1
|
Schnurman Z, Fazl A, Feigin AS, Mogilner AY, Pourfar M. Rescue Lead Implantation After Deep Brain Stimulation for Parkinson's Disease: A Single-Center Experience and Case Series. Oper Neurosurg (Hagerstown) 2024; 27:295-302. [PMID: 39145662 DOI: 10.1227/ons.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite the well-established efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's Disease (PD), there remains a subset of patients with only a moderate improvement in symptoms even with appropriate lead placement and optimal programming. In patients with persistent tremor or dyskinesias, one consideration is the addition of a second "rescue lead" to provide dual stimulation to primary and secondary targets to address the refractory component. This study aimed to assess all "rescue lead" cases from our institution and characterize the patients and their outcomes. METHODS Records of all patients with PD treated at our institution between 2005 and 2023 were retrospectively reviewed. Clinical data of all patients treated with a second rescue lead to supplement a positive but inadequate initial DBS response were collected and reviewed. RESULTS Of 670 patients with PD treated at our institution during the study period, 7 were managed with a rescue lead. All 7 were initially treated with STN DBS with a partial improvement in underlying symptoms, had confirmed appropriate lead placement, and underwent thorough programming. Four patients underwent rescue with a globus pallidus interna lead for persistent dyskinesias, all with subsequent improvement in their dyskinesias. Three patients had persistent tremors that were treated with a rescue ventrointermediate thalamus stimulation with subsequent improvement in tremor scores. There were no operative complications, and all patients tolerated dual stimulation. CONCLUSION For a small subset of patients with PD with persistent dyskinesias or tremors after STN DBS despite optimized lead parameters and adequate lead placement, rescue lead placement offers an effective treatment option.
Collapse
Affiliation(s)
- Zane Schnurman
- Department of Neurosurgery, NYU Langone Health, New York, New York, USA
| | - Arash Fazl
- Department of Neurology, Booth Gardner Parkinson's Care Center, EvergreenHealth, Kirkland, Washington
| | - Andrew S Feigin
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Alon Y Mogilner
- Department of Neurosurgery, NYU Langone Health, New York, New York, USA
| | - Michael Pourfar
- Department of Neurosurgery, NYU Langone Health, New York, New York, USA
| |
Collapse
|
2
|
Zhu Y, Jing L, Hu R, Mo F, Jia Q, Yang G, Xu Z, Han M, Wang M, Cai X, Luo J. High-Throughput Microelectrode Arrays for Precise Functional Localization of the Globus Pallidus Internus. CYBORG AND BIONIC SYSTEMS 2024; 5:0123. [PMID: 38784125 PMCID: PMC11112599 DOI: 10.34133/cbsystems.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 μm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the β-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Yuxin Zhu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqi Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zeng Z, Huang P, Lin Z, Pan Y, Wan X, Zhang C, Sun B, Li D. Rescue subthalamic stimulation after unsatisfactory outcome of pallidal stimulation in Parkinson's disease: a case series and review. Front Aging Neurosci 2024; 15:1323541. [PMID: 38264547 PMCID: PMC10803461 DOI: 10.3389/fnagi.2023.1323541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Background Subthalamic nucleus (STN) and globus pallidus interna (GPi) are two main structures primarily targeted by deep brain stimulation (DBS) to treat advanced Parkinson's disease (PD). A subset of cases with unsatisfactory outcomes may benefit from rescue DBS surgery targeting another structure, while these patients' characteristics have not been well described and this phenomenon has not been well reviewed. Methods This monocentric retrospective study included patients with PD, who underwent rescue STN DBS following an unsatisfactory outcome of the initial bilateral GPi DBS in a retrospective manner. A short review of the current literature was conducted to report the clinical outcome of rescue DBS surgeries. Results Eight patients were identified, and six of them were included in this study. The rescue STN DBS was performed 19.8 months after the initial GPi DBS. After 8.8 months from the rescue STN DBS, patients showed a significant off-medication improvement by 29.2% in motor symptoms compared to initial GPi DBS. Non-motor symptoms and the health-related quality of life were also significantly improved. Conclusion Our findings suggest that the rescue STN DBS may improve off-medication motor and non-motor symptoms and quality of life in patients with failure of initial GPi DBS. The short review of the current literature showed that the target switching from GPi to STN was mainly due to poor initial outcomes and was performed by target substitution, whereas the switching from STN to GPi was mainly due to a gradual waning of benefits, long-term axial symptoms, dyskinesia, and dystonia and was performed by target addition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Oertel MF, Schüpbach WMM, Ghika JA, Stieglitz LH, Fiechter M, Kaelin-Lang A, Raabe A, Pollo C. Combined thalamic and subthalamic deep brain stimulation for tremor-dominant Parkinson's disease. Acta Neurochir (Wien) 2017; 159:265-269. [PMID: 27966027 DOI: 10.1007/s00701-016-3044-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
Deep brain stimulation (DBS) in the thalamic ventral intermediate (Vim) or the subthalamic nucleus (STN) reportedly improves medication-refractory Parkinson's disease (PD) tremor. However, little is known about the potential synergic effects of combined Vim and STN DBS. We describe a 79-year-old man with medication-refractory tremor-dominant PD. Bilateral Vim DBS electrode implantation produced insufficient improvement. Therefore, the patient underwent additional unilateral left-sided STN DBS. Whereas Vim or STN stimulation alone led to partial improvement, persisting tremor resolution occurred after simultaneous stimulation. The combination of both targets may have a synergic effect and is an alternative option in suitable cases.
