1
|
Tonn JC, Teske N, Karschnia P. Astrocytomas of the spinal cord. Neurooncol Adv 2024; 6:iii48-iii56. [PMID: 39430394 PMCID: PMC11485950 DOI: 10.1093/noajnl/vdad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Tumors of astrocytic origin represent one of the most frequent entities among the overall rare group of spinal cord gliomas. Initial clinical symptoms are often unspecific, and sensorimotor signs localizing to the spinal cord occur with progressing tumor growth. On MRI, a hyperintense intrinsic spinal cord signal on T2-weighted sequences with varying degrees of contrast enhancement raises suspicion for an infiltrative neoplasm. Blood and CSF analysis serves to exclude an infectious process, nutritional deficits, or metabolic disorders. When such other differential diagnoses have been ruled out, a neuropathological tissue-based analysis is warranted to confirm the diagnosis of a spinal cord astrocytoma and guide further patient management. As such, maximal safe resection forms the basis of any treatment. Meticulous preoperative planning is necessary to weigh the potential improvement in survival against the risk of functional deterioration. Intraoperative neuromonitoring and ultrasound may aid in achieving a more extensive resection. Depending on the assigned WHO tumor grade spanning from grade 1 to grade 4, the use of radiotherapy and chemotherapy might be indicated but also wait-and-scan approaches appear reasonable in tumors of lower grade. Close imaging follow-up is necessary given that recurrence inevitably occurs in astrocytomas of grades 2-4. Prognosis is so far dictated by tumor grade and histopathological findings, but also by age and clinical performance of the patient. Targeted therapies resting upon an in-depth tissue analysis are emerging in recurrent tumors, but no prospective study is available so far given the rarity of spinal cord astrocytomas.
Collapse
Affiliation(s)
- Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Nico Teske
- Department of Neurosurgery, LMU University Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, LMU University Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
2
|
Hersh AM, Bydon A, Pennington Z, Lubelski D, Larry Lo SF, Theodore N, Sciubba DM, Jallo GI, Shimony N. Nondysraphic Intramedullary Spinal Cord Lipomas in the Adult Population. World Neurosurg 2024; 190:e373-e380. [PMID: 39067692 DOI: 10.1016/j.wneu.2024.07.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Intramedullary spinal cord lipomas without spinal dysraphism are rare. Although they are benign tumors, they can cause significant neurological deficits. Their tight adherence to the spinal cord presents a challenge for resection. Therefore, we review our institutional experience treating adult patients with intramedullary lipomas in the absence of dysraphism and report long-term outcomes after resection. METHODS All adult patients undergoing resection of intramedullary spinal cord lipomas at a comprehensive cancer center between June 2011 and June 2023 were retrospectively identified. Patients with spinal dysraphism or extramedullary lipomas were excluded. Patients were included if they had microscopic surgical debulking with tissue sampling confirming the diagnosis. RESULTS Six patients were identified with a mean age of 35.0 ± 11.5 years, and 67% were female. Four cases localized to the thoracic spine. Symptoms included pain, numbness, and lower extremity motor weakness; only one patient reported bowel and bladder dysfunction. All patients experienced transient neurological decline in the immediate postoperative period. Five recovered to independent ambulation at long-term follow-up, including one recovering to full strength. One patient required a repeat resection after four years due to tumor progression and functional decline. Tumor progression was not recorded in the other patients. CONCLUSIONS Subtotal resection is a safe and effective treatment. Detethering of the spinal cord, resection of exophytic components, and tumor debulking can improve symptoms and prevent further deterioration in most cases. The resection can be assisted using a laser to vaporize the fatty tissue of the lipoma without physical manipulation of the spinal cord.
