1
|
Vucicevic RS, Castonguay JB, Treviño N, Munim M, Tepper SC, Haydon R, Peabody TD, Blank A, Colman MW. Surgeon perspectives on a virtual reality platform for preoperative planning in complex bone sarcomas. J Orthop 2025; 62:43-48. [PMID: 39507951 PMCID: PMC11535880 DOI: 10.1016/j.jor.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background and objectives Treatment of primary bone and soft tissue sarcomas typically includes complete surgical resection with or without adjunctive modalities. Despite best efforts, for the most challenging clinical scenarios such as axial or pelvic sarcoma, five-year survival rates are reported to be between 27 and 40 %. Since quality of resection is a key determinant of oncologic outcomes, it is critical to preoperatively plan the surgical approach to improve resection accuracy, ensure sufficient surgical margins, and reduce the risk of local or metastatic recurrence. The computer conversion of 2-dimensional (2D) computerized tomography (CT) and magnetic resonance imaging (MRI) to a three-dimensional (3D) virtual reality (VR) avatar image may allow improved preoperative estimation of tumor size, location, adjacent anatomy, and spatial understanding of the tumor without relying on surgeon experience, memory, and imagination. The purpose of this study is to investigate the utility of a virtual reality platform in preoperative planning and surgical approach in a retrospective cohort of pelvic bone sarcoma cases. Methods The histopathology database at our institution was queried for all historical cases of bone and soft tissue sarcoma with surgical resection failure, defined as positive gross or microscopic margins. Four cases of pelvic bone sarcoma were chosen for retrospective review by fellowship-trained orthopedic tumor specialists. For each case, participants first studied conventional 2D preoperative CT images and answered a questionnaire pertaining to objective case parameters. Participants then interacted with case-specific 3D models while wearing a VR headset and answered the same questionnaire. The VR 'avatar' was created with custom-developed software. After using both modalities, participants completed a Likert-scale survey aiming to evaluate the VR technology's subjective impact on understanding tumor environment, surgical plan confidence, and its ability to improve communication with colleagues and patients. Four attending orthopedic oncologists, one orthopedic oncology fellow, and one senior orthopedic oncology resident participated in the study. Results Four cases of failed resection were evaluated by a group of both attending surgeons and a group of trainees composed of both residents and fellows. Tumor borders were clearly delineated in 0 % and 66.6 % cases when evaluating with conventional 2D imaging and VR, respectively. Participants changed adjacent structure involvement grade 22.2 % of the time after assessing involvement grade on the VR technology, with adjacent ligamentous structure grading changed most frequently in 55.5 % of cases. Users reported they would change the surgical approach or margins 44.4 % of the time after reviewing with VR technology. Initial 6 plane resection plans were changed in every user case. Subjective responses indicated that surgeons expressed more confidence in their approach, confidence with obtaining negative margins, and provided more detail regarding structures to be resected in specific planes. Conclusion Pelvic tumors present unique surgical challenges due to complex 3D anatomy, the proximity of vital structures, consistency of the tumor, and the need to alter patient position during resection procedures. Using examples of failed pelvic bone sarcoma resections, our study found that VR imaging increased understanding of the tumor environment, characteristics, and ability to communicate with patients and colleagues.
Collapse
Affiliation(s)
- Rajko S. Vucicevic
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| | | | - Noe Treviño
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| | - Mohammed Munim
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| | - Sarah C. Tepper
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| | - Rex Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Alan Blank
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| | - Matthew W. Colman
- Department of Orthopaedics, Rush University Medical Center, Chicago, USA
| |
Collapse
|
2
|
Reyes Soto G, Moreno DV, Serrano-Murillo M, Castillo-Rangel C, Gonzalez-Aguilar A, Meré Gómez JR, Garcìa Fuentes PI, Cacho Diaz B, Ramirez MDJE, Nikolenko V, Cherubin TM, Amador Hernández MA, Montemurro N. Transpedicular Corpectomy in Minimally Invasive Surgery for Metastatic Spinal Cord Compression: A Single-Center Series. Cureus 2024; 16:e70503. [PMID: 39479069 PMCID: PMC11523553 DOI: 10.7759/cureus.70503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction The role of separation surgery in managing symptomatic spinal metastases has been increasing in recent years, and it represents a crucial part of the definitive management of this condition. Methods We report on a series of seven patients treated at the National Cancer Institute in Mexico using minimally invasive approaches to perform transpedicular corpectomy. The goal was to obtain a margin of tumor-free tissue, enabling the completion of oncological treatment with radiotherapy. Results We collected data from six cases. The mean age was 61.2 years. Surgical outcomes were good in 83.3% of patients. Ranging from minimally invasive instrumentations to total or partial corpectomies, these procedures achieved their intended function of generating healthy neural tissue free of tumor. This ensures that the radiation gradient does not affect this tissue. No surgical complications were reported. The objective of these surgeries was to establish a radiotherapy or radiosurgery regimen as soon as possible, thereby improving patients' quality of life (QoL). Conclusions Low-cost transpedicular corpectomy via minimally invasive surgery (MIS) is a safe and effective method that meets the goals of separation surgery. However, prospective studies are needed to directly compare open techniques with minimally invasive methods.