Collapse
Affiliation(s)
- Markus F Oertel
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - W Michael M Schüpbach
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Lennart H Stieglitz
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of Neurosurgery, Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Fiechter
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Alain Kaelin-Lang
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
5
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
6
|
Abstract
AbstractDuring the “DBS Canada Day” symposium held in Toronto July 4-5, 2014, the scientific committee invited experts to discuss three main questions on target selection for deep brain stimulation (DBS) of patients with Parkinson’s disease (PD). First, is the subthalamic nucleus (STN) or the globus pallidus internus (GPi) the ideal target? In summary, both targets are equally effective in improving the motor symptoms of PD. STN allows a greater medications reduction, while GPi exerts a direct antidyskinetic effect. Second, are there further potential targets? Ventral intermediate nucleus DBS has significant long-term benefit for tremor control but insufficiently addresses other motor features of PD. DBS in the posterior subthalamic area also reduces tremor. The pedunculopontine nucleus remains an investigational target. Third, should DBS for PD be performed unilaterally, bilaterally or staged? Unilateral STN DBS can be proposed to asymmetric patients. There is no evidence that a staged bilateral approach reduces the incidence of DBS-related adverse events.
Collapse
|
7
|
Matias CM, Silva D, Machado AG, Cooper SE. “Rescue” of bilateral subthalamic stimulation by bilateral pallidal stimulation: case report. J Neurosurg 2016; 124:417-21. [DOI: 10.3171/2015.1.jns141604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) orglobus pallidus pars interna (GPi) is well established as a treatment for advanced Parkinson’s disease. In general, one of the 2 targets is chosen based on the clinical features of each patient. Stimulation of both targets could be viewed as redundant, given that the 2 targets are directly connected. However, it is possible that each target has different mechanisms, with clinical effects mediated by orthodromic or antidromic stimulation.
The authors report the case of a patient with severe Parkinson’s disease who had previously undergone bilateral subthalamic stimulation with excellent benefits. However, he presented with significant worsening associated with disease progression and pharmacological treatment, and then underwent bilateral GPi DBS. Follow-up assessment was conducted clinically as well as through blinded ratings of video recordings.
Pallidal DBS may be a safe and useful strategy to manage dystonic features and behavioral complications of subthalamic stimulation and pharmacological management. While combined stimulation was quite successful in the reported patient, further studies with larger samples and longer follow-up periods will be necessary before recommending the addition of pallidal DBS as a routine strategy for patients previously implanted with STN DBS.
Collapse
Affiliation(s)
- Caio M. Matias
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
- 2Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danilo Silva
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| | - Andre G. Machado
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| | - Scott E. Cooper
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| |
Collapse
|
8
|
Delorme C, Rogers A, Lau B, Francisque H, Welter ML, Vidal SF, Yelnik J, Durr A, Grabli D, Karachi C. Deep brain stimulation of the internal pallidum in Huntington's disease patients: clinical outcome and neuronal firing patterns. J Neurol 2015; 263:290-298. [PMID: 26568561 DOI: 10.1007/s00415-015-7968-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) of the internal globus pallidus (GPi) could treat chorea in Huntington's disease patients. The objectives of this study were to evaluate the efficacy of GPi-DBS to reduce abnormal movements of three patients with Huntington's disease and assess tolerability. Three non-demented patients with severe pharmacoresistant chorea underwent bilateral GPi-DBS and were followed for 30, 24, and 12 months, respectively. Primary outcome measure was the change of the chorea and total motor scores of the Unified Huntington's Disease Rating Scale between pre- and last postoperative assessments. Secondary outcome measures were motor changes between ventral versus dorsal and between on- and off- GPi-DBS. GPi neuronal activities were analyzed and compared to those obtained in patients with Parkinson's disease. No adverse effects occurred. Chorea decreased in all patients (13, 67 and 29%) postoperatively. Total motor score decreased in patient 2 (19.6%) and moderately increased in patients 1 and 3 (17.5 and 1.7%), due to increased bradykinesia and dysarthria. Ventral was superior to dorsal GPi-DBS to control chorea. Total motor score increased dramatically off-stimulation compared to ventral GPi-DBS (70, 63 and 19%). Cognitive and psychic functions were overall unchanged. Lower mean rate and less frequent bursting activity were found in Huntington's disease compared to Parkinson's disease patients. Ventral GPi-DBS sustainably reduced chorea, but worsened bradykinesia and dysarthria. Based on these results and previous published reports, we propose to select non-demented HD patients with severe chorea, and a short disease evolution as the best candidates for GPi-DBS.
