1
|
Goodarzi A, Khanmohammadi M, Ai A, Khodayari H, Ai A, Farahani MS, Khodayari S, Ebrahimi-Barough S, Mohandesnezhad S, Ai J. Simultaneous impact of atorvastatin and mesenchymal stem cells for glioblastoma multiform suppression in rat glioblastoma multiform model. Mol Biol Rep 2020; 47:7783-7795. [PMID: 32981013 PMCID: PMC7588373 DOI: 10.1007/s11033-020-05855-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiform (GBM) is known as an aggressive glial neoplasm. Recently incorporation of mesenchymal stem cells with anti-tumor drugs have been used due to lack of immunological responses and their easy accessibility. In this study, we have investigated the anti-proliferative and apoptotic activity of atorvastatin (Ator) in combination of mesenchymal stem cells (MSCs) on GBM cells in vitro and in vivo. The MSCs isolated from rats and characterized for their multi-potency features. The anti-proliferative and migration inhibition of Ator and MSCs were evaluated by MTT and scratch migration assays. The annexin/PI percentage and cell cycle arrest of treated C6 cells were evaluated until 72 h incubation. The animal model was established via injection of C6 cells in the brain of rats and subsequent injection of Ator each 3 days and single injection of MSCs until 12 days. The growth rate, migrational phenotype and cell cycle progression of C6 cells decreased and inhibited by the interplay of different factors in the presence of Ator and MSCs. The effect of Ator and MSCs on animal models displayed a significant reduction in tumor size and weight. Furthermore, histopathology evaluation proved low hypercellularity and mitosis index as well as mild invasive tumor cells for perivascular cuffing without pseudopalisading necrosis and small delicate vessels in Ator + MSCs condition. In summary, Ator and MSCs delivery to GBM model provides an effective strategy for targeted therapy of brain tumor.
Collapse
Affiliation(s)
- Arash Goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fars, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Arman Ai
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- International Center for Personalized Medicine, Dusseldorf, Germany.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Ai
- Scientific Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Sagharjoghi Farahani
- International Center for Personalized Medicine, Dusseldorf, Germany.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, Dusseldorf, Germany.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Mohandesnezhad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zheng S, Sun M, Zhang K, Gu J, Guo Z, Tian S, Zhai G, He X, Jin Y, Zhang Y. Profiling post-translational modifications of histones in neural differentiation of embryonic stem cells using liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:36-44. [PMID: 26945132 DOI: 10.1016/j.jchromb.2016.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/10/2016] [Accepted: 02/14/2016] [Indexed: 12/21/2022]
Abstract
The neural differentiation of embryonic stem cells (ESCs) is of great significance for understanding of the mechanism of diseases. Histone post-translational modifications (HPTMs) play a key role in the regulation of ESCs differentiation. Here, we combined the stable isotope chemical derivatization with nano-HPLC-mass spectrometry (MS) for comprehensive analysis and quantification of histone post-translational modifications (HPTMs) in mouse embryonic stem cells (mESCs) and neural progenitor cells (mNPCs) that was derived from ESCs. We identified 85 core HPTM sites in ESCs and 78HPTM sites in NPCs including some novel lysine modifications. Our quantitative analysis results further revealed the changes of HPTMs from ESCs to NPCs and suggested effect of combinational HPTMs in the differentiation. This study demonstrates that HPLC-MS-based quantitative proteomics has a considerable advantage on quantification of combinational PTMs and expands our understanding of HPTMs in the differentiation.
Collapse
Affiliation(s)
- Shuzhen Zheng
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Zhang
- Department of Chemistry, Nankai University, Tianjin 300071, China; 2011Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070 Tianjin, China.