Collapse
Affiliation(s)
- Gervith Reyes Soto
- Neurosurgical Oncology, Mexico's National Institute of Cancer, Tlalpan, MEX
| | | | | | - Carlos Castillo-Rangel
- Neurosurgery, Servicio of the 1ro de Octubre Hospital of the Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Instituto Politécnico Nacional, Mexico City, MEX
| | | | - José Rodrigo Meré Gómez
- Physical Medicine and Rehabilitation, Clínica de la Columna Instituto Nacional de Rehabilitación, Mexico City, MEX
| | | | | | | | - Vladimir Nikolenko
- Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, RUS
| | | | - Miguel Agustín Amador Hernández
- Orthopaedics, Hospital Central Militar - Traumatología y Ortopedia, Hospital General de Mexico Cirugía de Columna, Mexico City, MEX
| | | |
Collapse
|
3
|
Schmidt FA, Hussain I, Boadi B, Sommer FJ, Thomé C, Härtl R. The Use of Augmented Reality as an Educational Tool in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01299. [PMID: 39185869 DOI: 10.1227/ons.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/03/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES One of the major challenges in training neurosurgical and orthopedic residents the technique for minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is the lack of visualization of surgical landmarks (pedicle, pars, lamina). This is due to the limited access to the bony spine through a tubular retractor, in addition to a smaller working corridor or patient-specific factors such as bony overgrowth, disk space collapse, and listhesis. These factors increase the possibility for surgical error and prolonged surgery time. With augmented reality (AR), relevant surgical anatomy can be projected directly into the user's field of view through the microscope. The purpose of this study was to assess the utility, accuracy, efficiency, and precision of AR-guided MIS-TLIF and to determine its impact in spine surgery training. METHODS At 2 centers, 12 neurosurgical residents performed a one-level MIS-TLIF on a high-fidelity lumbar spine simulation model with and without AR projection into the microscope. For the MIS-TLIF procedures with AR, surgical landmarks were highlighted in different colors on preoperative image data. These landmarks were visualized in the spinal navigation application on the navigation monitor and in the microscope to confirm the relevant anatomy. Postprocedural surveys (National Aeronautics and Space Administration Task Load Index) were given to the residents. RESULTS Twelve residents were included in this trial. AR-guided procedures had a consistent impact on resident anatomical orientation and workload experience. Procedures performed without AR had a significantly higher mental demand (P = .003) than with AR. Residents reported to a significantly higher rate that it was harder work for them to accomplish their level of performance without AR (P = .019). CONCLUSION AR can bring a meaningful value in MIS teaching and training to confirm relevant anatomy in situations where the surgeon will have less direct visual access. AR used in surgical simulation can also speed the learning curve.
Collapse
Affiliation(s)
- Franziska A Schmidt
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Ibrahim Hussain
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital-OCH Spine, New York, New York, USA
| | - Blake Boadi
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital-OCH Spine, New York, New York, USA
| | - Fabian J Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital-OCH Spine, New York, New York, USA
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital-OCH Spine, New York, New York, USA
| |
Collapse
|
4
|
Sacino AN, Chen H, Sahgal A, Bettegowda C, Rhines LD, Maralani P, Redmond KJ. Stereotactic body radiation therapy for spinal metastases: A new standard of care. Neuro Oncol 2024; 26:S76-S87. [PMID: 38437670 PMCID: PMC10911798 DOI: 10.1093/neuonc/noad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advancements in systemic therapies for patients with metastatic cancer have improved overall survival and, hence, the number of patients living with spinal metastases. As a result, the need for more versatile and personalized treatments for spinal metastases to optimize long-term pain and local control has become increasingly important. Stereotactic body radiation therapy (SBRT) has been developed to meet this need by providing precise and conformal delivery of ablative high-dose-per-fraction radiation in few fractions while minimizing risk of toxicity. Additionally, advances in minimally invasive surgical techniques have also greatly improved care for patients with epidural disease and/or unstable spines, which may then be combined with SBRT for durable local control. In this review, we highlight the indications and controversies of SBRT along with new surgical techniques for the treatment of spinal metastases.
Collapse
Affiliation(s)
- Amanda N Sacino
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland, USA
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chetan Bettegowda
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland, USA
| | - Laurence D Rhines
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kristin J Redmond
- Department of Radiation and Molecular Oncology, John Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Bui T, Ruiz-Cardozo MA, Dave HS, Barot K, Kann MR, Joseph K, Lopez-Alviar S, Trevino G, Brehm S, Yahanda AT, Molina CA. Virtual, Augmented, and Mixed Reality Applications for Surgical Rehearsal, Operative Execution, and Patient Education in Spine Surgery: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:332. [PMID: 38399619 PMCID: PMC10890632 DOI: 10.3390/medicina60020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Advances in virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies have resulted in their increased application across many medical specialties. VR's main application has been for teaching and preparatory roles, while AR has been mostly used as a surgical adjunct. The objective of this study is to discuss the various applications and prospects for VR, AR, and MR specifically as they relate to spine surgery. Materials and Methods: A systematic review was conducted to examine the current applications of VR, AR, and MR with a focus on spine surgery. A literature search of two electronic databases (PubMed and Scopus) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The study quality was assessed using the MERSQI score for educational research studies, QUACS for cadaveric studies, and the JBI critical appraisal tools for clinical studies. Results: A total of 228 articles were identified in the primary literature review. Following title/abstract screening and full-text review, 46 articles were included in the review. These articles comprised nine studies performed in artificial models, nine cadaveric studies, four clinical case studies, nineteen clinical case series, one clinical case-control study, and four clinical parallel control studies. Teaching applications utilizing holographic overlays are the most intensively studied aspect of AR/VR; the most simulated surgical procedure is pedicle screw placement. Conclusions: VR provides a reproducible and robust medium for surgical training through surgical simulations and for patient education through various platforms. Existing AR/MR platforms enhance the accuracy and precision of spine surgeries and show promise as a surgical adjunct.