Collapse
Affiliation(s)
- Cécile Delorme
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alister Rogers
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France. .,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France. .,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France.
| | - Brian Lau
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Hélène Francisque
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Marie-Laure Welter
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Sara Fernandez Vidal
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, 75013, Paris, France
| | - Jérôme Yelnik
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alexandra Durr
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - David Grabli
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Carine Karachi
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
9
|
Kim JH, Chang WS, Jung HH, Chang JW. Effect of Subthalamic Deep Brain Stimulation on Levodopa-Induced Dyskinesia in Parkinson's Disease. Yonsei Med J 2015; 56:1316-21. [PMID: 26256974 PMCID: PMC4541661 DOI: 10.3349/ymj.2015.56.5.1316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the effect of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) on levodopa-induced peak-dose dyskinesia in patients with Parkinson's disease (PD). MATERIALS AND METHODS A retrospective review was conducted on patients who underwent STN DBS for PD from May 2000 to July 2012. Only patients with levodopa-induced dyskinesia prior to surgery and more than 1 year of available follow-up data after DBS were included. The outcome measures included the dyskinesia subscore of the Unified Parkinson's Disease Rating Scale (UPDRS) part IV (items 32 to 34 of UPDRS part IV) and the levodopa equivalent daily dose (LEDD). The patients were divided into two groups based on preoperative to postoperative LEDD change at 12 months after the surgery: Group 1, LEDD decrease >15%; Group 2, all other patients. Group 2 was further divided by the location of DBS leads. RESULTS Of the 100 patients enrolled, 67 were in Group 1, while those remaining were in Group 2. Twelve months after STN DBS, Groups 1 and 2 showed improvements of 61.90% and 57.14%, respectively, in the dyskinesia subscore. Group 1 was more likely to experience dyskinesia suppression; however, the association between the groups and dyskinesia suppression was not statistically significant (p=0.619). In Group 2, dyskinesia was significantly decreased by stimulation of the area above the STN in 18 patients compared to stimulation of the STN in 15 patients (p=0.048). CONCLUSION Levodopa-induced dyskinesia is attenuated by STN DBS without reducing the levodopa dosage.
Collapse
Affiliation(s)
- Ji Hee Kim
- Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Chang
- Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Jung
- Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Cagnan H, Duff EP, Brown P. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease. Brain 2015; 138:1667-78. [PMID: 25888552 PMCID: PMC4614137 DOI: 10.1093/brain/awv093] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 11/14/2022] Open
Abstract
Phase alignment between oscillatory circuits is thought to optimize information flow, but excessive synchrony within the motor circuit may impair network function. Cagnan et al. characterize the processes that underscore excessive synchronization and its termination, as well as their modulation by levodopa, before suggesting interventions that might prevent pathological circuit interactions. Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37–64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions.
Collapse
Affiliation(s)
- Hayriye Cagnan
- 1 Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Mansfield Road, OX1 3TH, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU, UK 3 The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| | - Eugene Paul Duff
- 4 FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Peter Brown
- 1 Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Mansfield Road, OX1 3TH, UK 2 Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU, UK
| |
Collapse
|
11
|
Cook RJ, Jones L, Fracchia G, Anderson N, Miu J, Meagher LJ, Silburn PA, Silberstein P. Globus pallidus internus deep brain stimulation as rescue therapy for refractory dyskinesias following effective subthalamic nucleus stimulation. Stereotact Funct Neurosurg 2015; 93:25-9. [PMID: 25613902 DOI: 10.1159/000365223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) at the subthalamic nucleus (STN) or globus pallidus internus (GPi) can effectively treat the motor symptoms of Parkinson's disease, but dual implantation is rare. We report the first cases of additional GPi stimulation as rescue therapy for disabling dyskinesias following successful STN stimulation. METHODS Two patients, initially treated with bilateral STN DBS, underwent subsequent bilateral GPi DBS after the development of refractory dyskinesias within 1 and 6 years of STN surgery. Patients were evaluated with the Unified Parkinson's Disease Rating Scale (UPDRS) before and after surgeries for STN and GPi DBS. RESULTS GPi DBS effectively suppressed dyskinesias in these patients and improved their quality of life, as demonstrated by their videos and UPDRS scores. CONCLUSIONS Additional bilateral GPi DBS may be considered in the rare instance of patients who develop refractory dyskinesias early or late after bilateral STN DBS.
