1
|
Hao G, Conzen-Dilger C, Schmidt TP, Harder E, Schöps M, Clauser JC, Schubert GA, Lindauer U. Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats. Front Cell Neurosci 2023; 17:1115385. [PMID: 37502465 PMCID: PMC10368889 DOI: 10.3389/fncel.2023.1115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.
Collapse
Affiliation(s)
- Guangshan Hao
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Catharina Conzen-Dilger
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Philip Schmidt
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ekaterina Harder
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Malte Schöps
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Sempere L, Rodríguez-Rodríguez A, Boyero L, Egea-Guerrero J. Principales modelos experimentales de traumatismo craneoencefálico: de la preclínica a los modelos in vitro. Med Intensiva 2019; 43:362-372. [DOI: 10.1016/j.medin.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/08/2023]
|
3
|
Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI. Sci Rep 2017. [PMID: 28630478 PMCID: PMC5476648 DOI: 10.1038/s41598-017-04008-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, hypopituitarism caused by traumatic brain injury (TBI) has been explored in many clinical studies; however, few studies have focused on intracranial hypertension and stress caused by TBI. In this study, an intracranial hypertension model, with epidural hematoma as the cause, was used to explore the physiopathological and neuroendocrine changes in the hypothalamic-pituitary axis and hippocampus. The results demonstrated that intracranial hypertension increased the apoptosis rate, caspase-3 levels and proliferating cell nuclear antigen (PCNA) in the hippocampus, hypothalamus, pituitary gland and showed a consistent rate of apoptosis within each group. The apoptosis rates of hippocampus, hypothalamus and pituitary gland were further increased when intracranial pressure (ICP) at 24 hour (h) were still increased. The change rates of apoptosis in hypothalamus and pituitary gland were significantly higher than hippocampus. Moreover, the stress caused by surgery may be a crucial factor in apoptosis. To confirm stress leads to apoptosis in the hypothalamus and pituitary gland, we used rabbits to establish a standard stress model. The results confirmed that stress leads to apoptosis of neuroendocrine cells in the hypothalamus and pituitary gland, moreover, the higher the stress intensity, the higher the apoptosis rate in the hypothalamus and pituitary gland.
Collapse
|
4
|
Abstract
The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope).
Collapse
Affiliation(s)
- Helen W Phipps
- , 700N St. Mary's St, Suite 700, San Antonio, TX, 78205, USA.
| |
Collapse
|
5
|
Aneurysmal subarachnoid hemorrhage models: do they need a fix? Stroke Res Treat 2013; 2013:615154. [PMID: 23878760 PMCID: PMC3710594 DOI: 10.1155/2013/615154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/17/2022] Open
Abstract
The discovery of tissue plasminogen activator to treat acute stroke is a success story of research on preventing brain injury following transient cerebral ischemia (TGI). That this discovery depended upon development of embolic animal model reiterates that proper stroke modeling is the key to develop new treatments. In contrast to TGI, despite extensive research, prevention or treatment of brain injury following aneurysmal subarachnoid hemorrhage (aSAH) has not been achieved. A lack of adequate aSAH disease model may have contributed to this failure. TGI is an important component of aSAH and shares mechanism of injury with it. We hypothesized that modifying aSAH model using experience acquired from TGI modeling may facilitate development of treatment for aSAH and its complications. This review focuses on similarities and dissimilarities between TGI and aSAH, discusses the existing TGI and aSAH animal models, and presents a modified aSAH model which effectively mimics the disease and has a potential of becoming a better resource for studying the brain injury mechanisms and developing a treatment.
