1
|
Abstract
INTRODUCTION Integrated genomics has significantly advanced our understanding of medulloblastoma heterogeneity. It is now clear that it actually comprises at least four distinct molecular subgroups termed Wnt/Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4 with stark clinical and biological differences. Areas covered: This paper reviews advances in the classification and risk stratification of medulloblastoma, specifically integrating subgroup with clinical and cytogenetic risk factors, with a summary of the potential to lead to more precise therapies. Moreover, the current state of preclinical modeling is summarized with respect to their utility in generating new treatments and correlation with genomic discoveries. Opportunities and challenges in developing new treatment paradigms are summarized and discussed, specifically new therapies for very high-risk metastatic/MYC-amplified Group 3 and TP53-mutant SHH and reductions in therapy for lower risk groups. Expert commentary: Survival across medulloblastoma has been stagnant for over 30 years, and new treatment paradigms are urgently required. Current therapy significantly over treats a high proportion of patients leaving them with lifelong side effects; while many patients still succumb to their disease. Applying biological advances could improve quality of life for a significant proportion of patients while offering new upfront approaches to the highest risk patients.
Collapse
Affiliation(s)
- Carolina Nör
- a Programme in Developmental and Stem Cell Biology , Hospital for Sick Children , Toronto , ON , Canada.,b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada
| | - Vijay Ramaswamy
- b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada.,c Division of Haematology/Oncology , Hospital for Sick Children , Toronto , ON , Canada
| |
Collapse
|
2
|
Neumann JE, Swartling FJ, Schüller U. Medulloblastoma: experimental models and reality. Acta Neuropathol 2017; 134:679-689. [PMID: 28725965 DOI: 10.1007/s00401-017-1753-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/27/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is the most frequent malignant brain tumor in childhood, but it may also affect infants, adolescents, and young adults. Recent advances in the understanding of the disease have shed light on molecular and clinical heterogeneity, which is now reflected in the updated WHO classification of brain tumors. At the same time, it is well accepted that preclinical research and clinical trials have to be subgroup-specific. Hence, valid models have to be generated specifically for every medulloblastoma subgroup to properly mimic molecular fingerprints, clinical features, and responsiveness to targeted therapies. This review summarizes the availability of experimental medulloblastoma models with a particular focus on how well these models reflect the actual disease subgroup. We further describe technical advantages and disadvantages of the models and finally point out how some models have successfully been used to introduce new drugs and why some medulloblastoma subgroups are extraordinary difficult to model.
Collapse
Affiliation(s)
- Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
3
|
Stone S, Ho Y, Li X, Jamison S, Harding HP, Ron D, Lin W. Dual role of the integrated stress response in medulloblastoma tumorigenesis. Oncotarget 2016; 7:64124-64135. [PMID: 27802424 PMCID: PMC5325430 DOI: 10.18632/oncotarget.11873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023] Open
Abstract
In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) coordinates an adaptive program known as the integrated stress response (ISR) by phosphorylating translation initiation factor 2α (eIF2α). Phosphorylated eIF2α is quickly dephosphorylated by the protein phosphatase 1 and growth arrest and DNA damage 34 (GADD34) complex. Data indicate that the ISR can either promote or suppress tumor development. Our previous studies showed that the ISR is activated in medulloblastoma in both human patients and animal models, and that the decreased ISR via PERK heterozygous deficiency attenuates medulloblastoma formation in Patched1 heterozygous deficient (Ptch1+/-) mice by enhancing apoptosis of pre-malignant granule cell precursors (GCPs) during cell transformation. We showed here that GADD34 heterozygous mutation moderately enhanced the ISR and noticeably increased the incidence of medulloblastoma in adult Ptch1+/- mice. Surprisingly, GADD34 homozygous mutation strongly enhanced the ISR, but significantly decreased the incidence of medulloblastoma in adult Ptch1+/- mice. Intriguingly, GADD34 homozygous mutation significantly enhanced pre-malignant GCP apoptosis in cerebellar hyperplastic lesions and reduced the lesion numbers in young Ptch1+/- mice. Nevertheless, neither GADD34 heterozygous mutation nor GADD34 homozygous mutation had a significant effect on medulloblastoma cells in adult Ptch1+/- mice. Collectively, these data imply the dual role of the ISR, promoting and inhibiting, in medulloblastoma tumorigenesis by regulating apoptosis of pre-malignant GCPs during the course of malignant transformation.
Collapse
Affiliation(s)
- Sarrabeth Stone
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Yeung Ho
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Xiting Li
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States,4 Department of Periodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Stephanie Jamison
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Heather P. Harding
- 5 Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- 5 Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wensheng Lin
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Ho Y, Li X, Jamison S, Harding HP, McKinnon PJ, Ron D, Lin W. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1939-1951. [PMID: 27181404 PMCID: PMC4929388 DOI: 10.1016/j.ajpath.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.
