1
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Gong L, Yin Y, Chen C, Wan Q, Xia D, Wang M, Pu Z, Zhang B, Zou J. Characterization of EGFR-reprogrammable temozolomide-resistant cells in a model of glioblastoma. Cell Death Dis 2022; 8:438. [PMID: 36316307 PMCID: PMC9622861 DOI: 10.1038/s41420-022-01230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ) resistance is a major clinical challenge for glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) mediated DNA damage repair is a key mechanism for TMZ resistance. However, MGMT-null GBM patients remain resistant to TMZ, and the process for resistance evolution is largely unknown. Here, we developed an acquired TMZ resistant xenograft model using serial implantation of MGMT-hypermethylated U87 cells, allowing the extraction of stable, TMZ resistant (TMZ-R) tumors and primary cells. The derived tumors and cells exhibited stable multidrug resistance both in vitro and in vivo. Functional experiments, as well as single-cell RNA sequencing (scRNA-seq), indicated that TMZ treatment induced cellular heterogeneity including quiescent cancer stem cells (CSCs) in TMZ-R tumors. A subset of these were labeled by NES+/SOX2+/CADM1+ and demonstrated significant advantages for drug resistance. Further study revealed that Epidermal Growth Factor Receptor (EGFR) deficiency and diminished downstream signaling may confer this triple positive CSCs subgroup’s quiescent phenotypes and chemoresistance. Continuous EGF treatment improved the chemosensitivity of TMZ-R cells both in vitro and in vivo, mechanically reversing cell cycle arrest and reduced drug uptake. Further, EGF treatment of TMZ-R tumors favorably normalized the response to TMZ in combination therapy. Here, we characterize a unique subgroup of CSCs in MGMT-null experimental glioblastoma, identifying EGF + TMZ therapy as a potential strategy to overcome cellular quiescence and TMZ resistance, likely endowed by deficient EGFR signaling.
Collapse
Affiliation(s)
- Lingli Gong
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Ying Yin
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Cheng Chen
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Quan Wan
- grid.89957.3a0000 0000 9255 8984Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002 China
| | - Die Xia
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Mei Wang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Zhening Pu
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Bo Zhang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Jian Zou
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
3
|
Hindle A, Koneru B, Makena MR, Lopez-Barcons L, Chen WH, Nguyen TH, Reynolds CP. The O6-methyguanine-DNA methyltransferase inhibitor O6-benzylguanine enhanced activity of temozolomide + irinotecan against models of high-risk neuroblastoma. Anticancer Drugs 2021; 32:233-247. [PMID: 33323683 PMCID: PMC9255907 DOI: 10.1097/cad.0000000000001020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O6-benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo. These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Ashly Hindle
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Balakrishna Koneru
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Monish Ram Makena
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lluis Lopez-Barcons
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Wan Hsi Chen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Thinh H. Nguyen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
4
|
Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, Pirtoli L, Maellaro E. Trehalose inhibits cell proliferation and amplifies long‐term temozolomide‐ and radiation‐induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. J Cell Physiol 2018; 234:11708-11721. [DOI: 10.1002/jcp.27838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Giulia Allavena
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Barbara Del Bello
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Sbarro Health Research Organization, Temple University Philadelphia Pennsylvania
| | - Nila Volpi
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
- Department of Animal Sciences Plants for Human Health Institute, NC State University Kannapolis North Carolina
| | - Clelia Miracco
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Unit of Pathological Anatomy, University Hospital of Siena Siena Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Department of Biology College of Science and Technology, Temple University Philadelphia Pennsylvania
| | - Emilia Maellaro
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| |
Collapse
|
5
|
Kitange GJ, Mladek AC, Schroeder MA, Pokorny JC, Carlson BL, Zhang Y, Nair AA, Lee JH, Yan H, Decker PA, Zhang Z, Sarkaria JN. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins. Cell Rep 2016; 14:2587-98. [PMID: 26972001 DOI: 10.1016/j.celrep.2016.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/22/2015] [Accepted: 02/04/2016] [Indexed: 01/18/2023] Open
Abstract
Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of two key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition, and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51, and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin-modifying complex that binds within the promoter of MGMT, RAD51, and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. The RBBP4/CBP/p300 complex may provide an interesting target for developing therapy-sensitizing strategies for GBM and other tumors.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jenny C Pokorny
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha A Nair
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul A Decker
- Department of Biostatistics and Bioinformatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor and is notorious for its poor prognosis. The highly invasive nature of GBM and its inherent resistance to therapy lead to very high rates of recurrence. Recently, a small cohort of tumor cells, called cancer stem cells (CSCs), has been recognized as a subset of tumor cells with self-renewal ability and multilineage capacity. These properties, along with the remarkable tumorigenicity of CSCs, are thought to account for the high rates of tumor recurrence after treatment. Recent research has been geared toward understanding the unique biological characteristics of CSCs to enable development of targeted therapy. Strategies include inhibition of CSC-specific pathways and receptors; agents that increase sensitivity of CSCs to chemotherapy and radiotherapy; CSC differentiation agents; and CSC-specific immunotherapy, virotherapy, and gene therapy. These approaches could inform the development of newer therapeutics for GBM.