Collapse
Affiliation(s)
- Raymond J Cook
- Sydney DBS, North Shore Private Hospital, St. Leonards, N.S.W., Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fluchere F, Witjas T, Eusebio A, Bruder N, Giorgi R, Leveque M, Peragut JC, Azulay JP, Regis J. Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson's disease. J Neurol Neurosurg Psychiatry 2014; 85:1167-73. [PMID: 24249783 DOI: 10.1136/jnnp-2013-305323] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To report the short-term (1 year) and long-term (5 years) outcome of patients with Parkinson's disease (PD) with subthalamic nucleus (STN) stimulation operated upon under controlled general anaesthesia (GA). METHODS 213 consecutive patients with PD were included between January 2000 and March 2009 and operated upon under a particular type of GA with close control of the level of sedation allowing intraoperative recordings. 188 patients were assessed 1 year postoperatively. 65 patients also completed the long-term observation period and were evaluated 5 years postoperatively. RESULTS The Unified PD Rating Scale III score in the 'Off drug--On stim' condition was improved at 1 year and 5 years by 61% and 37%, respectively, (p<0.001). Motor complications decreased at short-term and long-term by 68% and 65%, respectively, for dyskinesia and by 52% and 48%, respectively, for fluctuations, (p<0.001). Dopaminergic treatment could also be reduced at short-term and long-term by 46% and 49%, respectively (p<0.001). There was no significant modification of mood and cognition assessments (Mattis scale and Beck depression inventory) at 1 year and 5 years. Concerning the main adverse events related to the surgery, we report four haematomas (1.9%) with two deaths (0.9%), eight cases of transient confusion (3.7%) and no epileptic seizure. CONCLUSIONS Our results confirm that STN stimulation performed under controlled GA is efficient and has similar short-term and long-term motor effects than intervention under local anaesthesia. Furthermore, this specific procedure is not associated with more adverse events. The success of such an intervention requires strict anaesthetic monitoring and accurate STN identification.
Collapse
Affiliation(s)
- F Fluchere
- Department of Neurology and Movement Disorders, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France
| | - T Witjas
- Department of Neurology and Movement Disorders, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France Institut de Neurosciences de la Timone UMR 7289 Aix Marseille Univ, CNRS, Marseille, Cedex, France
| | - A Eusebio
- Department of Neurology and Movement Disorders, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France Institut de Neurosciences de la Timone UMR 7289 Aix Marseille Univ, CNRS, Marseille, Cedex, France
| | - N Bruder
- Department of Anesthesiology, APHM, La Timone, Aix-Marseille Univ, Marseille, Cedex, France
| | - R Giorgi
- Service de Santé Publique et d'Information Médicale and LERTIM, APHM, La Timone, Aix-Marseille Univ, Marseille, Cedex, France
| | - M Leveque
- Department of Stereotactic and Functional Neurosurgery, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France
| | - J-C Peragut
- Department of Stereotactic and Functional Neurosurgery, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France
| | - J-P Azulay
- Department of Neurology and Movement Disorders, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France Institut de Neurosciences de la Timone UMR 7289 Aix Marseille Univ, CNRS, Marseille, Cedex, France
| | - J Regis
- Department of Stereotactic and Functional Neurosurgery, APHM, La Timone, Pôle de Neurosciences cliniques, Aix-Marseille Univ, Marseille, Cedex, France
| |
Collapse
|
13
|
Minafra B, Fasano A, Pozzi NG, Zangaglia R, Servello D, Pacchetti C. Eight-years Failure of Subthalamic Stimulation Rescued by Globus Pallidus Implant. Brain Stimul 2014; 7:179-81. [DOI: 10.1016/j.brs.2013.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
14
|
Moro E, Lang AE. Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Rev Neurother 2014; 6:1695-705. [PMID: 17144783 DOI: 10.1586/14737175.6.11.1695] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep-brain stimulation is currently the most effective surgical treatment for advanced Parkinson's disease. The relevant targets to date are the subthalamic nucleus and the globus pallidus internus, although the thalamus (ventralis intermedius nucleus) is preferred in tremor-dominant, aged Parkinson's disease patients. Long-term benefit in cardinal parkinsonian signs, motor fluctuations and dyskinesia has been reported in 5-year follow-up studies of subthalamic nucleus deep-brain stimulation. However, some psychiatric consequences have raised important issues and emphasized the need for an experienced deep-brain stimulation surgical team. This team should be multidisciplinary and involve movement disorder neurologists, neurosurgeons, neuropsychologists and psychiatrists. The recent observation that deep-brain stimulation of the pedunculopontine nucleus improves axial signs, possibly even in those less responsive to levodopa, brings new hope to the management of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Elena Moro
- University of Toronto, Department of Medicine, Movement Disorders Center, 399 Bathurst Street, McL7 402, Canada.