Collapse
Affiliation(s)
- Andrew M Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Bydon
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Zach Pennington
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng-Fu Larry Lo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Semmes-Murphey Clinic, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Chai R, An S, Lin H, Pang B, Yan H, Liu Y, Wu Y, Wang L, Liu X, Chen H, Yang X, Chang Q, Jia W, Wang Y. Sequencing of cerebrospinal fluid cell-free DNA facilitated early differential diagnosis of intramedullary spinal cord tumors. NPJ Precis Oncol 2024; 8:43. [PMID: 38388726 PMCID: PMC10884012 DOI: 10.1038/s41698-024-00541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Pre-surgery differential diagnosis is valuable for personalized treatment planning in intramedullary spinal cord tumors. This study assessed the performance of sequencing cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) for differential diagnosis of these tumors. Prospectively enrolling 45 patients with intramedullary spinal cord lesions, including diffuse midline glioma (DMG), H3K27-altered (14/45), glioblastoma (1/45), H3-wildtype-astrocytoma (10/45), ependymoma (11/45), and other lesions (9/45), CSF samples were collected via lumbar puncture (41/45), intraoperative extraction (3/45), and Ommaya reservoir (1/45). Then, these samples underwent targeted sequencing along with paired tissue DNA. DMG, H3K27-altered patients exhibited a higher ctDNA positivity (85.7%, 12/14) compared to patients with H3-wildtype-astrocytoma (0/8, P = 0.0003), ependymoma (2/10, P = 0.003), and glioneuronal tumor (0/3, P = 0.009). The histological-grade-IV (P = 0.0027), Ki-67 index ≥10% (P = 0.014), and tumor reaching spinal cord surface (P = 0.012) are also associated with higher ctDNA positivity. Interestingly, for patients with TERT promoter mutant tumors, TERT mutation was detectable in the CSF cfDNA of one DMG case, but not other five cases with histological-grade-II tumors. Shared copy number variants were exclusively observed in DMG, H3K27-altered, and showed a strong correlation (Correlation = 0.95) between CSF and tissue. Finally, H3K27M mutations in CSF exhibited high diagnostic efficiency for DMG, H3K27-altered (Sensitivity = 85.7%, Specificity = 100.0%, AUC = 0.929). Notably, H3K27M was detectable in CSF from patients with recurrent tumors, making it easily applicable for postoperative monitoring. In conclusion, the molecular profile from ctDNA released into CSF of malignant tumors was more frequently detected compared to relatively benign ones. Sequencing of ctDNA in CSF exhibited high efficiency for the differential diagnosis of DMG, H3K27-altered.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Songyuan An
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Han Lin
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yilin Wu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huiyuan Chen
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyu Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Jiangsu Simcere Diagnostics Co.,Ltd., Nanjing, China
| | - Qing Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Watanabe G, Wong JM, Estes B, Khan MF, Ogasawara C, Umana GE, Martin AR, Bloch O, Palmisciano P. Diffuse Midline H3K27-Altered Gliomas in the Spinal Cord: A Systematic Review. J Neurooncol 2024; 166:379-394. [PMID: 38342826 DOI: 10.1007/s11060-024-04584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE To systematically review the clinical features, management, and outcomes of diffuse midline H3K27-altered gliomas of the spinal cord (DMG-SCs). METHODS PubMed, Ovid EMBASE, Scopus, and Web of Science were searched from database inception to 23 September 2023 for histologically confirmed cases of DMG-SC. Patient demographics, tumor characteristics, management information, and survival outcomes were extracted and analyzed. RESULTS A total of 279 patients from 39 studies were collected. Patients were mostly male (61%), with an average age of 32 years. Patients were treated with surgery, radiotherapy, and chemotherapy combined (31%) or surgery only (24%), and extent of resection was most often subtotal (38%). Temozolomide was the most common chemotherapeutic agent (81%). Radiation therapy was delivered with mean dose of 47 Gy in 23 fractions. At mean follow-up time of 21 months, 13% of patients were alive. Average median overall survival was 24 months (range of 13 to 40 months) with a median progression-free survival of 14 months. Historical WHO grades of 2 or 3 appeared to exhibit a longer average median overall survival time than that of grade 4 DMG-SCs (32 vs. 23 months, p = 0.009). CONCLUSIONS Outcomes for DMG-SCs are poor overall but appear to be favorable compared to intracranial DMGs. Despite the recent WHO 2021 grade 4 classification for all DMGs, given the differences in overall survival reported based on historical grading systems, future studies on DMG-SCs are needed to further define if DMG-SCs may represent a heterogeneous group of tumors with different prognoses.
