1
|
Sakakura K, Pertsch N, Mueller J, Borghei A, Rubert N, Sani S. Technical Feasibility of Delineating the Thalamic Gustatory Tract Using Tractography. Neurosurgery 2025; 96:454-462. [PMID: 39471091 DOI: 10.1227/neu.0000000000003227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/01/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Magnetic resonance-guided focused ultrasound (MRgFUS) has been increasingly performed in recent years as a minimally invasive treatment of essential tremor and tremor-dominant Parkinson disease. One of the side effects after treatment is dysgeusia. Some centers use tractography to facilitate the treatment planning. However, there have been no reports of identifying gustatory tracts so far. Our aim was to investigate the technical feasibility of isolating and visualizing the gustatory tracts, as well as to explore the relationship between the gustatory tract and the MRgFUS lesion using actual patient data. METHODS We used 20 randomly selected individuals from the Human Connectome Project database to perform tractography of the gustatory tracts. We defined region of interest as the dorsal region of the brainstem, Brodmann area 43 associated with taste perception, and a sphere with a 3-mm radius centered around the ventral intermediate nucleus in the anterior commissure-posterior commissure plane. We also examined the position of the gustatory tract in relation with other tracts, including the medial lemniscus, the pyramidal tract, and the dentatorubrothalamic tract. In addition, using the data of real patients with essential tremor, we investigated the distance between MRgFUS lesions and the gustatory tract and its association with the development of dysgeusia. RESULTS We delineated a mean of 15 streamlines of the gustatory tracts per subject in each hemisphere. There was no statistical difference in the localization of the gustatory tracts between the left and right cerebral hemispheres. The gustatory tract was located anteromedial to the medial lemniscus and posteromedial to the dentatorubrothalamic tract in the anterior commissure-posterior commissure plane. The distance from the MRgFUS lesion to the gustatory tract was significantly shorter in the case where dysgeusia occurred compared with nondysgeusia cases ( P -value: .0068). CONCLUSION The thalamic gustatory tracts can be reliably visualized using tractography.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba , Japan
| | - Nathan Pertsch
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Julia Mueller
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Alireza Borghei
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Nicholas Rubert
- Department of Radiology, Rush University Medical Center, Chicago , Illinois , USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| |
Collapse
|
2
|
Duanmu X, Wen J, Tan S, Guo T, Zhou C, Wu H, Wu J, Cao Z, Liu X, Chen J, Wu C, Qin J, Gu L, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Aberrant dentato-rubro-thalamic pathway in action tremor but not rest tremor: A multi-modality magnetic resonance imaging study. CNS Neurosci Ther 2023; 29:4160-4171. [PMID: 37408389 PMCID: PMC10651946 DOI: 10.1111/cns.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.
Collapse
Affiliation(s)
- Xiaojie Duanmu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Muller J, Alizadeh M, Matias CM, Thalheimer S, Romo V, Martello J, Liang TW, Mohamed FB, Wu C. Use of probabilistic tractography to provide reliable distinction of the motor and sensory thalamus for prospective targeting during asleep deep brain stimulation. J Neurosurg 2022; 136:1371-1380. [PMID: 34624856 DOI: 10.3171/2021.5.jns21552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Accurate electrode placement is key to effective deep brain stimulation (DBS). The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for the treatment of essential tremor (ET). Retrospective tractography-based analysis of electrode placement has associated successful outcomes with modulation of motor input to VIM, but no study has yet evaluated the feasibility and efficacy of prospective presurgical tractography-based targeting alone. Therefore, the authors sought to demonstrate the safety and efficacy of probabilistic tractography-based VIM targeting in ET patients and to perform a systematic comparison of probabilistic and deterministic tractography. METHODS Fourteen patients with ET underwent preoperative diffusion imaging. Probabilistic tractography was applied for preoperative targeting, and deterministic tractography was performed as a comparison between methods. Tractography was performed using the motor and sensory areas as initiation seeds, the ipsilateral thalamus as an inclusion mask, and the contralateral dentate nucleus as a termination mask. Tract-density maps consisted of voxels with 10% or less of the maximum intensity and were superimposed onto anatomical images for presurgical planning. Target planning was based on probabilistic tract-density images and indirect target coordinates. Patients underwent robotic image-guided, image-verified implantation of directional DBS systems. Postoperative tremor scores with and without DBS were recorded. The center of gravity and Dice similarity coefficients were calculated and compared between tracking methods. RESULTS Prospective probabilistic targeting of VIM was successful in all 14 patients. All patients experienced significant tremor reduction. Formal postoperative tremor scores were available for 9 patients, who demonstrated a mean 68.0% tremor reduction. Large differences between tracking methods were observed across patients. Probabilistic tractography-identified VIM fibers were more anterior, lateral, and superior than deterministic tractography-identified fibers, whereas probabilistic tractography-identified ventralis caudalis fibers were more posterior, lateral, and superior than deterministic tractography-identified fibers. Deterministic methods were unable to clearly distinguish between motor and sensory fibers in the majority of patients, but probabilistic methods produced distinct separation. CONCLUSIONS Probabilistic tractography-based VIM targeting is safe and effective for the treatment of ET. Probabilistic tractography is more precise than deterministic tractography for the delineation of VIM and the ventralis caudalis nucleus of the thalamus. Deterministic algorithms tended to underestimate separation between motor and sensory fibers, which may have been due to its limitations with crossing fibers. Larger studies across multiple centers are necessary to further validate this method.
Collapse
Affiliation(s)
- Jennifer Muller
- 1Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
- 2Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahdi Alizadeh
- 1Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
- 2Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Caio M Matias
- 1Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sara Thalheimer
- 1Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Victor Romo
- 3Department of Anesthesia, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Justin Martello
- 4Department of Neurology, Christiana Care Health System, Newark, Delaware; and
| | - Tsao-Wei Liang
- 5Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Feroze B Mohamed
- 2Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chengyuan Wu
- 1Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
- 2Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Kremer NI, Pauwels RWJ, Pozzi NG, Lange F, Roothans J, Volkmann J, Reich MM. Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions. J Clin Med 2021; 10:3468. [PMID: 34441763 PMCID: PMC8397098 DOI: 10.3390/jcm10163468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.
Collapse
Affiliation(s)
- Naomi I. Kremer
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Rik W. J. Pauwels
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
| | - Nicolò G. Pozzi
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Florian Lange
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jonas Roothans
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Martin M. Reich
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| |
Collapse
|