| | | |
Collapse
|
15
|
Mazzone P, Stocchi F, Galati S, Insola A, Altibrandi MG, Modugno N, Tropepi D, Brusa L, Stefani A. Bilateral Implantation of Centromedian-Parafascicularis Complex and GPi: A New Combination of Unconventional Targets for Deep Brain Stimulation in Severe Parkinson Disease. Neuromodulation 2013; 9:221-8. [PMID: 22151710 DOI: 10.1111/j.1525-1403.2006.00063.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Objectives. Traditional deep brain stimulation (DBS) at the subthalamic nucleus (STN) has proved to be efficacious on core Parkinsonian symptoms. However, very disabling l-dopa-induced abnormal involuntary movements (AIMs) and axial signs are slightly affected, suggesting that we target less conventional targets. Our candidates for DBS were the globus pallidus internus (GPi) plus the intralaminar thalamic complex (Pf or CM), given its extensive functional links with basal ganglia nuclei. Materials and Methods. The routine utilization of our innovative stereotactic apparatus allows us to implant, at the same time, both the CM-Pf complex together with the GPi in six Parkinson disease patients. Both intraoperative and postoperative neurophysiologic assessments helped us recognize functional subregions while optimizing implantation of electrodes. Unified Parkinson disease rating scale (UPDRS) motor scores, AIMs, and freezing were carefully blindly evaluated for each condition. Results. A significant amelioration of UPDRS scores was achieved by simultaneous activation of both targets. CM-Pf activation was only slightly effective in reducing rigidity and akinesia, but more efficacious on freezing. Not surprisingly, AIMs were peculiarly decreased by the activation of the permanent electro-catheter in the posteroventral GPi. Conclusions. These findings confirm that, in selected patients, it is conceivable to target structures other than the conventional STN in order to maximize clinical benefit.
Collapse
Affiliation(s)
- Paolo Mazzone
- Unità Operativa di Neurochirurgia Funzionale e Stereotassica, Ospedale CTO, Roma, Italy; Institute of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy; Clinica Neurologica, Università di Roma Tor Vergata, Roma, Italy; Unità Operativa di Neurologia, Ospedale S. Eugenio, ASL RMC, Roma, Italy; I.R.C.C.S. Fondazione S. Lucia, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, Foote KD, Bowers D, Ward HE, Sanchez-Ramos J, Okun MS. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington's disease. Stereotact Funct Neurosurg 2013; 91:129-33. [PMID: 23343665 DOI: 10.1159/000341070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and progressive neurodegenerative syndrome characterized by motor, cognitive and psychiatric manifestations. Chorea and dystonia are features that may be troublesome to some patients and may potentially prove unresponsive to pharmacological treatments. There are several reports on the results of globus pallidus internus deep brain stimulation (DBS) surgery for HD. In these published cases, DBS was utilized mainly to treat disabling chorea. We report our experience with 2 HD cases treated with DBS. The cases illustrate a differential response with a better outcome in the choreic presentation compared to the dystonic presentation. Additionally, DBS worsened gait features in both cases.
Collapse
Affiliation(s)
- Frances M Velez-Lago
- Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32607, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Betts MJ, O'Neill MJ, Duty S. Allosteric modulation of the group III mGlu4 receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson's disease. Br J Pharmacol 2012; 166:2317-30. [PMID: 22404342 DOI: 10.1111/j.1476-5381.2012.01943.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE We recently reported that broad spectrum agonist-induced activation of presynaptic group III metabotropic glutamate (mGlu) receptors within the substantia nigra pars compacta using L-2-amino-4-phosphonobutyrate provided functional neuroprotection in the 6-hydroxydopamine lesion rat model of Parkinson's disease. The aim of this study was to establish whether selective activation of the mGlu(4) receptor alone could afford similar functional neuroprotection. EXPERIMENTAL APPROACH The neuroprotective effects of 8 days of supranigral treatment with a positive allosteric modulator of mGlu(4) receptors, (+/-)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), were investigated in rats with unilateral 6-hydroxydopamine lesions. The effects of VU0155041 treatment on motor function were assessed using both habitual (cylinder test) and forced (adjusted stepping, amphetamine-induced rotations) behavioural tests. Nigrostriatal tract integrity was examined by analysis of tyrosine hydroxylase, dopa decarboxylase or dopamine levels in the striatum and tyrosine hydroxylase-positive cell counts in the substantia nigra pars compacta. KEY RESULTS VU0155041 provided around 40% histological protection against a unilateral 6-hydroxydopamine lesion as well as significant preservation of motor function. These effects were inhibited by pre-treatment with (RS)-α-cyclopropyl-4-phosphonophenylglycine, confirming a receptor-mediated response. Reduced levels of inflammatory markers were also evident in the brains of VU0155041-treated animals. CONCLUSIONS AND IMPLICATIONS Allosteric potentiation of mGlu(4) receptors in the substantia nigra pars compacta provided neuroprotective effects in the 6-hydroxydopamine rat model A reduced inflammatory response may contribute, in part, to this action. In addition to the reported symptomatic effects, activation of mGlu(4) receptors may also offer a novel approach for slowing the progressive degeneration observed in Parkinson's disease.