Collapse
|
7
|
Emerging Strategies for the Treatment of Tumor Stem Cells in Central Nervous System Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:167-87. [DOI: 10.1007/978-3-319-16537-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 2014; 32:604-17. [PMID: 24718901 DOI: 10.1007/s10637-014-0084-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly develop resistance to this line of treatment creating a critical need for alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as measured directly and through a subsequent heat shock response with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through mismatch repair mutations. These studies suggest great clinical potential for the utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the standard chemotherapeutic agent TMZ.
Collapse
Affiliation(s)
- Patrick T Grogan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | |
Collapse
|
9
|
Hayashi T, Adachi K, Ohba S, Hirose Y. The Cdk inhibitor flavopiridol enhances temozolomide-induced cytotoxicity in human glioma cells. J Neurooncol 2013; 115:169-78. [PMID: 23943501 DOI: 10.1007/s11060-013-1220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/04/2013] [Indexed: 12/11/2022]
Abstract
The recent progress in chemotherapy for malignant gliomas is attributable to the introduction of the DNA-methylating agent temozolomide (TMZ); however, drug resistance remains a major issue. Previous studies have shown that TMZ induces prolonged arrest of human glioma cells in the G2/M phase of the cell cycle followed by a senescence-like phenomenon or mitotic catastrophe. These findings suggest that the G2 checkpoint is linked to DNA repair mechanisms. We investigated the effect of a cyclin-dependent kinase (Cdk) inhibitor flavopiridol (FP) that inhibits the action of Cdc2, a key protein in the G2 checkpoint pathway, on TMZ-treated glioma cells. Colony formation efficiency revealed that FP potentiated the cytotoxicity of TMZ in glioma cells in a p53-independent manner. This effect was clearly associated with the suppression of key proteins at the G2-M transition, accumulation of the cells exclusively at the G2 phase, and increase in a double-stranded DNA break marker (seen on performing immunoblotting). TMZ-resistant clones showed activation of the G2 checkpoint in response to TMZ, while FP treatment resensitized these clones to TMZ. FP also enhanced the cytotoxicity of TMZ in U87MG-AktER cells. Moreover, administration of TMZ and/or FP to nude mice with xenografted U87MG cells revealed that FP sensitized xenografted U87MG cells to TMZ in these mice. Our findings suggest that TMZ resistance could be promoted by enhanced DNA repair activity in the G2-M transition and that a Cdk inhibitor could suppress this activity, leading to potentiation of TMZ action on glioma cells.
Collapse
Affiliation(s)
- Takuro Hayashi
- Department of Neurosurgery, Fujita Health University School of Medicine, 1-98 Kutsukake-cho Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | | | | | | |
Collapse
|
10
|
Vlachostergios PJ, Hatzidaki E, Papandreou CN. MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFκB and mutant p53. Neurol Res 2013; 35:879-82. [PMID: 23561593 DOI: 10.1179/1743132813y.0000000191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The DNA repair enzyme O6-methylguanine methyltransferase (MGMT) is a major determinant of glioma resistance to alkylating agents. Several strategies have been used to induce sensitization to alkylator-based treatments, including the direct MGMT inhibitor O6-benzylguanine (BG). However, replenishment of MGMT is often observed after the withdrawal of combined schedules of temozolomide (TMZ) and BG, thus preventing further treatment efficacy. In this study we investigated the potential mechanisms of resistance to combination treatment with TMZ and BG in the MGMT-proficient, p53-mutated (mt p53) T98G glioblastoma (GBM) cell line, looking for an effect on nuclear factor kappa B (NFκB) and mt p53, which are both transcriptional regulators of MGMT. The administration of TMZ alone led to minimal inhibition of T98G cell viability which was, however, enhanced with the addition of BG. This effect coincided with reduced expression of MGMT protein and transcript levels, and a decrease in cellular amount of NFκB and mt p53. However, withdrawal of the drugs led to an increase in cell viability, which was in parallel with repletion of MGMT protein and transcript levels and was also accompanied by elevated protein levels of NFκB and mt p53. Overall, these results suggest that NFκB and mt p53 induction may be responsible for the failure of BG to induce prolonged inhibition of direct repair in TMZ co-treated GBM cells with mt p53 status.