Collapse
|
6
|
Egea-Guerrero JJ, Murillo-Cabezas F, Rodríguez-Rodríguez A, Gordillo-Escobar E, Revuelto-Rey J, Muñoz-Sánchez MA, León-Justel A, Vilches-Arenas A. [An experimental model of mass-type brain damage in the rat: expression of brain damage based on neurospecific enolase and protein S100B]. Med Intensiva 2013; 38:218-25. [PMID: 23786666 DOI: 10.1016/j.medin.2013.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/14/2013] [Accepted: 03/31/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine whether a model of transient mass-type brain damage (MTBD) in the rat produces early release of neurospecific enolase (NSE) and protein S100B in peripheral blood, as an expression of the induced brain injury. DESIGN An experimental study with a control group. SETTING Experimental operating room of the Institute of Biomedicine (IBiS) of Virgen del Rocío University Hospital (Seville, Spain). PARTICIPANTS Fourteen adult Wistar rats. INTERVENTIONS Blood was sampled at baseline, followed by: MTBD group, a trephine perforation was used to insert and inflate the balloon of a catheter at a rate of 500 μl/20 sec, followed by 4 blood extractions every 20 min. Control group, the same procedure as before was carried out, though without trephine perforation. PRIMARY STUDY VARIABLES Weight, early mortality, serum NSE and S100B concentration. RESULTS Differences in NSE and S100B concentration were observed over time within the MTBD group (P<.001), though not so in the control group. With the exception of the baseline determination, differences were observed between the two groups in terms of the mean NSE and S100B values. Following MTBD, NSE and S100B progressively increased at all measurement timepoints, with r=0.765; P=.001 and r=0.628; P=.001, respectively. In contrast, the control group showed no such correlation for either biomarker. CONCLUSIONS Serum NSE and S100B concentrations offer an early indication of brain injury affecting the gray and white matter in an experimental model of mass-type MTBD in the rat.
Collapse
Affiliation(s)
- J J Egea-Guerrero
- Unidad de Neurocríticos, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España.
| | - F Murillo-Cabezas
- Unidad de Neurocríticos, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - A Rodríguez-Rodríguez
- Departamento de Bioquímica Clínica, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - E Gordillo-Escobar
- Unidad de Neurocríticos, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - J Revuelto-Rey
- Unidad de Neurocríticos, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - M A Muñoz-Sánchez
- Unidad de Neurocríticos, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - A León-Justel
- Departamento de Bioquímica Clínica, H.U. Virgen del Rocío, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| | - A Vilches-Arenas
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Sevilla, IBiS/CSIC Universidad de Sevilla, Sevilla, España
| |
Collapse
|
7
|
Warnat J, Liebsch G, Stoerr EM, Brawanski A. Visualisation of cortical pO(2) during an epidural mass lesion in rodents. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 114:393-397. [PMID: 22327730 DOI: 10.1007/978-3-7091-0956-4_76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Monitoring p(bt)O(2) is a valuable supplemental -procedure for neurocritically ill patients. Here, we utilise an opto-chemical method for measuring cortical pO(2) during a reversibly introduced epidural mass lesion in a rat model. The sensor was placed in a cortical window of 17 ventilated Wistar rats. Inflating the balloon device over the contralateral hemisphere increased ICP. Physiological parameters and cortical pO(2) were recorded. The ICP increased from 6.2 ± 4.6 to 44.6 ± 12.6 mmHg (p < 0.001). Cortical pO(2) over arterioles changed from 28.9 ± 2.1 to 19.0 ± 2.1 mmHg (p < 0.001), over venules from 14.8 ± 1.2 to 9.9 ± 1.5 mmHg (p = 0.002) and over parenchyma from 4.1 ± 0.7 to 2.4 ± 0.8 mmHg respectively (p < 0.001), while basic physiological parameters remained constant (p > 0.05). During baseline, arterial pO(2) correlated significantly with cortex arteriole and venole pO(2), but not with cortex parenchyma pO(2). While ICP was raised, cortical pO(2) did not correlate with arterial pO(2). In this model, a moderate epidural mass lesion causes a significant decrease in cortical pO(2). Cortex parenchyma pO(2) appeared to be independent from arterial pO(2). The correlation of cortex vessel pO(2) with arterial pO(2) disappeared during the epidural mass lesion. These findings show the capability of the device to elucidate the behaviour of functionally different cortex areas at pathophysiological conditions.
Collapse
Affiliation(s)
- Jan Warnat
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
8
|
Baechli H, Behzad M, Schreckenberger M, Buchholz HG, Heimann A, Kempski O, Alessandri B. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats. J Cereb Blood Flow Metab 2010; 30:576-85. [PMID: 19888286 PMCID: PMC2949142 DOI: 10.1038/jcbfm.2009.230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.