Collapse
Affiliation(s)
- Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miguel A. Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harsh S. Dave
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Ryan Kann
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia Lopez-Alviar
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo A Molina
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Kann MR, Ruiz-Cardozo MA, Brehm S, Bui T, Joseph K, Barot K, Trevino G, Carey-Ewend A, Singh SP, De La Paz M, Hanafy A, Olufawo M, Patel RP, Yahanda AT, Perdomo-Pantoja A, Jauregui JJ, Cadieux M, Pennicooke B, Molina CA. Utilization of Augmented Reality Head-Mounted Display for the Surgical Management of Thoracolumbar Spinal Trauma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:281. [PMID: 38399568 PMCID: PMC10890598 DOI: 10.3390/medicina60020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Augmented reality head-mounted display (AR-HMD) is a novel technology that provides surgeons with a real-time CT-guided 3-dimensional recapitulation of a patient's spinal anatomy. In this case series, we explore the use of AR-HMD alongside more traditional robotic assistance in surgical spine trauma cases to determine their effect on operative costs and perioperative outcomes. Materials and Methods: We retrospectively reviewed trauma patients who underwent pedicle screw placement surgery guided by AR-HMD or robotic-assisted platforms at an academic tertiary care center between 1 January 2021 and 31 December 2022. Outcome distributions were compared using the Mann-Whitney U test. Results: The AR cohort (n = 9) had a mean age of 66 years, BMI of 29.4 kg/m2, Charlson Comorbidity Index (CCI) of 4.1, and Surgical Invasiveness Index (SII) of 8.8. In total, 77 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 378 mL, 0.78 units transfused, 398 min spent in the operating room, and a 20-day LOS. The robotic cohort (n = 13) had a mean age of 56 years, BMI of 27.1 kg/m2, CCI of 3.8, and SII of 14.2. In total, 128 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 432 mL, 0.46 units transfused units used, 331 min spent in the operating room, and a 10.4-day LOS. No significant difference was found between the two cohorts in any outcome metrics. Conclusions: Although the need to address urgent spinal conditions poses a significant challenge to the implementation of innovative technologies in spine surgery, this study represents an initial effort to show that AR-HMD can yield comparable outcomes to traditional robotic surgical techniques. Moreover, it highlights the potential for AR-HMD to be readily integrated into Level 1 trauma centers without requiring extensive modifications or adjustments.
Collapse
Affiliation(s)
- Michael Ryan Kann
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Miguel A. Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigail Carey-Ewend
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Som P. Singh
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew De La Paz
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed Hanafy
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rujvee P. Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julio J. Jauregui
- Department of Orthopedic Surgery, University of Maryland Medical System, Baltimore, MD 21201, USA
| | - Magalie Cadieux
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brenton Pennicooke
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo A. Molina
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Bian D, Lin Z, Lu H, Zhong Q, Wang K, Tang X, Zang J. The application of extended reality technology-assisted intraoperative navigation in orthopedic surgery. Front Surg 2024; 11:1336703. [PMID: 38375409 PMCID: PMC10875025 DOI: 10.3389/fsurg.2024.1336703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Extended reality (XR) technology refers to any situation where real-world objects are enhanced with computer technology, including virtual reality, augmented reality, and mixed reality. Augmented reality and mixed reality technologies have been widely applied in orthopedic clinical practice, including in teaching, preoperative planning, intraoperative navigation, and surgical outcome evaluation. The primary goal of this narrative review is to summarize the effectiveness and superiority of XR-technology-assisted intraoperative navigation in the fields of trauma, joint, spine, and bone tumor surgery, as well as to discuss the current shortcomings in intraoperative navigation applications. We reviewed titles of more than 200 studies obtained from PubMed with the following search terms: extended reality, mixed reality, augmented reality, virtual reality, intraoperative navigation, and orthopedic surgery; of those 200 studies, 69 related papers were selected for abstract review. Finally, the full text of 55 studies was analyzed and reviewed. They were classified into four groups-trauma, joint, spine, and bone tumor surgery-according to their content. Most of studies that we reviewed showed that XR-technology-assisted intraoperative navigation can effectively improve the accuracy of implant placement, such as that of screws and prostheses, reduce postoperative complications caused by inaccurate implantation, facilitate the achievement of tumor-free surgical margins, shorten the surgical duration, reduce radiation exposure for patients and surgeons, minimize further damage caused by the need for visual exposure during surgery, and provide richer and more efficient intraoperative communication, thereby facilitating academic exchange, medical assistance, and the implementation of remote healthcare.