Collapse
|
11
|
Adair JE, Beard BC, Trobridge GD, Neff T, Rockhill JK, Silbergeld DL, Mrugala MM, Kiem HP. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci Transl Med 2012; 4:133ra57. [PMID: 22572881 DOI: 10.1126/scitranslmed.3003425] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy with alkylating agents for treating malignant disease results in myelosuppression that can significantly limit dose escalation and potential clinical efficacy. Gene therapy using mutant methylguanine methyltransferase (P140K) gene-modified hematopoietic stem and progenitor cells may circumvent this problem by abrogating the toxic effects of chemotherapy on hematopoietic cells. However, this approach has not been evaluated clinically. Here, we show efficient polyclonal engraftment of autologous P140K-modified hematopoietic stem and progenitor cells in three patients with glioblastoma. Increases in P140K-modified cells after transplant indicate selection of gene-modified hematopoietic repopulating cells. Longitudinal retroviral integration site (RIS) analysis identified more than 12,000 unique RISs in the three glioblastoma patients, with multiple clones present in the peripheral blood of each patient throughout multiple chemotherapy cycles. To assess safety, we monitored RIS distribution over the course of chemotherapy treatments. Two patients exhibited emergence of prominent clones harboring RISs associated with the intronic coding region of PRDM16 (PR domain-containing 16) or the 3' untranslated region of HMGA2 (high-mobility group A2) genes with no adverse clinical outcomes. All three patients surpassed the median survival for glioblastoma patients with poor prognosis, with one patient alive and progression-free more than 2 years after diagnosis. Thus, transplanted P140K-expressing hematopoietic stem and progenitor cells are chemoprotective, potentially maximizing the drug dose that can be administered.
Collapse
Affiliation(s)
- Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, Urrutia RA, Sarkaria JN. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 2012; 18:4070-9. [PMID: 22675172 DOI: 10.1158/1078-0432.ccr-12-0560] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The therapeutic benefit of temozolomide in glioblastoma multiforme (GBM) is limited by resistance. The goal of this study was to elucidate mechanisms of temozolomide resistance in GBM. EXPERIMENTAL DESIGN We developed an in vivo GBM model of temozolomide resistance and used paired parental and temozolomide-resistant tumors to define the mechanisms underlying the development of resistance and the influence of histone deacetylation (HDAC) inhibition. RESULTS Analysis of paired parental and resistant lines showed upregulation of O6-methylguanine-DNA methyltransferase (MGMT) expression in 3 of the 5 resistant xenografts. While no significant change was detected in MGMT promoter methylation between parental and derivative-resistant samples, chromatin immunoprecipitation showed an association between MGMT upregulation and elevated acetylation of lysine 9 of histone H3 (H3K9-ac) and decreased dimethylation (H3K9-me2) in GBM12 and GBM14. In contrast, temozolomide resistance development in GBM22 was not linked to MGMT expression, and both parental and resistant lines had low H3K9-ac and high H3K9-me2 within the MGMT promoter. In the GBM12TMZ-resistant line, MGMT reexpression was accompanied by increased recruitment of SP1, C-JUN, NF-κB, and p300 within the MGMT promoter. Interestingly, combined treatment of GBM12 flank xenografts with temozolomide and the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) favored the evolution of temozolomide resistance by MGMT overexpression as compared with treatment with temozolomide alone. CONCLUSION This study shows, for the first time, a unique mechanism of temozolomide resistance development driven by chromatin-mediated MGMT upregulation and highlights the potential for epigenetically directed therapies to influence the mechanisms of resistance development in GBM.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vascotto C, Bisetto E, Li M, Zeef LAH, D'Ambrosio C, Domenis R, Comelli M, Delneri D, Scaloni A, Altieri F, Mavelli I, Quadrifoglio F, Kelley MR, Tell G. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 2011; 22:3887-901. [PMID: 21865600 PMCID: PMC3192867 DOI: 10.1091/mbc.e11-05-0391] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1) protects cells from oxidative stress via the base excision repair pathway and as a redox transcriptional coactivator. It is required for tumor progression/metastasis, and its up-regulation is associated with cancer resistance. Loss of APE1 expression causes cell growth arrest, mitochondrial impairment, apoptosis, and alterations of the intracellular redox state and cytoskeletal structure. A detailed knowledge of the molecular mechanisms regulating its different activities is required to understand the APE1 function associated with cancer development and for targeting this protein in cancer therapy. To dissect these activities, we performed reconstitution experiments by using wild-type and various APE1 mutants. Our results suggest that the redox function is responsible for cell proliferation through the involvement of Cys-65 in mediating APE1 localization within mitochondria. C65S behaves as a loss-of-function mutation by affecting the in vivo folding of the protein and by causing a reduced accumulation in the intermembrane space of mitochondria, where the import protein Mia40 specifically interacts with APE1. Treatment of cells with (E)-3-(2-[5,6-dimethoxy-3-methyl-1,4-benzoquinonyl])-2-nonyl propenoic acid, a specific inhibitor of APE1 redox function through increased Cys-65 oxidation, confirm that Cys-65 controls APE1 subcellular trafficking and provides the basis for a new role for this residue.