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenchang Guo
- 2011Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070 Tianjin, China
| | - Shanshan Tian
- 2011Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070 Tianjin, China
| | - Guijin Zhai
- 2011Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070 Tianjin, China
| | - Xiwen He
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yukui Zhang
- Department of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| |
Collapse
|
3
|
Du HQ, Wang Y, Jiang Y, Wang CH, Zhou T, Liu HY, Xiao H. Silencing of the TPM1 gene induces radioresistance of glioma U251 cells. Oncol Rep 2015; 33:2807-14. [PMID: 25873252 DOI: 10.3892/or.2015.3906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the relationship between tropomyosin 1 (TPM1) and radioresistance in human U251 cells. Radioresistant U251 (RR-U251) cells were established by repeated small irradiating injury. TPM1 levels in the U251 and RR-U251 cells were inhibited by transfection with TPM1-short hairpin RNA (shRNA) while overexpression was induced by treatment with pcDNA3.1‑TPM1. The radiosensitivity of the U251 and RR-U251 cells and the plasmid-transfected cells was evaluated by cell viability, migration and invasion assays. Cell apoptosis was also examined in vitro. The radiosensitivity of U251 xenografts was observed by tumor growth curve after radiotherapy in an in vivo experiment. Western blotting and immunohistochemistry were used to detect the level of TPM1 in vivo. The expression of TPM1 was significantly decreased in the RR-U251 cells, which may be correlated with the radioresistance of the glioma U251 cells. In the TPM1-silenced RR-U251 and TPM1-silenced U251 cells, cell viability, migration and invasion ability were significantly increased, and the rate of cell apoptosis was decreased. Consistent with these results, in the TPM1-overexpressing U251 and RR-U251 cells, cell viability, migration and invasion abilities were markedly decreased, and increased apoptosis was noted when compared to the control group. Tumor growth of the U251 xenografts was significantly inhibited following treatment with pcDNA3.1‑TPM1 combined with radiotherapy. Taken together, these results indicate that TPM1 may be one mechanism underlying radiation resistance, and TPM1 may be a potential target for overcoming the radiation resistance in glioma.
Collapse
Affiliation(s)
- Hua-Qing Du
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Wang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yao Jiang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chen-Han Wang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Zhou
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Yi Liu
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
4
|
Zalatimo O, Zoccoli CM, Patel A, Weston CL, Glantz M. Impact of genetic targets on primary brain tumor therapy: what's ready for prime time? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:267-89. [PMID: 23288644 DOI: 10.1007/978-1-4614-6176-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primary brain tumors constitute a substantial public health problem with 66,290 cases diagnosed in the US in 2012, and 13,700 deaths recorded. With discovery of genetic factors associated with specific brain tumor subtypes, the goal of therapy is changing from treating a class of tumors to developing individualized therapies catering to the molecular composition of the actual tumor. For oligodendrogliomas, the loss of 1p/19q due to an unbalanced translocation improves both survival and the response to therapy, and is thus both a prognostic and a predictive marker. Several additional genetic alterations such as EGFR amplification, MGMT methylation, PDGFR activation, and 9p and 10q loss, have improved our understanding of the characteristics of these tumors and may help guide therapy in the future. For astrocytic tumors, MGMT is associated with a better prognosis and an improved response to temozolomide, and for all glial tumors, mutations in the IDH1 gene are possibly the most potent of good prognostic markers. Three of these markers - 1p/19q deletions, MGMT methylation status, and mutations in the IDH1 gene - are so potent that a new brain tumor subtype, the "triple negative" glioma (1p/19q intact, MGMT unmethylated, IDH1 non-mutated) has entered common parlance. Newer markers, such as CD 133, require additional investigation to determine their prognostic and predictive utility. In medulloblastomas, markers of WNT activation, MYCC/MCYN amplification, and TrkC expression levels are reliable prognostic indicators, but do not yet drive specific treatment selection. Many other proposed markers, such as 17q gain, TP53 mutations, and hMOF protein expression show promise, but are not yet ready for prime time. In this chapter, we focus on the markers that have shown convincing prognostic, predictive, and diagnostic value, and discuss potential markers that are being currently being intensively investigated. We also discuss serum profiling of tumors in an effort to discover additional potential markers.
