1
|
Vanluchene HER, Bervini D, Straughan R, Maina S, Joseph FJ. Validation of a dynamic 4D microsurgical bypass simulator for training and teaching microvascular anastomosis techniques with blood flow and fluorescence imaging. World Neurosurg X 2024; 24:100396. [PMID: 39399349 PMCID: PMC11470790 DOI: 10.1016/j.wnsx.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Microvascular anastomosis is challenging, and training surgeons to develop and maintain skills is imperative. Current training models either miss the simulation of the surgical workflow, lack 3D key-hole space, need ethical approval, require special preparation, or lack realism. To circumvent these issues, this study describes the use of a mixed reality 3D printed model with integrated blood flow for training cerebral anastomosis and assesses its validity. Methods Different-sized 3D-printed artificial micro artery models in a 3D brain space with a keyhole opening were used. The model was connected to a 4D simulator to induce pulsatile blood flow. Neurosurgical microscopes and exoscopes were used for visualization. Nine participants (n = 6 board-certified cerebrovascular neurosurgeons; n = 3 in-training) participated in the study and practiced anastomosis techniques with the simulator. Two senior, experienced vascular neurosurgeons mentored live teaching activity on the simulator. Participants completed a survey to score the face and content validity of the simulation on a 5-point Likert scale. Simulation time and anastomosis score differences between in-training and board-certified participants were compared for construct validity. Results Participants scored the simulation difficulty similar to actual surgery, proving face validity. All participants agreed that practice on the provided simulator models would improve bypass techniques (μ = 4.67/5 ± 0.47) and instrument handling (μ = 4.56/5 ± 0.68). Board-certified participants had better anastomosis scores than in-training participants (non-significant difference). Conclusions The 4D simulator and the high-fidelity artificial 3D printed model effectively simulated actual bypass surgery in a key-hole fashion with blood flow abilities. Limited resources and preparation time are needed for the training setup. The model provides benefits in learning and maintaining anastomosis skills and allows for easy adaptation to different microanatomical scenarios.
Collapse
Affiliation(s)
| | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ross Straughan
- ARTORG center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Samuel Maina
- ARTORG center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Fredrick J. Joseph
- ARTORG center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Wang R, Han Q, Yan Y, Zhang B, Huang Y, Hui P. Comparison of IMD and ICG videoangiography in combined bypass surgery: a single-center study. Acta Neurochir (Wien) 2024; 166:13. [PMID: 38227148 DOI: 10.1007/s00701-024-05920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/02/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Superficial temporal artery-middle cerebral artery (STA-MCA) bypass combined with an encephaloduromyosynangiosis (EDMS) had gained significant role in treating chronic cerebral ischemia. Invasiveness and costs of intraoperative digital subtraction angiography (DSA) limited its application in operations. OBJECTIVE To find the reliable parameters for determining bypass patency with intraoperative micro-Doppler (IMD) sonography and compare the diagnostic accuracy of indocyanine green (ICG) videoangiography with IMD in combined bypass. METHOD One hundred fifty bypass procedures were included and divided into patent and non-patent groups according to postoperative computed tomography angiography (CTA) within 72 h. The surgical process was divided into four phases in the following order: preparation phase (phase 1), anastomosis phase (phase 2), the temporalis muscle closure phase (phase 3), and the bone flap closure phase (phase 4). The IMD parameters were compared between patent and non-patent groups, and then compared with the patency on CTA by statistical analyses. IMD with CTA, ICG videoangiography with CTA, IMD with ICG videoangiography were performed to assess bypass patency. The agreement between methods was evaluated using kappa statistics. RESULTS No significant differences of baseline characteristics were found between patent and non-patent group. Parameters in the STA were different between patent and non-patent groups in phases 2, 3, and 4. In patent group, Vm was apparently higher and PI was lower in phases 2, 3, and 4 compared with phase 1 (P < .001). In non-patent group, no differences of Vm and PI were found within inter-group. The best cutoff value of IMD in the STA to distinguish patent from non-patent bypasses was Vm in phase 4 > 17.5 cm/s (sensitivity 94.2%, specificity 100%). In addition, the agreement for accessing bypass patency was moderate between ICG videoangiography and CTA (kappa = 0.67), IMD and ICG videoangiography (kappa = 0.73), and good between IMD and CTA (kappa = 0.86). CONCLUSION ICG videoangiography could directly display morphology changes of bypass. IMD could be used for providing half-quantitative parameters to assess bypass patency. Vm in phase 4 > 17.5 cm/s suggesting the patency of bypass on CTA would be good. Also, compared with ICG videoangiography, IMD had more accuracy.
Collapse
Affiliation(s)
- Runchuan Wang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China
| | - Qingdong Han
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China
| | - Yanhong Yan
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China
| | - Bai Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China
| | - Yabo Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China
| | - Pinjing Hui
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
3
|
Guo Z, Yan Z, Qu F, Cheng D, Wang C, Feng Y. The value of indocyanine green-FLOW800 in microvasculature for predicting cerebral hyperperfusion syndrome in moyamoya disease patients. Sci Rep 2023; 13:18352. [PMID: 37884669 PMCID: PMC10603131 DOI: 10.1038/s41598-023-45676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Among the notable complications of direct hemodynamic reconstruction for moyamoya disease (MMD) is cerebral hyperperfusion syndrome (CHS). In this study, we evaluated hemodynamic changes in small regional microvasculature (SRMV) around the anastomosis site by using indocyanine green (ICG)-FLOW800 video angiography and verified that it better predicted the onset of CHS. Intraoperative ICG-FLOW800 analysis was performed on 31 patients (36 cerebral hemispheres) with MMD who underwent superficial temporal artery-middle cerebral artery (MCA) bypass grafting at our institution. The regions of interest were established in the SRMV and thicker MCA around the anastomosis. Calculations were made for half-peak to time (TTP1/2), cerebral blood volume (CBV), and cerebral blood flow (CBF). According to the presence or absence of CHS after surgery, CHS and non-CHS groups of patients were separated. The results showed that ΔCBV and ΔCBF were substantially greater in SRMV than in MCA (p < 0.001). Compared with the non-CHS group, ΔCBF and ΔCBV of SRMV and MCA were considerably greater in the CHS group (p < 0.001). ΔCBF and ΔCBV on the ROC curve for both SRMV and MCA had high sensitivity and specificity (SRMV: ΔCBF, AUC = 0.8586; ΔCBV, AUC = 0.8158. MCA: ΔCBF, AUC = 0.7993; ΔCBV, AUC = 0.8684). ICG-FLOW800 video angiography verified the differential hemodynamic changes in the peri-anastomotic MCA and SRMV before and after bypass surgery in patients with MMD.
