, 95% CI 1.433-11.679). While no SOP was linked to specific histopathologies, some associations between SOPs and anatomical regions of SOZ were found. CONCLUSIONS A circumscribed SOZ, but no specific SOP was predictive for seizure freedom after epilepsy surgery. SIGNIFICANCE Intracranial EEG may be helpful to predict post-operative seizure freedom. Multicenter studies with larger numbers of patients are required to reliably assess the significance of specific SOPs for successful resective epilepsy surgery.
Collapse
Affiliation(s)
- David Steinbart
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Mirja Steinbrenner
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.
| | - Frank Oltmanns
- Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Martin Holtkamp
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| |
Collapse
|