Collapse
Affiliation(s)
- O Zalatimo
- Department of Neurosurgery, Penn State College of Medicine, Hershey Medical Center, EC 1001, 30 Hope Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
5
|
Maurer MH. Genomic and proteomic advances in autism research. Electrophoresis 2012; 33:3653-8. [PMID: 23160986 DOI: 10.1002/elps.201200382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/10/2023]
Abstract
Recent studies suggest that adult neural stem cells (NSCs) may play a role in the pathogenesis of a number of the developmental disorders subsumed under the term autism spectrum disorders (ASD) that have in common impaired social interaction, communication deficits, and stereotypical behavior or interests. Since there is no "unifying hypothesis" about the etiology and pathogenesis of ASD, several factors have been associated with ASD, including genetic factors, physical co-morbidity, disturbances of brain structure and function, biochemical anomalies, cognitive impairment, and disorders of speech and emotional development, mostly the lack of empathy. Most of disturbances of brain interconnectivity are regarded as main problem in autism. Since NSCs have a distinct life cycle in the mammalian brain consisting of proliferation, migration, arborization, integration into existing neuronal circuits, and myelinization, disturbances in NSCs differentiation is thought to be deleterious. In the current review, I will summarize the results of genomic and proteomic studies finding susceptibility genes and proteins for autism with regard to NSCs differentiation and maturation.
Collapse
Affiliation(s)
- Martin H Maurer
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Wu J, Lai G, Wan F, Xiao Z, Zeng L, Wang X, Ye F, Lei T. Knockdown of checkpoint kinase 1 is associated with the increased radiosensitivity of glioblastoma stem-like cells. TOHOKU J EXP MED 2012; 226:267-74. [PMID: 22481303 DOI: 10.1620/tjem.226.267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme is an aggressive brain tumor with a poor prognosis. The glioblastoma stem-like cells (GSCs) represent a rare fraction of human glioblastoma cells with the capacity for multi-lineage differentiation, self-renewal and exact recapitulation of the original tumor. Interestingly, GSCs are more radioresistant compared with other tumor cells. In addition, the remarkable radioresistance of GSCs has been known to promote radiotherapy failure and therefore is associated with a significantly higher risk of a local tumor recurrence. Moreover, the hyperactive cell cycle checkpoint kinase (Chk) 1 and 2 play a pivotal role in the DNA damage response including radiation and chemical therapy. Based on aforementioned, we hypothesized that knockdown of Chk1 or Chk2 might confer radiosensitivity on GSCs and thereby increases the efficiency of radiotherapy. In this study, we knocked down the expression of Chk1 or Chk2 in human GSCs using lentivirus-delivered short hairpin RNA (shRNA) to examine its effect on the radiosensitivity. After radiation, the apoptosis rate and the cell cycle of GSCs were measured with Flow Cytometry. Compared with control GSCs (apoptosis, 7.82 ± 0.38%; G2/M arrest, 60.20 ± 1.28%), Chk1 knockdown in GSCs increased the apoptosis rate (37.87 ± 0.32%) and decreased the degree of the G2/M arrest (22.37 ± 2.01%). In contrast, the radiosensitivity was not enhanced by Chk2 knockdown in GSCs. These results suggest that depletion of Chk1 may improve the radio-sensitivity of GSCs via inducing cell apoptosis. In summary, the therapy targeting Chk1 gene in the GSCs may be a novel way to treat glioblastoma.
Collapse
Affiliation(s)
- Jun Wu
- Department of Neurosurgery, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J, Quillien V. Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol 2011; 22:159-74. [PMID: 21790828 DOI: 10.1111/j.1750-3639.2011.00515.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most dramatic primary brain cancer with a very poor prognosis because of inevitable disease recurrence. The median overall survival is less than 1 year after diagnosis. Cancer stem cells have recently been disclosed in GBM. GBM stem-like cells (GSCs) exhibit resistance to radio/chemotherapeutic treatments and are therefore considered to play an important role in disease recurrence. GSCs are thus appealing targets for new treatments for GBM patients. In this study, we show that GBM cells with stem cell characteristics are resistant to lysis mediated by resting natural killer (NK) cells because of the expression of MHC class I molecules. However, GSCs are killed by lectin-activated NK cells. Furthermore, in experiments using the therapeutic antibody CetuximAb, we show that GSCs are sensitive to antibody-mediated cytotoxicity. We confirm the sensitivity of GSC to cytotoxicity carried out by IL2-activated NK cells and tumor-specific T cells. More importantly, we show that GSCs are more sensitive to NK and T cell-mediated lysis relatively to their corresponding serum-cultured GBM cells obtained from the same initial tumor specimen. Altogether, these results demonstrate the sensitivity of GSC to immune cell cytotoxicity and, therefore, strongly suggest that GSCs are suitable target cells for immunotherapy of GBM patients.