Collapse
Affiliation(s)
- Matthew J Betts
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK
| | | | | |
Collapse
|
18
|
Fasano A, Deuschl G. Patients and DBS targets: Is there any rationale for selecting them? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Marreiros AC, Cagnan H, Moran RJ, Friston KJ, Brown P. Basal ganglia-cortical interactions in Parkinsonian patients. Neuroimage 2012; 66:301-10. [PMID: 23153964 PMCID: PMC3573233 DOI: 10.1016/j.neuroimage.2012.10.088] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease is a common and debilitating condition, caused by aberrant activity in a complex basal ganglia–thalamocortical circuit. Therapeutic advances rely on characterising interactions in this circuit. However, recording electrophysiological responses over the entire circuit is impractical. Dynamic causal modelling offers large-scale models of predictive value based on a limited or partial sampling of complex networks. Using dynamic causal modelling, we determined the network changes underlying the pathological excess of beta oscillations that characterise the Parkinsonian state. We modelled data from five patients undergoing surgery for deep brain stimulation of more than one target. We found that connections to and from the subthalamic nucleus were strengthened and promoted beta synchrony, in the untreated compared to the treated Parkinsonian state. Dynamic causal modelling was able to replicate the effects of lesioning this nucleus and may provide a new means of directing the search for therapeutic targets.
Collapse
Affiliation(s)
- André C Marreiros
- Nuffield Department of Clinical Neurology, University of Oxford, UK; Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neurology, University of Oxford, UK
| | - Rosalyn J Moran
- The Wellcome Trust Centre for Neuroimaging, University College London, UK
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurology, University of Oxford, UK.
| |
Collapse
|
20
|
Broadstock M, Austin PJ, Betts MJ, Duty S. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol 2012; 165:1034-45. [PMID: 21627638 DOI: 10.1111/j.1476-5381.2011.01515.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased firing of the glutamatergic pathway between the subthalamic nucleus and substantia nigra pars reticulata (SNpr) contributes to the abnormal firing of motor circuits and subsequent motor deficits seen in Parkinson's disease. Broad spectrum agonist-induced activation of presynaptic group III metabotropic glutamate (mGlu) receptors within the SNpr reduced glutamate release and reversed akinesia in the reserpine-treated rat model of Parkinson's disease. Here, we have sought to identify which subtypes of group III mGlu receptor in the SNpr were responsible for these beneficial effects. EXPERIMENTAL APPROACH The ability of the mGlu(4) positive allosteric modulator, N-phenyl-7-(hydroxyminocyclopropa[b]chromen-1a-carboxamide) (PHCCC), the mGlu(7) allosteric agonist, N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) and the mGlu(8) -selective agonist (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] to inhibit KCl-evoked [(3) H]-D-aspartate release was examined in vitro in rat nigral prisms. Reversal of akinesia in reserpine-treated rats was also assessed following intranigral injection of these agents. KEY RESULTS PHCCC and AMN082 inhibited [(3) H]-D-aspartate release by 42% and 53%, respectively when given alongside a sub-threshold concentration of the broad spectrum group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4; 1 µM). In contrast (S)-3,4-DCPG failed to inhibit [(3) H]-D-aspartate release. All three agents also reversed reserpine-induced akinesia although only the effects of PHCCC and AMN082 were inhibited by pre-treatment with the group III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). CONCLUSIONS AND IMPLICATIONS These findings reveal that targeting SNpr mGlu(4) or mGlu(7) receptors, but not mGlu(8) receptors, provided relief from akinesia in the reserpine-treated rat model of Parkinson's disease, most likely reflecting inhibition of excess glutamate release in this region.
Collapse
Affiliation(s)
- M Broadstock
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK
| | | | | | | |
Collapse
|
21
|
Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurol 2012; 11:429-42. [DOI: 10.1016/s1474-4422(12)70049-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Oyama G, Foote KD, Jacobson CE, Velez-Lago F, Go C, Limotai N, Zeilman PR, Romrell J, Wu SS, Neal D, Okun MS. GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 2012; 18:814-8. [PMID: 22525365 DOI: 10.1016/j.parkreldis.2012.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES To compare subthalamic nucleus (STN) to globus pallidus internus (GPi) deep brain stimulation (DBS) for control of motor fluctuations and for potential dyskinesia-suppressing qualities. METHODS We conducted a retrospective database review of all patients who underwent GPi or STN DBS for idiopathic Parkinson's disease. Direct dyskinesia suppression (dDS) was defined as improvement in dyskinesia subscore of the unified Parkinson's disease rating scale (UPDRS) part IV (items 32-34), despite lack of reduction in dopaminergic medication dosage. We analyzed the data using methods appropriate for a case-control study. RESULTS A total of 133 patients were evaluated. At the last evaluation Dyskinesia scores and motor fluctuations significantly improved in both the GPi (p < 0.0001) and STN groups (p < 0.0001). The GPi group was more likely than the STN group to experience dDS (odds ratio = 1.95, 95% CI = 0.556, 3.21). However, the association between DBS target and dDS was not statistically significant (Pearson chi-square = 2.286, p = 0.131). CONCLUSIONS The overall clinical outcome of STN and GPi DBS for control of dyskinesia and motor fluctuations was similar. STN and GPi DBS both had some direct dyskinesia suppression effects.