Collapse
Affiliation(s)
- Yeung Ho
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xiting Li
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Periodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Stephanie Jamison
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Heather P Harding
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David Ron
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Bhatia S, Hirsch K, Baig NA, Rodriguez O, Timofeeva O, Kavanagh K, Lee YC, Wang XJ, Albanese C, Karam SD. Effects of altered ephrin-A5 and EphA4/EphA7 expression on tumor growth in a medulloblastoma mouse model. J Hematol Oncol 2015; 8:105. [PMID: 26345456 PMCID: PMC4561476 DOI: 10.1186/s13045-015-0202-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background Members of the Eph/ephrin gene families act as key regulators of cerebellar development during embryogenesis. Aberrant signaling of Eph family of receptor tyrosine kinases and their ephrin ligands has also been implicated in human cancers. Medulloblastoma is an aggressive primitive neuroectodermal tumor that originates from granule neuron precursors in the cerebellum. Previous studies have suggested a role for the ephrin-A5 ligand and its receptors, EphA4 and EphA7, in granule cell-precursor formation and in guiding cell migration. In the present study, we investigated the effects of genetic loss of ephrin-A5, EphA4, and EphA7 on the spatiotemporal development of medulloblastoma tumors in the context of the smoothened transgenic mouse model system. Findings Radiographic magnetic resonance imaging (MRI) was performed to monitor tumor growth in a genetically engineered mouse model of medulloblastoma. Tumor tissue was harvested to determine changes in the expression of phosphorylated Akt by Western blotting. This helped to establish a correlation between genotype and/or tumor size and survival. Our in vivo data establish that in ND2-SmoA1 transgenic mice, the homozygous deletion of ephrin-A5 resulted in a consistent pattern of tumor growth inhibition compared to their ephrin-A5 wild-type littermate controls, while the loss of EphA4/EphA7 failed to produce consistent effects versus EphA4/EphA7 wild-type mice. A positive correlation was evident between tumor size, p-Akt, and proliferating cell nuclear antigen (PCNA) expression in our transgenic mouse model system, regardless of genotype. Conclusions Taken together, our findings underscore the importance of targeting specific members of the Eph/ephrin families in conjunction with the Akt pathway in order to inhibit medulloblastoma tumor growth and progression.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Present address: Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Kellen Hirsch
- Present address: Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Nimrah A Baig
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Olga Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kevin Kavanagh
- Present address: Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Yi Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Pathology, Georgetown University School of Medicine, Washington, DC, 20057, USA.
| | - Sana D Karam
- Present address: Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
6
|
Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 2013; 33:4857-66. [PMID: 24141783 DOI: 10.1038/onc.2013.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is one of the most common bone tumors. However, the genetic basis for its pathogenesis remains elusive. Here, we investigated the roles of Hedgehog (Hh) signaling in osteosarcoma development. Genetically-engineered mice with ubiquitous upregulated Hh signaling specifically in mature osteoblasts develop focal bone overgrowth, which greatly resembles the early stage of osteosarcoma. However, these mice die within three months, which prohibits further analysis of tumor progression. We therefore generated a mouse model with partial upregulated Hh signaling in mature osteoblasts and crossed it into a p53 heterozygous background to potentiate tumor development. We found that these mutant mice developed malignant osteosarcoma with high penetrance. Isolated primary tumor cells were mainly osteoblastic and highly proliferative with many characteristics of human osteosarcomas. Allograft transplantation into immunocompromised mice displayed high tumorigenic potential. More importantly, both human and mouse tumor tissues express high level of yes-associated protein 1 (Yap1), a potent oncogene that is amplified in various cancers. We show that inhibition of Hh signaling reduces Yap1 expression and knockdown of Yap1 significantly inhibits tumor progression. Moreover, long non-coding RNA H19 is aberrantly expressed and induced by upregulated Hh signaling and Yap1 overexpression. Our results demonstrate that aberrant Hh signaling in mature osteoblasts is responsible for the pathogenesis of osteoblastic osteosarcoma through Yap1 and H19 overexpression.