Collapse
Affiliation(s)
- Gina Watanabe
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | | | - Bradley Estes
- University of Kansas School of Medicine, Kansas City, KS, USA
| | | | - Christian Ogasawara
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Giuseppe E Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Allan R Martin
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Orin Bloch
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Paolo Palmisciano
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
5
|
Akinduro OO, Ghaith AK, Loizos M, Lopez AO, Goyal A, de Macêdo Filho L, Ghanem M, Jarrah R, Moniz Garcia DP, Abode-Iyamah K, Kalani MA, Chen SG, Krauss WE, Clarke MJ, Bydon M, Quiñones-Hinojosa A. What Factors Predict the Development of Neurologic Deficits Following Resection of Intramedullary Spinal Cord Tumors: A Multi-Center Study. World Neurosurg 2024; 182:e34-e44. [PMID: 37952880 DOI: 10.1016/j.wneu.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Intramedullary spinal cord tumors are challenging to resect, and their postoperative neurological outcomes are often difficult to predict, with few studies assessing this outcome. METHODS We reviewed the medical records of all patients surgically treated for Intramedullary spinal cord tumors at our multisite tertiary care institution (Mayo Clinic Arizona, Mayo Clinic Florida, Mayo Clinic Rochester) between June 2002 and May 2020. Variables that were significant in the univariate analyses were included in a multivariate logistic regression. "MissForest" operating on the Random Forest algorithm, was used for data imputation, and K-prototype was used for data clustering. Heatmaps were added to show correlations between postoperative neurological deficit and all other included variables. Shapley Additive exPlanations were implemented to understand each feature's importance. RESULTS Our query resulted in 315 patients, with 160 meeting the inclusion criteria. There were 53 patients with astrocytoma, 66 with ependymoma, and 41 with hemangioblastoma. The mean age (standard deviation) was 42.3 (17.5), and 48.1% of patients were women (n = 77/160). Multivariate analysis revealed that pathologic grade >3 (OR = 1.55; CI = [0.67, 3.58], P = 0.046 predicted a new neurological deficit. Random Forest algorithm (supervised machine learning) found age, use of neuromonitoring, histology of the tumor, performing a midline myelotomy, and tumor location to be the most important predictors of new postoperative neurological deficits. CONCLUSIONS Tumor grade/histology, age, use of neuromonitoring, and myelotomy type appeared to be most predictive of postoperative neurological deficits. These results can be used to better inform patients of perioperative risk.
Collapse
Affiliation(s)
| | - Abdul Karim Ghaith
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michaelides Loizos
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Anshit Goyal
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Marc Ghanem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ryan Jarrah
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Maziyar A Kalani
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Florida, USA
| | - Selby G Chen
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - William E Krauss
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle J Clarke
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
6
|
Albalkhi I, Shafqat A, Bin-Alamer O, Abou Al-Shaar AR, Mallela AN, Fernández-de Thomas RJ, Zinn PO, Gerszten PC, Hadjipanayis CG, Abou-Al-Shaar H. Fluorescence-guided resection of intradural spinal tumors: a systematic review and meta-analysis. Neurosurg Rev 2023; 47:10. [PMID: 38085385 DOI: 10.1007/s10143-023-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Intradural spinal tumors present significant challenges due to involvement of critical motor and sensory tracts. Achieving maximal resection while preserving functional tissue is therefore crucial. Fluorescence-guided surgery aims to improve resection accuracy and is well studied for brain tumors, but its efficacy has not been fully assessed for spinal tumors. This meta-analysis aims to delineate the efficacy of fluorescence guidance in intradural spinal tumor resection. The authors performed a systematic review in four databases. We included studies that have utilized fluorescence agents, 5-aminolevulinic acid (5-ALA) or sodium fluorescein, for the resection of intradural spinal tumors. A meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 12 studies involving 552 patients undergoing fluorescence-guided intradural spinal tumor resection were included. Meningiomas demonstrated a 98% fluorescence rate and were associated with a homogenous florescence pattern; however, astrocytomas had variable fluorescence rate with pooled proportion of 70%. There was no significant difference in gross total resection (GTR) rates between fluorescein and 5-ALA (94% vs 84%, p = .22). Pre-operative contrast enhancement was significantly associated with intraoperative fluorescence with fluorescein. Intramedullary tumors with positive intraoperative fluorescence were significantly associated with higher GTR rates (96% vs 73%, p = .03). Utilizing fluorescence guidance during intradural spinal tumor resection holds promise of improving intraoperative visualization for specific intradural spinal tumors. Meningiomas and ependymomas have the highest fluorescence rates especially with sodium fluorescein; on the other hand, astrocytomas have variable fluorescence rates with no superiority of either agent. Positive fluorescence of intramedullary tumors is associated with a higher degree of resection.