Collapse
Affiliation(s)
- Heidi Baechli
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz D-55131, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Balikci M, Koc K, Anik I, Anik Y, Cekmen MB, Yazir Y, Ceylan S, Ceylan S. Biochemical effects of experimental epidural hematoma on brain parenchyma of rats. Neurol Res 2009; 30:450-6. [PMID: 18241527 DOI: 10.1179/016164107x251637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION The management of epidural hematoma is classified into surgical or conservative treatment according to clinical and radiologic parameters. In the recent years, the number of paper suggesting conservative management has been increasing. The experimental works that have been performed are based on especially the effects of epidural hematomas. Basic pathophysiologic factors on ischemia result of brain trauma are based on biochemical mediators. Nitric oxide (NO) and malondialdehyde (MDA) are the substances that play important roles in brain damage after trauma. MATERIAL AND METHOD In this study, 36 rats are divided into three groups (n = 12/group). Epidural hematoma was achieved by 0.1 ml autolog blood in rat epidural space with balloon model. Early and late phase biochemical effects on parenchyma of epidural hematoma operated in a volume which neither alters intracranial pressure (ICP) nor creates shift effect were observed. Biochemical changes of NO and MDA levels were examined in each of three experimental groups. RESULTS NO values increased significantly in the early group (6 hours) compared with those in the control group. Difference of NO values between the control and late groups was not significant. An increase has been found in MDA values in the control group compared with those in the early group. MDA values of the late group (30 days) were closer to that of the control group. CONCLUSION In this study, considering biochemical results, we have found that conservative volumes which neither increase ICP nor cause brain shift do not lead to permanent changes on brain.
Collapse
Affiliation(s)
- Mahmut Balikci
- Department of Neurosurgery, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lang EW, Mulvey JM, Mudaliar Y, Dorsch NWC. Direct cerebral oxygenation monitoring--a systematic review of recent publications. Neurosurg Rev 2007; 30:99-106; discussion 106-7. [PMID: 17221264 DOI: 10.1007/s10143-006-0062-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/15/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
This review has been compiled to assess publications related to the clinical application of direct cerebral tissue oxygenation (PtiO2) monitoring published in international, peer-reviewed scientific journals. Its goal was to extract relevant, i.e. positive and negative information on indications, clinical application, safety issues and impact on clinical situations as well as treatment strategies in neurosurgery, neurosurgical anaesthesiology, neurosurgical intensive care, neurology and related specialties. For completeness' sake it also presents some related basic science research. PtiO2 monitoring technology is a safe and valuable cerebral monitoring device in neurocritical care. Although a randomized outcome study is not available its clinical utility has repeatedly been clearly confirmed because it adds a monitoring parameter, independent from established cerebral monitoring devices. It offers new insights into cerebral physiology and pathophysiology. Pathologic values have been established in peer-reviewed research, which are not only relevant to outcome but are treatable. The benefits clearly outweigh the risks, which remains unchallenged in all publications retrieved. It is particularly attractive because it offers continuous, real-time data and is available at the bedside.
Collapse
Affiliation(s)
- Erhard W Lang
- Neurosurgical Associates, Red Cross Hospital, Bergmannstrasse 32, 34121 Kassel, Germany
| | | | | | | |
Collapse
|
11
|
Woitzik J, Schneider UC, Thomé C, Schroeck H, Schilling L. Comparison of different intravascular thread occlusion models for experimental stroke in rats. J Neurosci Methods 2006; 151:224-31. [PMID: 16144713 DOI: 10.1016/j.jneumeth.2005.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 07/05/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
For the induction of ischemic strokes of varying sizes in rats, different types of threads were used to occlude the middle cerebral artery (MCA) in combination with or without the posterior communicating artery (PCOM) and the common carotid artery (CCA). During vessel occlusion brain tissue partial oxygen pressure (ptiO2) and regional cerebral blood flow (rCBF) were monitored using a combined ptiO2/laser Doppler flow probe. Following neurological assessment animals were sacrificed at 3, 8 and 24 h and the necrotic volume was measured on serial coronary slices. In another experimental group, rCBF was measured 1h post-insult with the iodo[14C]antipyrine method. Animals with selective MCA occlusion showed less reduction of ptiO2 and rCBF and smaller infarcts when compared with animals with combined occlusion of the MCA, CCA and PCOM. Both groups, selective MCA occlusion and combined occlusion of the MCA, CCA and PCOM, demonstrated a high reproducibility and low variability of stroke size. Relative growth of stroke size within 24 h was higher in animals with selective MCA occlusion. Therefore, the selective MCAO model may be advantageous for studies of neuroprotective strategies.