Collapse
Affiliation(s)
- L H Chan
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - W Wang
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - W Yeung
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Y Deng
- Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - P Yuan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR
| | - K K Mak
- 1] Key Laboratories for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR [2] Stem Cell and Regeneration Thematic Research Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR [3] CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
7
|
Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol 2010; 120:305-16. [PMID: 20652577 DOI: 10.1007/s00401-010-0726-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Increasing recognition of pediatric medulloblastoma as a heterogeneous disease, with histopathological and molecular variants that have distinct biological behaviors, will impact how the disease is classified and treated. A combination of clinicopathological evaluation and assays based on molecular subgroups of disease will allow stratification of patients into risk groups and a more tailored approach to therapy. Patients with low-risk disease could be treated with de-escalated adjuvant therapy to maximize cure while reducing long-term adverse effects, and novel therapies could be sought for patients with high-risk disease. My review encompasses a brief overview of the clinical landscape, the current World Health Organization (WHO) classification of medulloblastoma, the status of molecular subgroups, and how potential stratification schemes might impact pathologists and their practice.
Collapse
|
8
|
Onvani S, Etame AB, Smith CA, Rutka JT. Genetics of medulloblastoma: clues for novel therapies. Expert Rev Neurother 2010; 10:811-23. [PMID: 20420498 DOI: 10.1586/ern.10.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Current medulloblastoma therapy entails surgery, radiation and chemotherapy. The 5-year survival rate for patients ranges from 40 to 70%, with most survivors suffering from serious long-term treatment-related sequelae. Additional research on the molecular biology and genetics of medulloblastoma is needed to identify robust prognostic markers for disease-risk stratification, to improve current treatment regimes and to discover novel and more effective molecular-targeted therapies. Recent advances in molecular biology have led to the development of powerful tools for the study of medulloblastoma tumorigenesis, which have revealed new insights into the molecular underpinnings of this disease. Here we discuss the signaling pathway alterations implicated in medulloblastoma pathogenesis, the techniques used in molecular profiling of these tumors and recent molecular subclassification schemes. Particular emphasis is given to the identification of novel molecular targets for less toxic, patient-tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sara Onvani
- The Hospital for Sick Children, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Henrique D, Bally-Cuif L. A cross-disciplinary approach to understanding neural stem cells in development and disease. Development 2010; 137:1933-8. [PMID: 20501588 DOI: 10.1242/dev.052621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Company of Biologists recently launched a new series of workshops aimed at bringing together scientists with different backgrounds to discuss cutting edge research in emerging and cross-disciplinary areas of biology. The first workshop was held at Wilton Park, Sussex, UK, and the chosen theme was 'Neural Stem Cells in Development and Disease', which is indeed a hot topic, not only because of the potential use of neural stem cells in cell replacement therapies to treat neurodegenerative diseases, but also because alterations in their behaviour can, in certain cases, lie at the origin of brain tumours and other diseases.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
10
|
Northcott PA, Rutka JT, Taylor MD. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg Focus 2010; 28:E6. [DOI: 10.3171/2009.10.focus09218] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in the field of genomics have recently enabled the unprecedented characterization of the cancer genome, providing novel insight into the molecular mechanisms underlying malignancies in humans. The application of high-resolution microarray platforms to the study of medulloblastoma has revealed new oncogenes and tumor suppressors and has implicated changes in DNA copy number, gene expression, and methylation state in its etiology. Additionally, the integration of medulloblastoma genomics with patient clinical data has confirmed molecular markers of prognostic significance and highlighted the potential utility of molecular disease stratification. The advent of next-generation sequencing technologies promises to greatly transform our understanding of medulloblastoma pathogenesis in the next few years, permitting comprehensive analyses of all aspects of the genome and increasing the likelihood that genomic medicine will become part of the routine diagnosis and treatment of medulloblastoma.
Collapse
Affiliation(s)
- Paul A. Northcott
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children; and
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - James T. Rutka
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Michael D. Taylor
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children; and
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
11
|
Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 2009; 23:2729-41. [PMID: 19952108 DOI: 10.1101/gad.1824509] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medulloblastoma is the most common solid malignancy of childhood, with treatment side effects reducing survivors' quality of life and lethality being associated with tumor recurrence. Activation of the Sonic hedgehog (Shh) signaling pathway is implicated in human medulloblastomas. Cerebellar granule neuron precursors (CGNPs) depend on signaling by the morphogen Shh for expansion during development, and have been suggested as a cell of origin for certain medulloblastomas. Mechanisms contributing to Shh pathway-mediated proliferation and transformation remain poorly understood. We investigated interactions between Shh signaling and the recently described tumor-suppressive Hippo pathway in the developing brain and medulloblastomas. We report up-regulation of the oncogenic transcriptional coactivator yes-associated protein 1 (YAP1), which is negatively regulated by the Hippo pathway, in human medulloblastomas with aberrant Shh signaling. Consistent with conserved mechanisms between brain tumorigenesis and development, Shh induces YAP1 expression in CGNPs. Shh also promotes YAP1 nuclear localization in CGNPs, and YAP1 can drive CGNP proliferation. Furthermore, YAP1 is found in cells of the perivascular niche, where proposed tumor-repopulating cells reside. Post-irradiation, YAP1 was found in newly growing tumor cells. These findings implicate YAP1 as a new Shh effector that may be targeted by medulloblastoma therapies aimed at eliminating medulloblastoma recurrence.