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ohba S, Hirose Y, Yoshida K, Yazaki T, Kawase T. Inhibition of 90-kD heat shock protein potentiates the cytotoxicity of chemotherapeutic agents in human glioma cells. J Neurosurg 2010; 112:33-42. [PMID: 19408974 DOI: 10.3171/2009.3.jns081146] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECT The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas. A considerable number of glioblastoma cases are refractory to TMZ, however, and the development of novel chemotherapeutic regimens is needed. The authors of previous studies have revealed that hsp90 is expressed at higher levels in human neoplastic tissues, including gliomas, than in normal tissues. Heat shock protein 90 is involved in a cytoprotective mechanism against cellular stressors such as DNA damage, and the authors hypothesized that hsp90 inhibitors might act as antitumor agents against gliomas and potentiate the cytotoxicity of DNA-damaging agents. METHODS The authors examined the cytotoxicity of an hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), both alone and in combination with 1 of 3 DNA-damaging agents (cisplatin, 1,3-bis(2-chloroethyl)-1-nitrosourea, and TMZ) in human glioma cell lines. The cytotoxicity of these agents to glioma cells was measured using a colony formation assay. The cell cycle phase distribution, protein expression, and number of apoptotic cells were measured using a fluorescence-activated cell sorting assay, immunoblot assays, and double staining with annexin V and propidium iodide. In an in vivo experiment, 17-AAG, cisplatin, or 17-AAG and cisplatin were administered intraperitoneally to mice with xenografted U87MG cells, and the resulting tumor volumes were measured. RESULTS The authors found that 17-AAG reduced the clonogenicity of U87MG cells, and at a low concentration (< 100 nM) potentiated the cytotoxicity of the DNA-crosslinking agents cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosourea, but not that of the DNA-methylating agent TMZ. This 17-AAG-induced potentiation of DNA crosslinking agent-induced cytotoxicity was a consequence of prolonged G(2)-M arrest accompanied by the suppression of cdc2 and cdc25C and of increased apoptotic cell death accompanied by the degradation of the antiapoptosis proteins Akt and survivin. Similar effects were observed when cells were treated with radicicol, another hsp90 inhibitor. The 17-AAG-induced enhancement of DNA crosslinking agent-induced cytotoxicity was also observed in other cell lines. In addition, 17-AAG sensitized xenografted U87MG cells to cisplatin in nude mice. CONCLUSIONS Heat shock protein 90-targeted therapy may be an effective strategy for potentiating chemotherapy using DNA-crosslinking agents for TMZ-refractory gliomas.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
Abstract
Profound changes in the epigenetic landscape of cancer cells underlie the development of human malignancies. These changes include large-scale DNA methylation changes throughout the genome as well as alterations in the compendium of post-translational chromatin modifications. Epigenetic aberrations impact multiple steps during tumorigenesis, ultimately promoting the selection of neoplastic cells with increasing pathogenicity. Identification of these alterations for use as predictive and prognostic biomarkers has been a highly sought after goal. Recent advances in the field have not only greatly expanded our knowledge of the epigenetic changes driving neoplasia but also demonstrated their significant clinical utility as cancer biomarkers. These biomarkers have proved to be useful for identifying patients whose malignancies are sensitive to specific cytotoxic chemotherapies and may hold promise for predicting which patients will benefit from newer targeted agents directed at oncogenes. The recent application of global analysis strategies has further accelerated our understanding of the epigenome and promises to enhance the identification of epigenomic programs underlying cancer progression and treatment response.
Collapse
Affiliation(s)
- Timothy A Chan
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
16
|
Inhibition of c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity in human glioma cells. J Neurooncol 2009; 95:307-316. [DOI: 10.1007/s11060-009-9929-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/24/2009] [Indexed: 01/03/2023]
|
17
|
Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, Gururangan S, Friedman AH, Bigner DD, Sampson JH, McLendon RE, Herndon JE, Walker A, Friedman HS. Phase I trial of temozolomide plus O6-benzylguanine 5-day regimen with recurrent malignant glioma. Neuro Oncol 2009; 11:556-61. [PMID: 19289491 DOI: 10.1215/15228517-2009-007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This phase I clinical trial conducted with patients who had recurrent or progressive malignant glioma (MG) was designed to determine the maximum tolerated dose (MTD) and toxicity of three different 5-day dosing regimens of temozolomide (TMZ) in combination with O(6)-benzylguanine (O(6)-BG). Both TMZ and O(6)-BG were administered on days 1-5 of a 28-day treatment cycle. A bolus infusion of O(6)-BG was administered at 120 mg/m(2) over 1 h on days 1, 3, and 5, along with a continuous infusion of O(6)-BG at 30 mg/m(2)/day. TMZ was administered at the end of the first bolus infusion of O(6)-BG and then every 24 h for 5 days during the continuous infusion of O(6)-BG. Patients were accrued to one of three 5-day dosing regimens of TMZ. Twenty-nine patients were enrolled into this study. The dose-limiting toxicities (DLTs) were grade 4 neutropenia, leukopenia, and thrombocytopenia. The MTD for TMZ for the three different 5-day dosing schedules was determined as follows: schedule 1, 200 mg/m(2) on day 1 and 50 mg/m(2)/day on days 2-5; schedule 2, 50 mg/m(2)/day on days 1-5; and schedule 3, 50 mg/m(2)/day on days 1-5 while receiving pegfilgrastim. Thus, the 5-day TMZ dosing schedule that maximized the total dose of TMZ when combined with O(6)-BG was schedule 1. This study provides the foundation for a phase II trial of O(6)-BG in combination with a 5-day dosing schedule of TMZ in TMZ-resistant MG.