Collapse
Affiliation(s)
- Dongxiao Bian
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Zhipeng Lin
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Hao Lu
- Traumatic Orthopedic Department, Peking University People’s Hospital, Beijing, China
| | - Qunjie Zhong
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Beijing, China
| | - Kaifeng Wang
- Spinal Surgery Department, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Jie Zang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
8
|
Pahwa B, Azad TD, Liu J, Ran K, Liu CJ, Tracz J, Sattari SA, Khalifeh JM, Judy BF, Bydon A, Witham TF. Assessing the Accuracy of Spinal Instrumentation Using Augmented Reality (AR): A Systematic Review of the Literature and Meta-Analysis. J Clin Med 2023; 12:6741. [PMID: 37959207 PMCID: PMC10649145 DOI: 10.3390/jcm12216741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Technological advancements, particularly in the realm of augmented reality (AR), may facilitate more accurate and precise pedicle screw placement. AR integrates virtual data into the operator's real-world view, allowing for the visualization of patient-specific anatomy and navigated trajectories. We aimed to conduct a meta-analysis of the accuracy of pedicle screw placement using AR-based systems. A systematic review of the literature and meta-analysis was performed using the PubMed/MEDLINE database, including studies reporting the accuracy of pedicle screw placement using AR. In total, 8 studies with 163 patients and 1259 screws were included in the analysis. XVision (XVS) was the most commonly used AR system (595 screws) followed by the Allura AR surgical navigation system (ARSN) (462 screws). The overall accuracy was calculated as 97.2% (95% CI 96.2-98.1% p < 0.001). Subgroup analysis revealed that there was no statistically significant difference in the accuracy rates achieved by XVS and Allura ARSN (p = 0.092). AR enables reliable, accurate placement of spinal instrumentation. Future research efforts should focus on comparative studies, cost effectiveness, operative time, and radiation exposure.
Collapse
Affiliation(s)
- Bhavya Pahwa
- University College of Medical Sciences, GTB Hospital, New Delhi 110095, India;
| | - Tej D. Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Jiaqi Liu
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Kathleen Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Connor J. Liu
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Jovanna Tracz
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Jawad M. Khalifeh
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Ali Bydon
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| | - Timothy F. Witham
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (T.D.A.); (C.J.L.); (J.T.); (S.A.S.); (J.M.K.); (B.F.J.); (A.B.)
| |
Collapse
|
9
|
Hey G, Guyot M, Carter A, Lucke-Wold B. Augmented Reality in Neurosurgery: A New Paradigm for Training. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1721. [PMID: 37893439 PMCID: PMC10608758 DOI: 10.3390/medicina59101721] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023]
Abstract
Augmented reality (AR) involves the overlay of computer-generated images onto the user's real-world visual field to modify or enhance the user's visual experience. With respect to neurosurgery, AR integrates preoperative and intraoperative imaging data to create an enriched surgical experience that has been shown to improve surgical planning, refine neuronavigation, and reduce operation time. In addition, AR has the potential to serve as a valuable training tool for neurosurgeons in a way that minimizes patient risk while facilitating comprehensive training opportunities. The increased use of AR in neurosurgery over the past decade has led to innovative research endeavors aiming to develop novel, more efficient AR systems while also improving and refining present ones. In this review, we provide a concise overview of AR, detail current and emerging uses of AR in neurosurgery and neurosurgical training, discuss the limitations of AR, and provide future research directions. Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 386 articles were initially identified. Two independent reviewers (GH and AC) assessed article eligibility for inclusion, and 31 articles are included in this review. The literature search included original (retrospective and prospective) articles and case reports published in English between 2013 and 2023. AR assistance has shown promise within neuro-oncology, spinal neurosurgery, neurovascular surgery, skull-base surgery, and pediatric neurosurgery. Intraoperative use of AR was found to primarily assist with surgical planning and neuronavigation. Similarly, AR assistance for neurosurgical training focused primarily on surgical planning and neuronavigation. However, studies included in this review utilize small sample sizes and remain largely in the preliminary phase. Thus, future research must be conducted to further refine AR systems before widespread intraoperative and educational use.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael Guyot
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Cao B, Yuan B, Xu G, Zhao Y, Sun Y, Wang Z, Zhou S, Xu Z, Wang Y, Chen X. A Pilot Human Cadaveric Study on Accuracy of the Augmented Reality Surgical Navigation System for Thoracolumbar Pedicle Screw Insertion Using a New Intraoperative Rapid Registration Method. J Digit Imaging 2023; 36:1919-1929. [PMID: 37131064 PMCID: PMC10406793 DOI: 10.1007/s10278-023-00840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
To evaluate the feasibility and accuracy of AR-assisted pedicle screw placement using a new intraoperative rapid registration method of combining preoperative CT scanning and intraoperative C-arm 2D fluoroscopy in cadavers. Five cadavers with intact thoracolumbar spines were employed in this study. Intraoperative registration was performed using anteroposterior and lateral views of preoperative CT scanning and intraoperative 2D fluoroscopic images. Patient-specific targeting guides were used for pedicle screw placement from Th1-L5, totaling 166 screws. Instrumentation for each side was randomized (augmented reality surgical navigation (ARSN) vs. C-arm) with an equal distribution of 83 screws in each group. CT was performed to evaluate the accuracy of both techniques by assessing the screw positions and the deviations between the inserted screws and planned trajectories. Postoperative CT showed that 98.80% (82/83) screws in ARSN group and 72.29% (60/83) screws in C-arm group were within the 2-mm safe zone (p < 0.001). The mean time for instrumentation per level in ARSN group was significantly shorter than that in C-arm group (56.17 ± 3.33 s vs. 99.22 ± 9.03 s, p < 0.001). The overall intraoperative registration time was 17.2 ± 3.5 s per segment. AR-based navigation technology can provide surgeons with accurate guidance of pedicle screw insertion and save the operation time by using the intraoperative rapid registration method of combining preoperative CT scanning and intraoperative C-arm 2D fluoroscopy.