Collapse
Affiliation(s)
- Johannes Woitzik
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
12
|
Gruber M, Wiesner G, Burger R, Lindner R. The salicylate trapping method: is oxidation of salicylic acid solution oxygen and time dependent and metal catalysed? J Chromatogr B Analyt Technol Biomed Life Sci 2005; 831:320-3. [PMID: 16324892 DOI: 10.1016/j.jchromb.2005.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 02/06/2023]
Abstract
For a microdialytic trapping method we systematically investigated changes in concentrations of 2,5-dihydroxy-benzoic acid (2,5-DHBA) and 2,3-dihydroxy-benzoic acid (2,3-DHBA) in freshly prepared solutions of salicylic acid (SA). The solvent was 0.9% saline exposed to different atmospheric concentrations of oxygen (0, 21, and 100%). The solutions were treated by freezing-thawing and an ultrasonic bath in presence and absence of aluminium foil. Without aluminium the concentrations of 2,5-DHBA and 2,3-DHBA kept constant over an observed period of 160 min on different levels from below 20 ng/ml to about 100 ng/ml. In presence of aluminium the concentrations increased to maximum 307 ng/ml after 160 min. Ultrasonic irradiation amplified this effect to maximum 341 ng/ml. HPLC/ECD processing and quantitative analysis of dihydroxy-benzoic acids (DHBAs) in microdialysis may be artificially influenced by varying oxygen environment and metal catalysis.
Collapse
Affiliation(s)
- Michael Gruber
- Department of Anaesthesiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | | | | | | |
Collapse
|
13
|
Abstract
Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA.
| |
Collapse
|
14
|
Burger R, Bendszus M, Vince GH, Solymosi L, Roosen K. Neurophysiological monitoring, magnetic resonance imaging, and histological assays confirm the beneficial effects of moderate hypothermia after epidural focal mass lesion development in rodents. Neurosurgery 2004; 54:701-11; discussion 711-2. [PMID: 15028147 DOI: 10.1227/01.neu.0000108784.80585.ee] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 11/06/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To assess the effects of moderate intraischemic hypothermia on neurophysiological parameters in an epidural balloon compression model in rats and to correlate the results with magnetic resonance imaging and histological findings. METHODS Neurophysiological monitoring included laser Doppler flow, tissue partial oxygen pressure, and intracranial pressure measurements and electroencephalographic assessments during balloon expansion, sustained inflation, and reperfusion. Moderate intraischemic cooling of animals was extended throughout the reperfusion period, and results were compared with those for normothermic animals. Moreover, histological morphometric and magnetic resonance imaging volumetric analyses of the lesions were performed. RESULTS Laser Doppler flow decreased slightly during ischemia (P < 0.05) in animals treated with hypothermia, and flow values demonstrated complete reperfusion, compared with incomplete flow restoration in untreated animals (P < 0.05). During ischemia, the tissue partial oxygen pressure was less than 4.3 mm Hg in both groups. After reperfusion, values returned to the normal range in both groups, but the tissue partial oxygen pressure in hypothermic animals was significantly higher (P = 0.042) and demonstrated 19% higher values, compared with normothermic animals, before rewarming. Moderate hypothermia attenuated a secondary increase in intracranial pressure (P < 0.05), and electroencephalographic findings indicated a trend toward faster recovery (P > 0.05) after reperfusion. Lesion size was reduced by 35% in magnetic resonance imaging volumetric evaluations and by 24.5% in histological morphometric analyses. CONCLUSION Intraischemic hypothermia improves cerebral microcirculation, attenuates a secondary increase in intracranial pressure, facilitates electroencephalographic recovery, and reduces the lesion size.