Collapse
Affiliation(s)
- Jennifer A Quinn
- Dept. of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 2008; 11:281-91. [PMID: 18952979 DOI: 10.1215/15228517-2008-090] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Temozolomide (TMZ)-based therapy is the standard of care for patients with glioblastoma multiforme (GBM), and resistance to this drug in GBM is modulated by the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of MGMT is silenced by promoter methylation in approximately half of GBM tumors, and clinical studies have shown that elevated MGMT protein levels or lack of MGMT promoter methylation is associated with TMZ resistance in some, but not all, GBM tumors. In this study, the relationship between MGMT protein expression and tumor response to TMZ was evaluated in four GBM xenograft lines that had been established from patient specimens and maintained by serial subcutaneous passaging in nude mice. Three MGMT unmethylated tumors displayed elevated basal MGMT protein expression, but only two of these were resistant to TMZ therapy (tumors GBM43 and GBM44), while the other (GBM14) displayed a level of TMZ sensitivity that was similar in extent to that seen in a single MGMT hypermethylated line (GBM12). In tissue culture and animal studies, TMZ treatment resulted in robust and prolonged induction of MGMT expression in the resistant GBM43 and GBM44 xenograft lines, while MGMT induction was blunted and abbreviated in GBM14. Consistent with a functional significance of MGMT induction, treatment of GBM43 with a protracted low-dose TMZ regimen was significantly less effective than a shorter high-dose regimen, while survival for GBM14 was improved with the protracted dosing regimen. In conclusion, MGMT expression is dynamically regulated in some MGMT nonmethylated tumors, and in these tumors, protracted dosing regimens may not be effective.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Waldeck W, Wiessler M, Ehemann V, Pipkorn R, Spring H, Debus J, Didinger B, Mueller G, Langowski J, Braun K. TMZ-BioShuttle--a reformulated temozolomide. Int J Med Sci 2008; 5:273-84. [PMID: 18797509 PMCID: PMC2536715 DOI: 10.7150/ijms.5.273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022] Open
Abstract
There is a large number of effective cytotoxic drugs whose side effect profile, efficacy, and long-term use in man are well understood and documented over decades of use in clinical routine e.g. in the treatment of recurrent glioblastoma multiforme (GBM) and the hormone-refractory prostate cancer (HRPC). Both cancers are insensitive against most chemotherapeutic interventions; they have low response rates and poor prognoses. Some cytotoxic agents can be significantly improved by using modern technology of drug delivery or formulation. We succeeded to enhance the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic temozolomide (TMZ) as an example. The TMZ connection to transporter molecules (TMZ-BioShuttle) resulted in a much higher pharmacological effect in glioma cell lines while using reduced doses. This permits the conclusion that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The re-formulation of TMZ to TMZ-BioShuttle achieved a nearly 10-fold potential of the established pharmaceutic TMZ far beyond the treatment of brain tumors cells and results in an attractive reformulated drug with enhanced therapeutic index.