Collapse
Affiliation(s)
- Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Santifort KM, Tamura S, Rissi DR, Grinwis GCM. Case report: Surgical treatment of an astrocytoma in the thoracic spinal cord of a cat. Front Vet Sci 2023; 10:1264916. [PMID: 37941813 PMCID: PMC10628209 DOI: 10.3389/fvets.2023.1264916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
A 15-year-old spayed female domestic shorthaired cat was evaluated for chronic progressive paraparesis and proprioceptive ataxia. Neurological examination was consistent with a T3-L3 myelopathy. Plain thoracolumbar vertebral column radiographs and CT without intravenous contrast or myelography performed at another facility did not highlight any abnormalities. MRI of the thoracolumbar spinal cord identified an intraparenchymal space-occupying lesion extending from T10-T12. Surgery was performed to remove as much of the mass as possible, and to submit samples for histopathology. A dorsal laminectomy was performed over T9-T13. A midline myelotomy provided access to the mass, which was debrided with an intraoperative estimate of 80% removal. Histopathologic examination was consistent with a diagnosis of an astrocytoma. Post-operative treatment consisted of amoxicillin clavulanic acid, prednisolone, gabapentin, and additional analgesic medications in the direct post-operative period. Over the following 4 months, slow recovery of motor function was seen with continued physiotherapy. During the following 2 months, renal and cardiopulmonary disease were diagnosed and treated by other veterinarians. The cat was also reported to have lost voluntary movement in the pelvic limbs during this period, suggesting regression to paraplegia. Finally, 6 months post-surgery, the owner elected humane euthanasia. This is the second documentation of surgical treatment and outcome of an astrocytoma in the spinal cord of a cat.
Collapse
Affiliation(s)
- Koen M. Santifort
- IVC Evidensia Small Animal Referral Hospital Arnhem, Neurology, Arnhem, Netherlands
- IVC Evidensia Small Animal Referral Hospital Hart van Brabant, Neurology, Waalwijk, Netherlands
| | | | - Daniel R. Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Faculty of Veterinary Medicine, Department of Biomedical Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Shimony N, Fehnel K, Abbott IR, Jallo GI. The evolution of spinal cord surgery: history, people, instruments, and results. Childs Nerv Syst 2023; 39:2687-2700. [PMID: 37658937 DOI: 10.1007/s00381-023-06128-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Spinal cord surgery has and always will be a challenging operation with satisfying results, but also with potentially devastating results. Over the last century, there has been an evolution in the way we perceive and conduct spinal cord surgery. The phenomenal evolution in technology from the very first x-ray pictures helps to localize the spinal pathology through the use of high-resolution MRI and ultrasonography that allows for high precision surgery with relatively minimal exposure. METHODS The advancements in the surgical technique and the utilization of neuromonitoring allow for maximal safe resection of these delicate and intricate tumors. We also are beginning to understand the biology of spinal cord tumors and vascular lesions, as in the recent 2021 WHO classification which identifies specific entities such as spinal ependymomas, MYCN-amplified, as separate entity from the other subtypes of ependymomas. Surgeons have also accepted the importance of maximal safe resection for most of the spinal cord pathologies rather than just performing biopsy and adjuvant treatment. CONCLUSION There have been significant advances since the first resection of an intramedullary tumor including diagnosis, imaging, and surgical technique for children. These advances have improved the prognosis and outcome in these children.
Collapse
Affiliation(s)
- Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| | - Katie Fehnel
- Department of Neurological Surgery, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Dana Farber Institute, Boston Children's Hospital, Boston, MA, USA
| | - I Rick Abbott
- Division of Pediatric Neurosurgery, Albert Einstein College of Medicine, New York, NY, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5Th Street South, St Petersburg, FL, 33701, USA.
| |
Collapse
|
9
|
Hersh AM, Lubelski D, Theodore N, Sciubba DM, Jallo G, Shimony N. Approaches to Incidental Intradural Tumors of the Spine in the Pediatric Population. Pediatr Neurosurg 2023; 58:367-378. [PMID: 36948181 DOI: 10.1159/000530286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Incidental intradural tumors of the spine in the pediatric population are rare lesions whose management remains unclear. Surgeons must balance the risks of iatrogenic deficits and complications after surgical resection against the risks from progressive growth of the tumor. Moreover, the natural history of an incidental finding can be difficult to predict. Here, we review the literature on incidental intradural tumors of the spine and present considerations for their management. SUMMARY Growth of the tumor or changes in radiographic features are usually indications for resection. Asymptomatic lesions can be found in patients with genetic syndromes that predispose to tumor formation, such as neurofibromatosis type 1 and 2, schwannomatosis, and Von-Hippel-Lindau syndrome, and careful workup of a genetic cause is warranted in any patient presenting with multiple tumors and/or cutaneous features. Close follow-up is generally favored given the heavy tumor burden; however, some recommend pre-emptive resection to prevent permanent neurological deficits. Incidental intradural tumors can also occur in association with hydrocephalus, significant syringomyelia, and cord compression, and surgical treatment is usually warranted. Tumors may also be discovered as part of the workup for scoliosis, where they are not truly incidental to the scoliosis but rather are contributing to curve deformation. KEY MESSAGES Thorough workup of patients for associated genetic syndromes or comorbidities should be undertaken in pediatric patients with incidental intradural tumors. Further research is needed into the natural history of these incidental lesions. Incidental tumors can often be managed conservatively with close follow-up, with surgical intervention warranted for expanding tumors or new-onset symptoms.