Collapse
Affiliation(s)
- Tony Avril
- Département de Biologie, Centre Eugène Marquis, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pease JC, Tirnauer JS. Mitotic spindle misorientation in cancer--out of alignment and into the fire. J Cell Sci 2011; 124:1007-16. [PMID: 21402874 DOI: 10.1242/jcs.081406] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitotic spindle orientation can influence tissue organization and vice versa. Cells orient their spindles by rotating them parallel or perpendicular to the cell--and hence the tissue--axis. Spindle orientation in turn controls the placement of daughter cells within a tissue, influencing tissue morphology. Recent findings implicating tumor suppressor proteins in spindle orientation bring to the forefront a connection between spindle misorientation and cancer. In this Commentary, we focus on the role of three major human tumor suppressors--adenomatous polyposis coli (APC), E-cadherin and von Hippel-Lindau (VHL)--in spindle orientation. We discuss how, in addition to their better-known functions, these proteins affect microtubule stability and cell polarity, and how their loss of function causes spindles to become misoriented. We also consider how other cancer-associated features, such as oncogene mutations, centrosome amplification and the tumor microenvironment, might influence spindle orientation. Finally, we speculate on the role of spindle misorientation in cancer development and progression. We conclude that spindle misorientation alone is unlikely to be tumorigenic, but it has the potential to synergize with cancer-associated changes to facilitate genomic instability, tissue disorganization, metastasis and expansion of cancer stem cell compartments.
Collapse
Affiliation(s)
- Jillian C Pease
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| | | |
Collapse
|
9
|
Masui K, Suzuki SO, Torisu R, Goldman JE, Canoll P, Iwaki T. Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation. Glia 2010; 58:1050-65. [PMID: 20468047 DOI: 10.1002/glia.20986] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glial progenitors in the white matter and the subventricular zone are the major population of cycling cells in the postnatal central nervous system, and thought to be candidates for glioma-initiating cells. However, less is known about the dividing cell populations in the brainstem than those in the cerebrum, leading to the lag of basic understanding of brainstem gliomas. We herein demonstrate much fewer cycling glial progenitors exist in the brainstem than in the cerebrum. We also show that infecting brainstem glial progenitors with PDGFB-green fluorescent protein (GFP)-expressing retrovirus induced tumors that closely resembled human malignant gliomas. Of note, brainstem tumors grew more slowly than cerebral tumors induced by the same retrovirus, and >80% tumor cells in the brainstem consisted of GFP-positive, infected progenitors while GFP-positive cells in the cerebral tumors were <20%. These indicate that cerebral tumors progressed rapidly by recruiting resident progenitors via paracrine mechanism whereas brainstem tumors grew more slowly by clonal expansion of the infected population. The cerebral and brainstem glial progenitors similarly showed reversible dedifferentiation upon PDGF stimulation in vitro and did not show the intrinsic difference in terms of the responsiveness to PDGF. We therefore suggest that slower, monoclonal progression pattern of the brainstem tumors is at least partly due to the environmental factors including the cell density of the glial progenitors. Together, these findings are the first implications regarding the cell-of-origin and the gliomagenesis in the brainstem.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, MacSwords J, Cao Y, McLendon RE, Wang XF, Hjelmeland AB, Rich JN. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2010; 27:2393-404. [PMID: 19658188 DOI: 10.1002/stem.188] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastomas are the most common and most lethal primary brain tumor. Recent studies implicate an important role for a restricted population of neoplastic cells (glioma stem cells (GSCs)) in glioma maintenance and recurrence. We now demonstrate that GSCs preferentially express two interleukin 6 (IL6) receptors: IL6 receptor alpha (IL6R alpha) and glycoprotein 130 (gp130). Targeting IL6R alpha or IL6 ligand expression in GSCs with the use of short hairpin RNAs (shRNAs) significantly reduces growth and neurosphere formation capacity while