Collapse
Affiliation(s)
- Zhongxiang Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Zhaohui Yan
- Department of Neurosurgery, Haiyang People's Hospital, Haiyang Road No. 37, Haiyang, 265199, Shandong Province, China
| | - Fan Qu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Dekui Cheng
- Department of Neurosurgery, Liaocheng People's Hospital, Dongchang West Road No. 67, Liaocheng, 25200, Shandong Province, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
4
|
Xu L, Li Y, Tong Y, Hu JW, He XC, Fu XJ, Zhou GY, Cao Y, Yu XB, Zhou H, Xu CR, Wang L. The Recipient Vessel Hemodynamic Features Affect the Occurrence of Cerebral Edema in Moyamoya Disease After Surgical Revascularization: A Single-Center Retrospective Study. Front Neurol 2022; 13:890126. [PMID: 35651348 PMCID: PMC9149593 DOI: 10.3389/fneur.2022.890126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective In moyamoya disease (MMD) with direct or combined revascularization, the initially hemodynamic recipient features are likely one of the main causes of acute hemodynamic disruption. Previous studies have explored the relationship between recipient diameter or flow velocity and postoperative complications, but there are still no optimal selection criteria with multiple potential recipient vessels. Cerebral edema is one of the most common radiological manifestations in the acute postoperative period. This study assessed the hemodynamic characteristics of cortex vessels related to postoperative cerebral edema. Methods All patients who had undergone direct or combined revascularization with preoperative digital subtraction angiography (DSA) between 2019 and 2021 were eligible for inclusion in this study. The application of DSA was performed and regular radiological examinations were employed after surgery. DSA was analyzed with the hemodynamic features within chosen recipient vessels. Cerebral edema was identified as a low-density image on CT or high signaling in the MRI T2 phase. The recipient hemodynamic characteristics and demographic presentation, as well as clinical data, were retrospectively analyzed in this study. Results A total of 103 patients underwent direct or combined revascularization with preoperative DSA. The mean age of this enrolled cohort was 44.31 ± 10.386 years, in which bilaterally involved MMD accounted for the main part. The preliminary correlation analysis found preoperative disease period (p = 0.078), recipients observed in angiography (p = 0.002), and surgery on the left (p = 0.097) may be associated with cerebral edema. The following regression analysis confirmed low occurrence of cerebral edema was accompanied by recipients observed in angiography (p = 0.003). After subdividing by flow direction and hemodynamic sources, the incidence rate of anterograde direction, anterior sources, and posterior sources were significantly lower than undetected recipients. Conclusions Cerebral edema is a common radiological manifestation in MMDs after surgery. In this study, the observation in angiography reliably identifies a variety of physiological or pathological recipient detection, flow direction, and hemodynamic sources in patients with MMD after revascularization, which indicates the selection strategy of potential recipients and highlights the importance of recipient observability in DSA. Meanwhile, vascular conditions determined by recipient hemodynamics meditate the occurrence of postoperative cerebral edema.
Collapse
Affiliation(s)
- Liang Xu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yin Li
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yun Tong
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jun-Wen Hu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xu-Chao He
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiong-Jie Fu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guo-Yang Zhou
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiao-Bo Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chao-Ran Xu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Clinical Management of Moyamoya Patients. J Clin Med 2021; 10:jcm10163628. [PMID: 34441923 PMCID: PMC8397113 DOI: 10.3390/jcm10163628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Moyamoya angiopathy (MMA) is a peculiar cerebrovascular condition characterized by progressive steno-occlusion of the terminal part of the internal carotid arteries (ICAs) and their proximal branches, associated with the development of a network of fragile collateral vessels at the base of the brain. The diagnosis is essentially made by radiological angiographic techniques. MMA is often idiopathic (moyamoya disease-MMD); conversely, it can be associated with acquired or hereditary conditions (moyamoya Syndrome-MMS); however, the pathophysiology underlying either MMD or MMS has not been fully elucidated to date, and this poor knowledge reflects uncertainties and heterogeneity in patient management. MMD and MMS also have similar clinical expressions, including, above all, ischemic and hemorrhagic strokes, then headaches, seizures, cognitive impairment, and movement disorders. The available treatment strategies are currently shared between idiopathic MMD and MMS, including pharmacological and surgical stroke prevention treatments and symptomatic drugs. No pharmacological treatment able to reverse the progressive disappearance of the ICAs has been found to date in both idiopathic and syndromic cases. Antithrombotic agents are usually prescribed in ischemic MMA, although the coexisting hemorrhagic risk should be considered. Surgical revascularization techniques, which are currently the best available treatment in symptomatic MMA, are associated with good long-term outcomes and reduced ischemic and hemorrhagic risks. Given the lack of dedicated randomized clinical trials, current treatment is mainly based on observational studies and physicians’ and surgeons’ expertise.
Collapse
|