Collapse
Affiliation(s)
- Bing Cao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Bo Yuan
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Guofeng Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Yanqing Sun
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zhiwei Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zheng Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Yao Wang
- Linyan Medical Technology Company Limited, 528 Ruiqing Road, Pudong New District, Shanghai, China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China.
| |
Collapse
|
11
|
Onuma H, Sakai K, Arai Y, Torigoe I, Tomori M, Sakaki K, Hirai T, Egawa S, Kobayashi Y, Okawa A, Yoshii T. Augmented Reality Support for Anterior Decompression and Fusion Using Floating Method for Cervical Ossification of the Posterior Longitudinal Ligament. J Clin Med 2023; 12:jcm12082898. [PMID: 37109235 PMCID: PMC10143834 DOI: 10.3390/jcm12082898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Anterior decompression and fusion (ADF) using the floating method for cervical ossification of the posterior longitudinal ligament (OPLL) is an ideal surgical technique, but it has a specific risk of insufficient decompression caused by the impingement of residual ossification. Augmented reality (AR) support is a novel technology that enables the superimposition of images onto the view of a surgical field. AR technology was applied to ADF for cervical OPLL to facilitate intraoperative anatomical orientation and OPLL identification. In total, 14 patients with cervical OPLL underwent ADF with microscopic AR support. The outline of the OPLL and the bilateral vertebral arteries was marked after intraoperative CT, and the reconstructed 3D image data were transferred and linked to the microscope. The AR microscopic view enabled us to visualize the ossification outline, which could not be seen directly in the surgical field, and allowed sufficient decompression of the ossification. Neurological disturbances were improved in all patients. No cases of serious complications, such as major intraoperative bleeding or reoperation due to the postoperative impingement of the floating OPLL, were registered. To our knowledge, this is the first report of the introduction of microscopic AR into ADF using the floating method for cervical OPLL with favorable clinical results.
Collapse
Affiliation(s)
- Hiroaki Onuma
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Kenichiro Sakai
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Yoshiyasu Arai
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Ichiro Torigoe
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Masaki Tomori
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Kyohei Sakaki
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Takashi Hirai
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ward, Tokyo 113-8519, Japan
| | - Satoru Egawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ward, Tokyo 113-8519, Japan
| | - Yutaka Kobayashi
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ward, Tokyo 113-8519, Japan
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ward, Tokyo 113-8519, Japan
| |
Collapse
|
12
|
Medress ZA, Bobrow A, Tigchelaar SS, Henderson T, Parker JJ, Desai A. Augmented Reality-Assisted Resection of a Large Presacral Ganglioneuroma: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2023; 24:e284-e285. [PMID: 36701554 DOI: 10.1227/ons.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Zachary A Medress
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | | | - Seth S Tigchelaar
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | | | - Jonathon J Parker
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Atman Desai
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
13
|
Judy BF, Liu A, Jin Y, Ronkon C, Khan M, Cottrill E, Ehresman J, Pennington Z, Bydon A, Lo SFL, Sciubba DM, Molina CA, Witham TF. In-Human Report of S2 Alar-Iliac Screw Placement Using Augmented Reality Assistance. Oper Neurosurg (Hagerstown) 2023; 24:68-73. [PMID: 36519880 DOI: 10.1227/ons.0000000000000439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND S2 alar-iliac (S2AI) screws provide spinopelvic fixation with the advantages of minimized dissection, easier rod contouring, and decreased symptomatic screw-head prominence. However, placement of S2AI screws may be challenging because of the anatomy of the lumbosacral junction. Augmented reality is a nascent technology that may enhance placement of S2AI screws. OBJECTIVE To report the first in-human placement of augmented reality (AR)-assisted S2 alar-iliac screws and evaluate the accuracy of screw placement. METHODS A retrospective review was performed of patients who underwent AR-assisted S2AI screw placement. All surgeries were performed by 2 neurosurgeons using an AR head-mounted display (Xvision, Augmedics). Screw accuracy was analyzed in a blinded fashion by an independent neuroradiologist using the cortical breach grading scale. RESULTS Twelve patients underwent AR-assisted S2AI screw placement for a total of 23 screws. Indications for surgery included deformity, degenerative disease, and tumor. Twenty-two screws (95.6%) were accurate-defined as grade 0 or grade 1. Twenty-one screws (91.3%) were classified as grade 0, 1 screw (4.3%) was grade 1, and 1 screw (4.3%) was grade 3. All breaches were asymptomatic. CONCLUSION AR-assisted S2AI screw placement had an overall accuracy rate of 95.6% (grade 0 and grade 1 screws) in a cohort of 12 patients and 23 screws. This compares favorably with freehand and robotic placement. 1,2 AR enables spine surgeons to both better visualize anatomy and accurately place spinal instrumentation. Future studies are warranted to research the learning curve and cost analysis of AR-assisted spine surgery.