Collapse
Affiliation(s)
- Africa Fernandez-L
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 2008; 31:241-61; discussion 261-320. [DOI: 10.1017/s0140525x08004214] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractAutistic-spectrum conditions and psychotic-spectrum conditions (mainly schizophrenia, bipolar disorder, and major depression) represent two major suites of disorders of human cognition, affect, and behavior that involve altered development and function of the social brain. We describe evidence that a large set of phenotypic traits exhibit diametrically opposite phenotypes in autistic-spectrum versus psychotic-spectrum conditions, with a focus on schizophrenia. This suite of traits is inter-correlated, in that autism involves a general pattern of constrained overgrowth, whereas schizophrenia involves undergrowth. These disorders also exhibit diametric patterns for traits related to social brain development, including aspects of gaze, agency, social cognition, local versus global processing, language, and behavior. Social cognition is thus underdeveloped in autistic-spectrum conditions and hyper-developed on the psychotic spectrum.;>We propose and evaluate a novel hypothesis that may help to explain these diametric phenotypes: that the development of these two sets of conditions is mediated in part by alterations of genomic imprinting. Evidence regarding the genetic, physiological, neurological, and psychological underpinnings of psychotic-spectrum conditions supports the hypothesis that the etiologies of these conditions involve biases towards increased relative effects from imprinted genes with maternal expression, which engender a general pattern of undergrowth. By contrast, autistic-spectrum conditions appear to involve increased relative bias towards effects of paternally expressed genes, which mediate overgrowth. This hypothesis provides a simple yet comprehensive theory, grounded in evolutionary biology and genetics, for understanding the causes and phenotypes of autistic-spectrum and psychotic-spectrum conditions.
Collapse
|
13
|
Soroceanu L, Kharbanda S, Chen R, Soriano RH, Aldape K, Misra A, Zha J, Forrest WF, Nigro JM, Modrusan Z, Feuerstein BG, Phillips HS. Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proc Natl Acad Sci U S A 2007; 104:3466-71. [PMID: 17360667 PMCID: PMC1802005 DOI: 10.1073/pnas.0611271104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Indexed: 01/19/2023] Open
Abstract
Amplification or overexpression of growth factor receptors is a frequent occurrence in malignant gliomas. Using both expression profiling and in situ hybridization, we identified insulin-like growth factor 2 (IGF2) as a marker for a subset of glioblastomas (GBMs) that lack amplification or overexpression of EGF receptor. Among 165 primary high-grade astrocytomas, 13% of grade IV tumors and 2% of grade III tumors expressed IGF2 mRNA levels >50-fold the sample population median. IGF2-overexpressing tumors frequently displayed PTEN loss, were highly proliferative, exhibited strong staining for phospho-Akt, and belonged to a subclass of GBMs characterized by poor survival. Using a serum-free culture system, we discovered that IGF2 can substitute for EGF to support the growth of GBM-derived neurospheres. The growth-promoting effects of IGF2 were mediated by the insulin-like growth factor receptor 1 and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of phosphoinositide 3-kinase that shows genomic gains in some highly proliferative GBM cases. PIK3R3 knockdown inhibited IGF2-induced growth of GBM-derived neurospheres. The current results provide evidence that the IGF2-PIK3R3 signaling axis is involved in promoting the growth of a subclass of highly aggressive human GBMs that lack EGF receptor amplification. Our data underscore the importance of the phosphoinositide 3-kinase/Akt pathway for growth of high-grade gliomas and suggest that multiple molecular alterations that activate this signaling cascade may promote tumorigenesis. Further, these findings highlight the parallels between growth factors or receptors that are overexpressed in GBMs and those that support in vitro growth of tumor-derived stem-like cells.
Collapse
Affiliation(s)
| | | | | | | | - Ken Aldape
- Department of Pathology, M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Anjan Misra
- Brain Tumor Research Center, University of California, San Francisco, CA 94143
| | - Jiping Zha
- Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | - Janice M. Nigro
- Brain Tumor Research Center, University of California, San Francisco, CA 94143
| | | | - Burt G. Feuerstein
- Brain Tumor Research Center, University of California, San Francisco, CA 94143
| | | |
Collapse
|
14
|
Clark PA, Treisman DM, Ebben J, Kuo JS. Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 2007; 236:3297-308. [DOI: 10.1002/dvdy.21381] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|