Collapse
Affiliation(s)
- Waldemar Waldeck
- German Cancer Research Center, Division of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061-8. [PMID: 18772890 PMCID: PMC2671642 DOI: 10.1038/nature07385] [Citation(s) in RCA: 5912] [Impact Index Per Article: 347.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/01/2008] [Indexed: 11/21/2022]
Abstract
Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multidimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here, we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas (GBM), the most common type of adult brain cancer, and nucleotide sequence aberrations in 91 of the 206 GBMs. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the PI3 kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of GBM. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Collapse
|
21
|
Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in Malignant Glioma: Standard of Care and Future Directions. J Clin Oncol 2007; 25:4127-36. [PMID: 17827463 DOI: 10.1200/jco.2007.11.8554] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioma has been considered resistant to chemotherapy and radiation. Recently, concomitant and adjuvant chemoradiotherapy with temozolomide has become the standard treatment for newly diagnosed glioblastoma. Conversely (neo-)adjuvant PCV (procarbazine, lomustine, vincristine) failed to improve survival in the more chemoresponsive tumor entities of anaplastic oligoastrocytoma and oligodendroglioma. Preclinical investigations suggest synergism or additivity of radiotherapy and temozolomide in glioma cell lines. Although the relative contribution of the concomitant and the adjuvant chemotherapy, respectively, cannot be assessed, the early introduction of chemotherapy and the simultaneous administration with radiotherapy appear to be key for the improvement of outcome. Epigenetic inactivation of the DNA repair enzyme methylguanine methyltransferase (MGMT) seems to be the strongest predictive marker for outcome in patients treated with alkylating agent chemotherapy. Patients whose tumors do not have MGMT promoter methylation are less likely to benefit from the addition of temozolomide chemotherapy and require alternative treatment strategies. The predictive value of MGMT gene promoter methylation is being validated in ongoing trials aiming at overcoming this resistance by a dose-dense continuous temozolomide administration or in combination with MGMT inhibitors. Understanding of molecular mechanisms allows for rational targeting of specific pathways of repair, signaling, and angiogenesis. The addition of tyrosine kinase inhibitors vatalanib (PTK787) and vandetinib (ZD6474), the integrin inhibitor cilengitide, the monoclonal antibodies bevacizumab and cetuximab, the mammalian target of rapamycin inhibitors temsirolimus and everolimus, and the protein kinase C inhibitor enzastaurin, among other agents, are in clinical investigation, building on the established chemoradiotherapy regimen for newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Roger Stupp
- Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
22
|
Takahashi S, Hirose Y, Ikeda E, Fukaya R, Kawase T. Chromosome arm 1q gain associated with good response to chemotherapy in a malignant glioma. Case report. J Neurosurg 2007; 106:488-94. [PMID: 17367075 DOI: 10.3171/jns.2007.106.3.488] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors describe the case of a patient with a glioblastoma multiforme who showed remarkably good response to chemotherapy. A genetic analysis using comparative genomic hybridization (CGH) revealed that the tumor had a gain on the q arm of chromosome 1 (1q). Using CGH for a series of genetic analyses of more than 180 patients with gliomas, six were found to have a demonstrated 1q gain. Although the tumors in all six of these cases were histopathologically diagnosed as high-grade gliomas, compared with other malignant gliomas they demonstrated a good prognosis because of their favorable chemotherapeutic sensitivity. In immunohistochemical tests, most of the tumor cells in these cases were negative for O6-methylguanine-DNA methyltransferase, which antagonizes the effect of DNA-alkylating chemotherapeutic agents. The authors believed that a gain of 1q could be produced through the genetic events that cause loss of 1p, because these chromosomal aberrations have an imbalance of DNA copy number in common (1p < 1q). A gain of 1q is an infrequent chromosomal aberration and its clinical importance should be investigated in a larger study; however, patients with malignant gliomas demonstrating a 1q gain possibly show longer survival and good response to chemotherapy similar to patients with tumors demonstrating 1p loss. The importance of using genetic analysis for gliomas is emphasized in this report because it may help in selecting cases responsive to chemotherapy and because appropriate treatment for these patients will lead to progress in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Blough MD, Zlatescu MC, Cairncross JG. O6-methylguanine-DNA methyltransferase regulation by p53 in astrocytic cells. Cancer Res 2007; 67:580-4. [PMID: 17234766 DOI: 10.1158/0008-5472.can-06-2782] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter (i.e., gene silencing) occurs in 40% to 50% of patients with glioblastoma and predicts benefit from temozolomide chemotherapy; when unmethylated, MGMT repairs DNA damage induced by temozolomide, contributing to chemoresistance. In this study, we tested the hypothesis that MGMT is regulated by p53 in astrocytic cells, the precursors of which may give rise to glioblastoma. p53 is of interest because, in addition to often being mutated in glioblastoma, inactivation sensitizes some astrocytoma cell lines to temozolomide. MGMT expression was examined in neonatal murine astrocytes and SF767 human astrocytic glioma cells following p53 inactivation by knockout (murine only) or RNAi methods. MGMT mRNA and protein were detected in murine wild-type p53 astrocytes. However, in knockout murine astrocytes and wild-type cells in which p53 was inhibited by RNAi, MGMT expression was reduced by >90%. This effect of p53 on MGMT expression was unrelated to MGMT promoter methylation-in both wild-type and p53-null astrocytes, the MGMT promoter was unmethylated. In wild-type astrocytes, the p53 protein localized to a regulatory region of the MGMT promoter. In SF767 human astrocytic glioma cells, transient knockdown of p53 led to the down-regulation of MGMT gene expression. In murine astrocytes and SF767 cells, p53 regulates MGMT expression without affecting promoter methylation; in astrocytes, this effect may be due to direct binding of p53 to the MGMT promoter. These results imply that the best use of temozolomide requires a thorough understanding of MGMT regulation.
Collapse
Affiliation(s)
- Michael D Blough
- Department of Clinical Neurosciences, University of Calgary and the Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | | | | |
Collapse
|
24
|
Mirzoeva OK, Kawaguchi T, Pieper RO. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol Cancer Ther 2006; 5:2757-66. [PMID: 17121922 DOI: 10.1158/1535-7163.mct-06-0183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.