Collapse
Affiliation(s)
- Brendan F Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yike Jin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Ronkon
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Majid Khan
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Bydon
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - Camilo A Molina
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Tigchelaar SS, Medress ZA, Quon J, Dang P, Barbery D, Bobrow A, Kin C, Louis R, Desai A. Augmented Reality Neuronavigation for En Bloc Resection of Spinal Column Lesions. World Neurosurg 2022; 167:102-110. [PMID: 36096393 DOI: 10.1016/j.wneu.2022.08.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Primary tumors involving the spine are relatively rare but represent surgically challenging procedures with high patient morbidity. En bloc resection of these tumors necessitates large exposures, wide tumor margins, and poses risks to functionally relevant anatomical structures. Augmented reality neuronavigation (ARNV) represents a paradigm shift in neuronavigation, allowing on-demand visualization of 3D navigation data in real-time directly in line with the operative field. METHODS Here, we describe the first application of ARNV to perform distal sacrococcygectomies for the en bloc removal of sacral and retrorectal lesions involving the coccyx in 2 patients, as well as a thoracic 9-11 laminectomy with costotransversectomy for en bloc removal of a schwannoma in a third patient. RESULTS In our experience, ARNV allowed our teams to minimize the length of the incision, reduce the extent of bony resection, and enhanced visualization of critical adjacent anatomy. All tumors were resected en bloc, and the patients recovered well postoperatively, with no known complications. Pathologic analysis confirmed the en bloc removal of these lesions with negative margins. CONCLUSIONS We conclude that ARNV is an effective strategy for the precise, en bloc removal of spinal lesions including both sacrococcygeal tumors involving the retrorectal space and thoracic schwannomas.
Collapse
Affiliation(s)
- Seth S Tigchelaar
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA.
| | - Zachary A Medress
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Jennifer Quon
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Phuong Dang
- Surgical Theater, Inc., Cleveland, Ohio, USA
| | | | | | - Cindy Kin
- Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - Robert Louis
- The Brain and Spine Center, Hoag Memorial Hospital Presbyterian Newport Beach, Newport Beach, California, USA; Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian Newport Beach, Newport Beach, California, USA
| | - Atman Desai
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
15
|
Abdulla E, Rahman S, Rahman MM. Letter to the Editor. Pedicle screw placement: head-mounted display-based augmented reality for better precision. J Neurosurg Spine 2022; 37:629-630. [PMID: 35523254 DOI: 10.3171/2022.3.spine22267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Mozaffari K, Foster CH, Rosner MK. Practical Use of Augmented Reality Modeling to Guide Revision Spine Surgery: An Illustrative Case of Hardware Failure and Overriding Spondyloptosis. Oper Neurosurg (Hagerstown) 2022; 23:212-216. [PMID: 35972084 PMCID: PMC9362336 DOI: 10.1227/ons.0000000000000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND IMPORTANCE Augmented reality (AR) is a novel technology with broadening applications to neurosurgery. In deformity spine surgery, it has been primarily directed to the more precise placement of pedicle screws. However, AR may also be used to generate high fidelity three-dimensional (3D) spine models for cases of advanced deformity with existing instrumentation. We present a case in which an AR-generated 3D model was used to facilitate and expedite the removal of embedded instrumentation and guide the reduction of an overriding spondyloptotic deformity. CLINICAL PRESENTATION A young adult with a remote history of a motor vehicle accident treated with long-segment posterior spinal stabilization presented with increasing back pain and difficulty sitting upright in a wheelchair. Imaging revealed pseudoarthrosis with multiple rod fractures resulting in an overriding spondyloptosis of T6 on T9. An AR-generated 3D model was useful in the intraoperative localization of rod breaks and other extensively embedded instrumentation. Real-time model thresholding expedited the safe explanation of the defunct system and correction of the spondyloptosis deformity. CONCLUSION An AR-generated 3D model proved instrumental in a revision case of hardware failure and high-grade spinal deformity.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurological Surgery, The George Washington University Hospital, Washington, District of Columbia, USA
| | | | | |
Collapse
|
17
|
Boaro A, Moscolo F, Feletti A, Polizzi G, Nunes S, Siddi F, Broekman M, Sala F. Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon. BRAIN & SPINE 2022; 2:100926. [PMID: 36248169 PMCID: PMC9560703 DOI: 10.1016/j.bas.2022.100926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
Introduction The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs.
Collapse
Affiliation(s)
- A. Boaro
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - F. Moscolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - A. Feletti
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - G.M.V. Polizzi
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - S. Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - F. Siddi
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
| | - M.L.D. Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Zuid-Holland, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| | - F. Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
18
|
Augmented Reality: Mapping Methods and Tools for Enhancing the Human Role in Healthcare HMI. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Augmented Reality (AR) represents an innovative technology to improve data visualization and strengthen the human perception. Among Human–Machine Interaction (HMI), medicine can benefit most from the adoption of these digital technologies. In this perspective, the literature on orthopedic surgery techniques based on AR was evaluated, focusing on identifying the limitations and challenges of AR-based healthcare applications, to support the research and the development of further studies. Methods: Studies published from January 2018 to December 2021 were analyzed after a comprehensive search on PubMed, Google Scholar, Scopus, IEEE Xplore, Science Direct, and Wiley Online Library databases. In order to improve the review reporting, the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used. Results: Authors selected sixty-two articles meeting the inclusion criteria, which were categorized according to the purpose of the study (intraoperative, training, rehabilitation) and according to the surgical procedure used. Conclusions: AR has the potential to improve orthopedic training and practice by providing an increasingly human-centered clinical approach. Further research can be addressed by this review to cover problems related to hardware limitations, lack of accurate registration and tracking systems, and absence of security protocols.