increasing apoptosis. Perturbation of IL6 signaling in GSCs attenuates signal transducers and activators of transcription three (STAT3) activation, and small molecule inhibitors of STAT3 potently induce GSC apoptosis. These data indicate that STAT3 is a downstream mediator of prosurvival IL6 signals in GSCs. Targeting of IL6R alpha or IL6 expression in GSCs increases the survival of mice bearing intracranial human glioma xenografts. IL6 is clinically significant because elevated IL6 ligand and receptor expression are associated with poor glioma patient survival. The potential utility of anti-IL6 therapies is demonstrated by decreased growth of subcutaneous human GSC-derived xenografts treated with IL6 antibody. Together, our data indicate that IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival, and that targeting IL6 may offer benefit for glioma patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:989-99. [PMID: 19609002 DOI: 10.1158/1541-7786.mcr-09-0030] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of DNA repair as a resistance mechanism in gliomas, the most aggressive form of brain tumor, is a clinically relevant topic. Recent studies show that not all cells are equally malignant in gliomas. Certain subpopulations are particularly prone to drive tumor progression and resist chemo- and radiotherapy. Those cells have been variably named cancer stem cells or cancer-initiating cells or tumor-propagating cells, owing to their possible (but still uncertain) origin from normal stem cells. Although DNA repair reduces the efficacy of chemotherapeutics and ionizing radiation toward bulk gliomas, its contribution to resistance of the rare glioma stem cell subpopulations is less clear. Mechanisms other than DNA repair (in particular low proliferation and activation of the DNA damage checkpoint response) are likely main players of resistance in glioma stem cells and their targeting might yield significant therapeutic gains.
Collapse
Affiliation(s)
- Guido Frosina
- Molecular Mutagenesis & DNA Repair Unit, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
12
|
Kosztowski T, Zaidi HA, Quiñones-Hinojosa A. Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev Anticancer Ther 2009; 9:597-612. [PMID: 19445577 DOI: 10.1586/era.09.22] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to stem cells providing a better understanding about the biology and origins of gliomas, new therapeutic approaches have been developed based on the use of stem cells as delivery vehicles. The unique ability of stem cells to track down tumor cells makes them a very appealing therapeutic modality. This review introduces neural and mesenchymal stem cells, discusses the advances that have been made in the utilization of these stem cells as therapies and in diagnostic imaging (to track the advancement of the stem cells towards the tumor cells), and concludes by addressing various challenges and concerns regarding these therapies.
Collapse
Affiliation(s)
- Thomas Kosztowski
- The Johns Hopkins Hospital, Department of Neurosurgery, Johns Hopkins University, CRB II, 1550 Orleans Street, Room 247, Baltimore, MD 21231, USA.
| | | | | |
Collapse
|
13
|
Origins and clinical implications of the brain tumor stem cell hypothesis. J Neurooncol 2009; 93:49-60. [PMID: 19430882 DOI: 10.1007/s11060-009-9856-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/16/2009] [Indexed: 12/20/2022]
Abstract
With the advent of the cancer stem cell hypothesis, the field of cancer research has experienced a revolution in how we think of and approach cancer. The discovery of "brain tumor stem cells" has offered an explanation for several long-standing conundrums on why brain tumors behave the way they do to treatment. Despite the great amount of research that has been done in order to understand the molecular aspects of malignant gliomas, the prognosis of brain tumors remains dismal. The slow progress in extending the survival of patients with malignant CNS neoplasms is very likely due to poor understanding of the cell of origin in these tumors. This review article discusses the progress in our understanding of brain tumor stem cells as the cell of origin in brain cancers. We review the different proposed mechanisms of how brain tumor stem cells may originate, the intracellular pathways disrupted in the pathogenesis of BTSCs, the molecular markers used to identify BTSCs, the molecular mechanisms of cancer initiation and progression, and finally the clinical implications of this research.
Collapse
|