Collapse
Affiliation(s)
- Genko Oyama
- Department of Neurology, Center for Movement Disorders & Neurorestoration, University of Florida, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakano N, Taneda M, Watanabe A, Kato A. Computed three-dimensional atlas of subthalamic nucleus and its adjacent structures for deep brain stimulation in Parkinson's disease. ISRN NEUROLOGY 2012; 2012:592678. [PMID: 22389840 PMCID: PMC3265216 DOI: 10.5402/2012/592678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/25/2011] [Indexed: 11/23/2022]
Abstract
Background. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is one of the standard surgical treatments for advanced Parkinson's disease. However, it has been difficult to accurately localize the stimulated contact area of the electrode in the subthalamic nucleus and its adjacent structures using a two-dimensional atlas. The goal of this study is to verify the real and detailed localization of stimulated contact of the DBS electrode therapeutically inserted into the STN and its adjacent structures using a novel computed three-dimensional atlas built by a personal computer. Method. A three-dimensional atlas of the STN and its adjacent structures (3D-Subthalamus atlas) was elaborated on the basis of sagittal slices from the Schaltenbrand and Wahren stereotactic atlas on a personal computer utilizing a commercial software. The electrode inserted into the STN and its adjacent structures was superimposed on our 3D-Subthalamus atlas based on intraoperative third ventriculography in 11 cases. Findings. Accurate localization of the DBS electrode was identified using the 3D-Subthalamus atlas, and its clinical efficacy of the electrode stimulation was investigated in all 11 cases. Conclusion. This study demonstrates that the 3D-Subthalamus atlas is a useful tool for understanding the morphology of deep brain structures and for the precise anatomical position findings of the stimulated contact of a DBS electrode. The clinical analysis using the 3D atlas supports the contention that the stimulation of structures adjacent to the STN, particularly the zona incerta or the field of Forel H, is as effective as the stimulation of the STN itself for the treatment of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Naoki Nakano
- Department of Neurosurgery, Faculty of Medicine, Kinki University, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | | | | |
Collapse
|
24
|
Wöhrle JC, Blahak C, Capelle HH, Fogel W, Bäzner H, Krauss JK. Combined pallidal and subthalamic nucleus stimulation in sporadic dystonia-parkinsonism. J Neurosurg 2012; 116:95-8. [DOI: 10.3171/2011.8.jns101552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multifocal deep brain stimulation (DBS) is a new technique that has been introduced recently. A 39-year-old man with dystonia-parkinsonism underwent the simultaneous implantation of subthalamic nucleus (STN) and globus pallidus internus (GPi) DBS electrodes.
While bilateral STN DBS controlled the parkinsonian symptoms well and allowed for a reduction in levodopa, the improvement of dystonia was only temporary. Additional GPi DBS also alleviated dystonic symptoms. Formal assessment at the 1-year follow-up showed that both the parkinsonian symptoms and the dystonia were markedly improved via continuous bilateral combined STN and GPi stimulation. Sustained benefit was achieved at 3 years postoperatively.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Fogel
- 3Department of Neurology, Stiftung Deutsche Klinik für Diagnostik, Wiesbaden, Germany
| | | | | |
Collapse
|
25
|
Allert N, Schnitzler A, Sturm V, Maarouf M. Failure of long-term subthalamic nucleus stimulation corrected by additional pallidal stimulation in a patient with Parkinson's disease. J Neurol 2011; 259:1244-6. [PMID: 22143613 DOI: 10.1007/s00415-011-6331-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/08/2011] [Accepted: 11/13/2011] [Indexed: 11/30/2022]
|
26
|
Schiefer TK, Matsumoto JY, Lee KH. Moving forward: advances in the treatment of movement disorders with deep brain stimulation. Front Integr Neurosci 2011; 5:69. [PMID: 22084629 PMCID: PMC3211039 DOI: 10.3389/fnint.2011.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/07/2011] [Indexed: 11/13/2022] Open
Abstract
The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson's disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.
Collapse
Affiliation(s)
| | | | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| |
Collapse
|
27
|
The clinical efficacy of L-DOPA and STN-DBS share a common marker: reduced GABA content in the motor thalamus. Cell Death Dis 2011; 2:e154. [PMID: 21544093 PMCID: PMC3122115 DOI: 10.1038/cddis.2011.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At odd with traditional views, effective sub-thalamic nucleus (STN) deep brain stimulation (DBS), in Parkinson's disease (PD) patients, may increase the discharge rate of the substantia nigra pars reticulata and the internal globus pallidus (GPi), in combination with increased cyclic guanosine monophosphate (cGMP) levels. How these changes affect the basal ganglia (BG) output to the motor thalamus, the crucial structure conveying motor information to cortex, is critical. Here, we determined the extracellular GABA concentration in the ventral anterior nucleus (VA) during the first delivery of STN-DBS (n=10) or following levodopa (LD) (n=8). Both DBS and subdyskinetic LD reversibly reduced (−30%) VA GABA levels. A significant correlation occurred between clinical score and GABA concentration. By contrast, only STN-DBS increased GPi cGMP levels. Hence, STN-ON and MED-ON involve partially different action mechanisms but share a common target in the VA. These findings suggest that the standard BG circuitry, in PD, needs revision as relief from akinesia may take place, during DBS, even in absence of reduced GPi excitability. However, clinical amelioration requires fast change of thalamic GABA, confirming, in line with the old model, that VA is the core player in determining thalamo-cortical transmission.