Collapse
Affiliation(s)
- Olga K Mirzoeva
- UCSF Cancer Center, The University of California-San Francisco, Room N219, 2340 Sutter Street, San Francisco, CA 94115-0875.
| | | | | |
Collapse
|
25
|
Quinn JA, Desjardins A, Weingart J, Brem H, Dolan ME, Delaney SM, Vredenburgh J, Rich J, Friedman AH, Reardon DA, Sampson JH, Pegg AE, Moschel RC, Birch R, McLendon RE, Provenzale JM, Gururangan S, Dancey JE, Maxwell J, Tourt-Uhlig S, Herndon JE, Bigner DD, Friedman HS. Phase I Trial of Temozolomide PlusO6-Benzylguanine for Patients With Recurrent or Progressive Malignant Glioma. J Clin Oncol 2005; 23:7178-87. [PMID: 16192602 DOI: 10.1200/jco.2005.06.502] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeWe conducted a two-phase clinical trial in patients with progressive malignant glioma (MG). The first phase of this trial was designed to determine the dose of O6-BG effective in producing complete depletion of tumor AGT activity for 48 hours. The second phase of the trial was designed to define the maximum tolerated dose (MTD) of a single dose of temozolomide when combined with O6-BG. In addition, plasma concentrations of O6-BG and O6-benzyl-8-oxoguanine were evaluated after O6-BG.Patients and MethodsFor our first phase of the clinical trial, patients were scheduled to undergo craniotomy for AGT determination after receiving a 1-hour O6-BG infusion at 120 mg/m2followed by a continuous infusion at an initial dose of 30 mg/m2/d for 48 hours. The dose of the continuous infusion of O6-BG escalated until tumor AGT was depleted. Once the O6-BG dose was established a separate group of patients was enrolled in the second phase of clinical trial, in which temozolomide, administered as a single dose at the end of the 1-hour O6-BG infusion, was escalated until the MTD was determined.ResultsThe O6-BG dose found to be effective in depleting tumor AGT activity at 48 hours was an IV bolus of 120 mg/m2over 1 hour followed by a continuous infusion of 30 mg/m2/d for 48 hours. On enrolling 38 patients in six dose levels of temozolomide, the MTD was established at 472 mg/m2with dose-limiting toxicities limited to myelosuppression.ConclusionThis study provides the foundation for a phase II trial of O6-BG plus temozolomide in temozolomide-resistant MG.
Collapse
Affiliation(s)
- Jennifer A Quinn
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD. O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res 2005; 11:2747-55. [PMID: 15814657 DOI: 10.1158/1078-0432.ccr-04-2045] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Primary brain tumors are the leading cause of cancer death in children. Our purpose is (a) to assess the contribution of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) to the resistance of pediatric brain tumor cell lines to clinical alkylating agents and (b) to evaluate variables for maximal potentiation of cell killing by the MGMT inhibitor O6-benzylguanine, currently in clinical trials. Few such data for pediatric glioma lines, particularly those from low-grade tumors, are currently available. EXPERIMENTAL DESIGN We used clonogenic assays of proliferative survival to quantitate cytoxicity of the chloroethylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the methylating agent temozolomide in 11 glioma and five medulloblastoma lines. Twelve lines are newly established and characterized here, nine of them from low-grade gliomas including pilocytic astrocytomas. RESULTS (a) MGMT is a major determinant of BCNU resistance and the predominant determinant of temozolomide resistance in both our glioma and medulloblastoma lines. On average, O(6)-benzylguanine reduced LD10 for BCNU and temozolomide, 2.6- and 26-fold, respectively, in 15 MGMT-expressing lines. (b) O6-Benzylguanine reduced DT (the threshold dose for killing) for BCNU and temozolomide, 3.3- and 138-fold, respectively. DT was decreased from levels higher than, to levels below, clinically achievable plasma doses for both alkylators. (c) Maximal potentiation by O6-benzylguanine required complete and prolonged suppression of MGMT. CONCLUSIONS Our results support the use of O6-benzylguanine to achieve full benefit of alkylating agents, particularly temozolomide, in the chemotherapy of pediatric brain tumors.