Collapse
Affiliation(s)
- Ralf Burger
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Dóczi TP, Schwarcz A. Epidural mass. J Neurosurg 2003; 99:617-8; author reply 618. [PMID: 12959457 DOI: 10.3171/jns.2003.99.3.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Burger R, Zuechner M, Bendszus M, Vince GH, Roosen K. Moderate hypothermia improves neurobehavioral deficits after an epidural focal mass lesion in rodents. J Neurotrauma 2003; 20:543-58. [PMID: 12906739 DOI: 10.1089/089771503767168474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to evaluate the effects of a moderate, intraischemic hypothermia on the behavorial deficits up to 4 weeks after induction of a focal mass lesion. A focal epidural mass lesion was induced by an epidural balloon. The severity of the trauma was defined by the balloon volume and flattening of electroencephalography. Hypothermia (32 degrees C) was induced as soon as maximum balloon infIation was reached. Ischemia was extended over 30 min. After reperfusion, normothermic (n = 24) and hypothermic animals (n = 25) were monitored for 3 h followed by a rewarming of the cooled animals. Results were compared to sham-operated animals (n = 10). Behavioral deficits were assessed by postural reflex (PR), open field (OF), beam balance (BB), beam walking (BW), and water maze tests (WMT). MRI follow-up and histology was evaluated. Sham-operated rats showed normal test results. Rats with normothermia showed worsening of test performance (PR, p < 0.05; OF, p < 0.05; BB, p < 0.05; BW, p < 0.05; WMT, p < 0.05) compared to controls over the whole observation period. A significantly better behavioral outcome was observed in animals treated with hypothermia which showed no differences from controls 3-4 days after injury (PR, OF, BB, BW, WMT, p > 0.05). Lesion induced mortality was reduced in cooled animals but overall mortality rates were not influenced by this therapeutic measure. Neuronal cell loss in the CA1-CA4 region (p < 0.05) was reduced and the lesion size smaller (21%/p > 0.05) in hypothermic animals. Magnetic resonance imaging revealed that the lesion was more pronounced in the cortical grey matter after normothermia, whereas hypothermic animals showed more subcortical brain lacerations. In conclusion, intraischemic hypothermia significantly improved the behavioral outcome, and decreased lesion-induced mortality and the size of the lesion after an epidural focal mass lesion.
Collapse
Affiliation(s)
- Ralf Burger
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Bendszus M, Burger R, Vince GH, Solymosi L. A reproducible model of an epidural mass lesion in rodents. Part II: Characterization by in vivo magnetic resonance imaging. J Neurosurg 2002; 97:1419-23. [PMID: 12507142 DOI: 10.3171/jns.2002.97.6.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to characterize a novel epidural space-occupying lesion caused by balloon expansion in rodents by using sequential in vivo magnetic resonance (MR) imaging. METHODS Ten Sprague-Dawley rats were intraperitoneally sedated. A trephination was performed over the left parietal cortex to attach a balloon-expansion device, which was secured with dental cement. Measurements were performed using a 1.5-tesla MR imaging device to obtain sequential T2-weighted and diffusion-weighted (DW) sequences in the coronal plane. A three-dimensional, constructed interference in steady state sequence was used for calculation of the balloon volume. The animal's temperature, heartbeat, and the arterial percentage of oxygen saturation were monitored continuously. After a baseline examination had been performed, the balloon was inflated for a 30-minute period until it reached a maximum volume of 0.3 ml; this procedure was followed by a period of sustained inflation lasting 30 minutes, balloon deflation, and a period of reperfusion lasting 3 hours. After perfusion fixation of the animals, morphometric analysis of the lesion size and examination of the percentage of viable neurons in the hippocampus were performed. Magnetic resonance imaging allowed for the precise visualization of the extension and location of the epidural mass lesion, narrowing of the basal cisterns, and development of a midline shift. A white-matter focus of hyperintensity, consistent with brain edema, developed, predominantly in the contralateral temporal lobe. During sustained inflation the volume of the balloon did not change and comprised 5 to 7% of total intracranial volume. During the same period the white-matter edema progressed further but no increased signal was revealed on DW images. After balloon deflation the brain reexpanded to the calvaria and imaging signs of raised intracranial pressure subsided. A cortical area of hyperintensity on T2-weighted images developed in the parietal lobe in the region of the former balloon compression. This area appeared bright on DW images, a finding that corresponded to an early cytotoxic edema. After deflation white-matter vasogenic edema in the temporal lobes regressed within 3 hours after reperfusion. The cortical edema in the parietal lobe and the ipsilateral basal ganglia became sharply demarcated. The histopathological results (that is, the extent of tissue damage) corresponded with findings of the authors' companion investigation, which appears in this issue. CONCLUSIONS Magnetic resonance imaging allows for a precise and sequential in vivo monitoring of a space-occupying epidural mass lesion and visualizes the time course of vasogenic and cytotoxic brain edema. This rodent model of an epidural mass lesion proved to be reproducible.
Collapse
Affiliation(s)
- Martin Bendszus
- Department of Neuroradiology, University of Würzburg, Germany.
| | | | | | | |
Collapse
|