Collapse
|
19
|
Liu Y, Lee MG, Kim JS. Spine Surgery Assisted by Augmented Reality: Where Have We Been? Yonsei Med J 2022; 63:305-316. [PMID: 35352881 PMCID: PMC8965436 DOI: 10.3349/ymj.2022.63.4.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
This present systematic review examines spine surgery literature supporting augmented reality (AR) technology and summarizes its current status in spinal surgery technology. Database search strategies were retrieved from PubMed, Web of Science, Cochrane Library, Embase, from the earliest records to April 1, 2021. Our review briefly examines the history of AR, and enumerates different device application workflows in a variety of spinal surgeries. We also sort out the pros and cons of current mainstream AR devices and the latest updates. A total of 45 articles are included in our review. The most prevalent surgical applications included are the augmented reality surgical navigation system and head-mounted display. The most popular application of AR is pedicle screw instrumentation in spine surgery, and the primary responsible surgical levels are thoracic and lumbar. AR guidance systems show high potential value in practical clinical applications for the spine. The overall number of cases in AR-related studies is still rare compared to traditional surgical-assisted techniques. These lack long-term clinical efficacy and robust surgical-related statistical data. Changing healthcare laws as well as the increasing prevalence of spinal surgery are generating critical data that determines the value of AR technology.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Gi Lee
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-Sung Kim
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
20
|
Liu A, Jin Y, Cottrill E, Khan M, Westbroek E, Ehresman J, Pennington Z, Lo SFL, Sciubba DM, Molina CA, Witham TF. Clinical accuracy and initial experience with augmented reality-assisted pedicle screw placement: the first 205 screws. J Neurosurg Spine 2021:1-7. [PMID: 34624854 DOI: 10.3171/2021.2.spine202097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Augmented reality (AR) is a novel technology which, when applied to spine surgery, offers the potential for efficient, safe, and accurate placement of spinal instrumentation. The authors report the accuracy of the first 205 pedicle screws consecutively placed at their institution by using AR assistance with a unique head-mounted display (HMD) navigation system. METHODS A retrospective review was performed of the first 28 consecutive patients who underwent AR-assisted pedicle screw placement in the thoracic, lumbar, and/or sacral spine at the authors' institution. Clinical accuracy for each pedicle screw was graded using the Gertzbein-Robbins scale by an independent neuroradiologist working in a blinded fashion. RESULTS Twenty-eight consecutive patients underwent thoracic, lumbar, or sacral pedicle screw placement with AR assistance. The median age at the time of surgery was 62.5 (IQR 13.8) years and the median body mass index was 31 (IQR 8.6) kg/m2. Indications for surgery included degenerative disease (n = 12, 43%); deformity correction (n = 12, 43%); tumor (n = 3, 11%); and trauma (n = 1, 4%). The majority of patients (n = 26, 93%) presented with low-back pain, 19 (68%) patients presented with radicular leg pain, and 10 (36%) patients had documented lower extremity weakness. A total of 205 screws were consecutively placed, with 112 (55%) placed in the lumbar spine, 67 (33%) in the thoracic spine, and 26 (13%) at S1. Screw placement accuracy was 98.5% for thoracic screws, 97.8% for lumbar/S1 screws, and 98.0% overall. CONCLUSIONS AR depicted through a unique HMD is a novel and clinically accurate technology for the navigated insertion of pedicle screws. The authors describe the first 205 AR-assisted thoracic, lumbar, and sacral pedicle screws consecutively placed at their institution with an accuracy of 98.0% as determined by a Gertzbein-Robbins grade of A or B.
Collapse
Affiliation(s)
- Ann Liu
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yike Jin
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ethan Cottrill
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Majid Khan
- 2Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania; and
| | - Erick Westbroek
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zach Pennington
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sheng-Fu L Lo
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel M Sciubba
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Camilo A Molina
- 3Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy F Witham
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Yahanda AT, Moore E, Ray WZ, Pennicooke B, Jennings JW, Molina CA. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg Focus 2021; 51:E10. [PMID: 34333484 DOI: 10.3171/2021.5.focus21217] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Augmented reality (AR) is an emerging technology that has great potential for guiding the safe and accurate placement of spinal hardware, including percutaneous pedicle screws. The goal of this study was to assess the accuracy of 63 percutaneous pedicle screws placed at a single institution using an AR head-mounted display (ARHMD) system. METHODS Retrospective analyses were performed for 9 patients who underwent thoracic and/or lumbar percutaneous pedicle screw placement guided by ARHMD technology. Clinical accuracy was assessed via the Gertzbein-Robbins scale by the authors and by an independent musculoskeletal radiologist. Thoracic pedicle subanalysis was also performed to assess screw accuracy based on pedicle morphology. RESULTS Nine patients received thoracic or lumbar AR-guided percutaneous pedicle screws. The mean age at the time of surgery was 71.9 ± 11.5 years and the mean number of screws per patient was 7. Indications for surgery were spinal tumors (n = 4, 44.4%), degenerative disease (n = 3, 33.3%), spinal deformity (n = 1, 11.1%), and a combination of deformity and infection (n = 1, 11.1%). Presenting symptoms were most commonly low-back pain (n = 7, 77.8%) and lower-extremity weakness (n = 5, 55.6%), followed by radicular lower-extremity pain, loss of lower-extremity sensation, or incontinence/urinary retention (n = 3 each, 33.3%). In all, 63 screws were placed (32 thoracic, 31 lumbar). The accuracy for these screws was 100% overall; all screws were Gertzbein-Robbins grade A or B (96.8% grade A, 3.2% grade B). This accuracy was achieved in the thoracic spine regardless of pedicle cancellous bone morphology. CONCLUSIONS AR-guided surgery demonstrated a 100% accuracy rate for the insertion of 63 percutaneous pedicle screws in 9 patients (100% rate of Gertzbein-Robbins grade A or B screw placement). Using an ARHMS system for the placement of percutaneous pedicle screws showed promise, but further validation using a larger cohort of patients across multiple surgeons and institutions will help to determine the true accuracy enabled by this technology.