Collapse
Affiliation(s)
- Michael S Bobola
- Division of Neurosurgery, Department of Surgery and Hematology/Oncology, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Hirose Y, Katayama M, Berger MS, Pieper RO. Cooperative function of Chk1 and p38 pathways in activating G2 arrest following exposure to temozolomide. J Neurosurg 2004; 100:1060-5. [PMID: 15200121 DOI: 10.3171/jns.2004.100.6.1060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The Chk1 and p38 mitogen-activated protein kinase (MAPK) pathways play key roles in the G2 arrest caused by exposing glioma cells to temozolomide (TMZ). Although inhibition of either pathway sensitizes glioma cells to TMZ-induced cytotoxicity, the relative contributions of these pathways to TMZ-induced G2 arrest and to TMZ resistance conferred by G2 arrest have not been defined. METHODS The authors pharmacologically inhibited the Chk1 and/or p38 pathways in U87MG human glioma cells prior to and/or after exposure to TMZ; thereafter, effects on the TMZ-induced G2 arrest pathway and toxicity were monitored. The p38 inhibitor SB203580 or the Chk1 inhibitor UCN-01 or their combination blocked TMZ-mediated inactivation of cdc25C and cdc2, suggesting that p38 and Chk1 pathways work cooperatively and are both necessary to inactivate cdc25C and cdc2. Consistent with this idea, the inhibition of both Chk1 and p38 pathways did not lead to greater bypass of TMZ-induced G2 arrest or greater cytotoxicity than inhibition of either pathway alone. Inhibition of p38 did not alter TMZ-induced Chk1 activation/phosphorylation and vice versa, suggesting that p38 and Chk1 do not cooperatively bring about G2 arrest by reciprocal activation/phosphorylation. The two pathways, however, are not functionally identical; the Chk1 pathway was required for both the initiation and maintenance of TMZ-induced G2 arrest, whereas the p38 pathway played a role only in the initiation. CONCLUSIONS The Chk1 and p38 pathways cooperate to bring about TMZ-induced G2 arrest, and the inhibition of either pathway alone is sufficient to sensitize U87MG glioma cells to TMZ-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuichi Hirose
- Brain Tumor Research Center, Department of Neurological Surgery, San Francisco, California, USA
| | | | | | | |
Collapse
|
28
|
Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO. The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 2003; 23:8306-15. [PMID: 14585987 PMCID: PMC262371 DOI: 10.1128/mcb.23.22.8306-8315.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although human cells exposed to DNA-methylating agents undergo mismatch repair (MMR)-dependent G(2) arrest, the basis for the linkage between MMR and the G(2) checkpoint is unclear. We noted that mitogen-activated protein kinase p38alpha was activated in MMR-proficient human glioma cells exposed to the chemotherapeutic methylating agent temozolomide (TMZ) but not in paired cells made MMR deficient by expression of a short inhibitory RNA (siRNA) targeted to the MMR protein Mlh1. Furthermore, activation of p38alpha in MMR-proficient cells was associated with nuclear inactivation of the cell cycle regulator Cdc25C phosphatase and its downstream target Cdc2 and with activation of the G(2) checkpoint, actions which were suppressed by the p38alpha/beta inhibitors SB203580 and SB202590 or by expression of a p38alpha siRNA. Finally, pharmacologic or genetic inhibition of p38alpha increased the sensitivity of MMR-proficient cells to the cytotoxic actions of TMZ by increasing the percentage of cells that underwent mitotic catastrophe as a consequence of G(2) checkpoint bypass. These results suggest that p38alpha links DNA MMR to the G(2) checkpoint and to resistance to chemotherapeutic DNA-methylating agents. The p38 pathway may therefore represent a new target for the development of agents to sensitize tumor cells to chemotherapeutic methylating agents.
Collapse
Affiliation(s)
- Yuichi Hirose
- UCSF Cancer Center, Department of Neurological Surgery, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94115-0875, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 2003; 99:1047-52. [PMID: 14705733 DOI: 10.3171/jns.2003.99.6.1047] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Object. Temozolomide (TMZ) is a DNA alkylating agent currently used as adjuvant treatment for anaplastic astrocytomas. Its use in managing glioblastoma multiforme has been halted because of the lack of therapeutic effects due to cell resistance. Note that O6-alkylguanine—DNA alkyltranferase (AGT) is a DNA repair enzyme that limits the efficacy of TMZ. In this study the authors investigated the ability of O6-benzylguanine (BG), an AGT inhibitor, to sensitize a glioblastoma cell line resistant to TMZ.
Methods. The effects of TMZ alone (100 µg) and after exposure to BG (50 µg) were assessed in two glioblastoma cell lines, U373-MG and T98G, respectively, sensitive and resistant to TMZ. Cell viability was assessed using trypan blue; cell cycle analysis by fluorescence-activated cell sorter; and apoptosis and autophagy by terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and acridine orange staining, respectively. Furthermore, the involvement of an autophagy marker, microtubule-associated light chain 3 (LC3), was assessed. Temozolomide suppressed the growth of and caused cell cycle arrest in the G2—M phase of U373-MG cells but not T98G cells. Exposure to BG prior to TMZ resulted in a significant decrease in cell viability as well as cell cycle arrest in the G2—M phase in T98G cells (p < 0.05). Although apoptosis was not detected on TUNEL staining, programmed cell death Type II (autophagy) was detected after exposure to BG and TMZ in T98G cells.
Conclusions. These results indicate that inhibition of AGT by BG can render previously resistant glioma cells sensitive to TMZ treatment. The mechanism of cell demise following BG-TMZ treatment seems to be autophagy and not apoptosis. Combination therapy involving TMZ and an AGT inhibitor may be an effective strategy to treat resistant gliomas.
Collapse
Affiliation(s)
- Takao Kanzawa
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|