Collapse
Affiliation(s)
- Andrew M Hersh
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Manhasset, New York, USA
| | - George Jallo
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Semmes-Murphey clinic, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Hersh AM, Jallo GI, Shimony N. Surgical approaches to intramedullary spinal cord astrocytomas in the age of genomics. Front Oncol 2022; 12:982089. [PMID: 36147920 PMCID: PMC9485889 DOI: 10.3389/fonc.2022.982089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Intramedullary astrocytomas represent approximately 30%–40% of all intramedullary tumors and are the most common intramedullary tumor in children. Surgical resection is considered the mainstay of treatment in symptomatic patients with neurological deficits. Gross total resection (GTR) can be difficult to achieve as astrocytomas frequently present as diffuse lesions that infiltrate the cord. Therefore, GTR carries a substantial risk of new post-operative deficits. Consequently, subtotal resection and biopsy are often the only surgical options attempted. A midline or paramedian sulcal myelotomy is frequently used for surgical resection, although a dorsal root entry zone myelotomy can be used for lateral tumors. Intra-operative neuromonitoring using D-wave integrity, somatosensory, and motor evoked potentials is critical to facilitating a safe resection. Adjuvant radiation and chemotherapy, such as temozolomide, are often administered for high-grade recurrent or progressive lesions; however, consensus is lacking on their efficacy. Biopsied tumors can be analyzed for molecular markers that inform clinicians about the tumor’s prognosis and response to conventional as well as targeted therapeutic treatments. Stratification of intramedullary tumors is increasingly based on molecular features and mutational status. The landscape of genetic and epigenetic mutations in intramedullary astrocytomas is not equivalent to their intracranial counterparts, with important difference in frequency and type of mutations. Therefore, dedicated attention is needed to cohorts of patients with intramedullary tumors. Targeted therapeutic agents can be designed and administered to patients based on their mutational status, which may be used in coordination with traditional surgical resection to improve overall survival and functional status.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George I. Jallo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- *Correspondence: George I. Jallo,
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Le Bonheur Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Hersh AM, Antar A, Pennington Z, Aygun N, Patel J, Goldsborough E, Porras JL, Elsamadicy AA, Lubelski D, Wolinsky JP, Jallo GI, Gokaslan ZL, Lo SFL, Sciubba DM. Predictors of survival and time to progression following operative management of intramedullary spinal cord astrocytomas. J Neurooncol 2022; 158:117-127. [PMID: 35538385 DOI: 10.1007/s11060-022-04017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Surgical resection is considered standard of care for primary intramedullary astrocytomas, but the infiltrative nature of these lesions often precludes complete resection without causing new post-operative neurologic deficits. Radiotherapy and chemotherapy serve as potential adjuvants, but high-quality data evaluating their efficacy are limited. Here we analyze the experience at a single comprehensive cancer center to identify independent predictors of postoperative overall and progression-free survival. METHODS Data was collected on patient demographics, tumor characteristics, pre-operative presentation, resection extent, long-term survival, and tumor progression/recurrence. Kaplan-Meier curves modeled overall and progression-free survival. Univariable and multivariable accelerated failure time regressions were used to compute time ratios (TR) to determine predictors of survival. RESULTS 94 patients were included, of which 58 (62%) were alive at last follow-up. On multivariable analysis, older age (TR = 0.98; p = 0.03), higher tumor grade (TR = 0.12; p < 0.01), preoperative back pain (TR = 0.45; p < 0.01), biopsy [vs GTR] (TR = 0.18; p = 0.02), and chemotherapy (TR = 0.34; p = 0.02) were significantly associated with poorer survival. Higher tumor grade (TR = 0.34; p = 0.02) and preoperative bowel dysfunction (TR = 0.31; p = 0.02) were significant predictors of shorter time to detection of tumor growth. CONCLUSION Tumor grade and chemotherapy were associated with poorer survival and progression-free survival. Chemotherapy regimens were highly heterogeneous, and randomized trials are needed to determine if any optimal regimens exist. Additionally, GTR was associated with improved survival, and patients should be counseled about the benefits and risks of resection extent.
Collapse
Affiliation(s)
- Andrew M Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Albert Antar
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zach Pennington
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nafi Aygun
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiologic Science, The Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jaimin Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Earl Goldsborough
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jose L Porras
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | | | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jean-Paul Wolinsky
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Brown University, Providence, RI, USA
| | - Sheng-Fu Larry Lo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurosurgery, Brown University, Providence, RI, USA.
- , 300 Community Dr., 9 Tower, Manhasset, NY, 11030, USA.
| |
Collapse
|