Collapse
Affiliation(s)
| | - Emelia Moore
- 2Wayne State University School of Medicine, Detroit, Michigan
| | | | | | - Jack W Jennings
- 3Radiology, Washington University School of Medicine in St. Louis, Missouri; and
| | | |
Collapse
|
22
|
Davidovic A, Chavaz L, Meling TR, Schaller K, Bijlenga P, Haemmerli J. Evaluation of the effect of standard neuronavigation and augmented reality on the integrity of the perifocal structures during a neurosurgical approach. Neurosurg Focus 2021; 51:E19. [PMID: 34333474 DOI: 10.3171/2021.5.focus21202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracranial minimally invasive procedures imply working in a restricted surgical corridor surrounded by critical structures, such as vessels and cranial nerves. Any damage to them may affect patient outcome. Neuronavigation systems may reduce the risk of such complications. In this study, the authors sought to compare standard neuronavigation (NV) and augmented reality (AR)-guided navigation with respect to the integrity of the perifocal structures during a neurosurgical approach using a novel model imitating intracranial vessels. METHODS A custom-made box, containing crisscrossing hard metal wires, a hidden nail at its bottom, and a wooden top, was scanned, fused, and referenced for the purpose of the study. The metal wires and an aneurysm clip applier were connected to a controller, which counted the number of contacts between them. Twenty-three naive participants were asked to 1) use NV to define an optimal entry point on the top, perform the smallest craniotomy possible on the wooden top, and to use a surgical microscope when placing a clip on the nail without touching the metal wires; and 2) use AR to preoperatively define an ideal trajectory, navigate the surgical microscope, and then perform the same task. The primary outcome was the number of contacts made between the metal wires and the clip applier. Secondary outcomes were craniotomy size, and trust in NV and AR to help avoid touching the metal wires, as assessed by a 9-level Likert scale. RESULTS The median number of contacts tended to be lower with the use of AR than with NV (AR, median 1 [Q1: 1, Q3: 2]; NV, median 3 [Q1: 1, Q3: 6]; p = 0.074). The size of the target-oriented craniotomy was significantly lower with the use of AR compared with NV (AR, median 4.91 cm2 [Q1: 4.71 cm2, Q3: 7.55 cm2]; and NV, median 9.62 cm2 [Q1: 7.07 cm2; Q3: 13.85 cm2]). Participants had more trust in AR than in NV (the differences posttest minus pretest were mean 0.9 [SD 1.2] and mean -0.3 [SD 0.2], respectively; p < 0.05). CONCLUSIONS The results of this study show a trend favoring the use of AR over NV with respect to reducing contact between a clip applier and the perifocal structures during a simulated clipping of an intracranial aneurysm. Target-guided craniotomies were smaller with the use of AR. AR may be used not only to localize surgical targets but also to prevent complications associated with damage to structures encountered during the surgical approach.
Collapse
Affiliation(s)
| | - Lara Chavaz
- 2Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Torstein R Meling
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and.,2Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and.,2Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and.,2Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Haemmerli
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals; and
| |
Collapse
|
23
|
Pojskić M, Bopp M, Saß B, Kirschbaum A, Nimsky C, Carl B. Intraoperative Computed Tomography-Based Navigation with Augmented Reality for Lateral Approaches to the Spine. Brain Sci 2021; 11:brainsci11050646. [PMID: 34063546 PMCID: PMC8156391 DOI: 10.3390/brainsci11050646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background. Lateral approaches to the spine have gained increased popularity due to enabling minimally invasive access to the spine, less blood loss, decreased operative time, and less postoperative pain. The objective of the study was to analyze the use of intraoperative computed tomography with navigation and the implementation of augmented reality in facilitating a lateral approach to the spine. Methods. We prospectively analyzed all patients who underwent surgery with a lateral approach to the spine from September 2016 to January 2021 using intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Sixteen patients, with a median age of 64.3 years, were operated on using a lateral approach to the thoracic and lumbar spine and using intraoperative CT with navigation. Indications included a herniated disc (six patients), tumors (seven), instability following the fracture of the thoracic or lumbar vertebra (two), and spondylodiscitis (one). Results. Automatic registration, applying intraoperative CT, resulted in high accuracy (target registration error: 0.84 ± 0.10 mm). The effective radiation dose of the registration CT scans was 6.16 ± 3.91 mSv. In seven patients, a control iCT scan was performed for resection and implant control, with an ED of 4.51 ± 2.48 mSv. Augmented reality (AR) was used to support surgery in 11 cases, by visualizing the tumor outline, pedicle screws, herniated discs, and surrounding structures. Of the 16 patients, corpectomy was performed in six patients with the implantation of an expandable cage, and one patient underwent discectomy using the XLIF technique. One patient experienced perioperative complications. One patient died in the early postoperative course due to severe cardiorespiratory failure. Ten patients had improved and five had unchanged neurological status at the 3-month follow up. Conclusions. Intraoperative computed tomography with navigation facilitates the application of lateral approaches to the spine for a variety of indications, including fusion procedures, tumor resection, and herniated disc surgery.
Collapse
Affiliation(s)
- Mirza Pojskić
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Correspondence: ; Tel.: +49-64215869848
| | - Miriam Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35043 Marburg, Germany
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University of Marburg, 35043 Marburg, Germany;
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35043 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, 65199 Wiesbaden, Germany
| |
Collapse
|