Collapse
|
28
|
Stefani A, Fedele E, Pierantozzi M, Galati S, Marzetti F, Peppe A, Pastore FS, Bernardi G, Stanzione P. Reduced GABA Content in the Motor Thalamus during Effective Deep Brain Stimulation of the Subthalamic Nucleus. Front Syst Neurosci 2011; 5:17. [PMID: 21519387 PMCID: PMC3078559 DOI: 10.3389/fnsys.2011.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/22/2011] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN), in Parkinson's disease (PD) patients, is a well established therapeutic option, but its mechanisms of action are only partially known. In our previous study, the clinical transitions from OFF- to ON-state were not correlated with significant changes of GABA content inside GPi or substantia nigra reticulata. Here, biochemical effects of STN-DBS have been assessed in putamen (PUT), internal pallidus (GPi), and inside the antero-ventral thalamus (VA), the key station receiving pallidothalamic fibers. In 10 advanced PD patients undergoing surgery, microdialysis samples were collected before and during STN-DBS. cGMP, an index of glutamatergic transmission, was measured in GPi and PUT by radioimmunoassay, whereas GABA from VA was measured by HPLC. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in VA (−30%). Simultaneously, cGMP extracellular concentrations were enhanced in PUT (+200%) and GPi (+481%). These findings support a thalamic dis-inhibition, in turn re-establishing a more physiological corticostriatal transmission, as the source of motor improvement. They indirectly confirm the relevance of patterning (instead of mere changes of excitability) and suggest that a rigid interpretation of the standard model, at least when it indicates the hyperactive indirect pathway as key feature of hypokinetic signs, is unlikely to be correct. Finally, given the demonstration of a key role of VA in inducing clinical relief, locally administration of drugs modulating GABA transmission in thalamic nuclei could become an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Alessandro Stefani
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione S. Lucia, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Deogaonkar M, Monsalve GA, Scott J, Ahmed A, Rezai A. Bilateral subthalamic deep brain stimulation after bilateral pallidal deep brain stimulation for Parkinson's disease. Stereotact Funct Neurosurg 2011; 89:123-7. [PMID: 21336008 DOI: 10.1159/000323375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVE Globus pallidus internus (GPi) and subthalamic nucleus (STN) have successfully been targeted independently for deep brain stimulator (DBS) placement in medically intractable Parkinson's disease (PD). Bilateral implantation of STN DBS in a patient with preexisting, functioning GPi DBS to specifically treat motor fluctuations is, to our knowledge, yet unreported. CLINICAL PRESENTATION We present a case of PD who had well-placed bilateral GPi DBS that controlled dyskinesia effectively and improved the motor symptoms like rigidity and akinesia. It did not improve her motor fluctuations and failed to reduce her medications. METHODS We implanted bilateral STN DBS, which improved her 'on' time, reduced her medications and improved her motor scores. RESULTS/CONCLUSION In this report we discuss the rationale, technical issues, programming nuances and outcome in a patient with preexisting bilateral GPi DBS who was implanted with bilateral STN DBS.
Collapse
Affiliation(s)
- Milind Deogaonkar
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
30
|
Mazzone P, Sposato S, Insola A, Scarnati E. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm (Vienna) 2011; 118:1431-51. [DOI: 10.1007/s00702-011-0593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
31
|
Austin PJ, Betts MJ, Broadstock M, O'Neill MJ, Mitchell SN, Duty S. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease. Br J Pharmacol 2010; 160:1741-53. [PMID: 20649576 DOI: 10.1111/j.1476-5381.2010.00820.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased glutamatergic innervation of the substantia nigra pars reticulata (SNpr) and pars compacta (SNpc) may contribute to the motor deficits and neurodegeneration, respectively, in Parkinson's disease (PD). This study aimed to establish whether activation of pre-synaptic group III metabotropic glutamate (mGlu) receptors reduced glutamate release in the SN, and provided symptomatic or neuroprotective relief in animal models of PD. EXPERIMENTAL APPROACH Broad-spectrum group III mGlu receptor agonists, O-phospho-l-serine (l-SOP) and l-2-amino-4-phosphonobutyrate (l-AP4), were assessed for their ability to inhibit KCl-evoked [(3)H]-d-aspartate release in rat nigral prisms or inhibit KCl-evoked endogenous glutamate release in the SNpr in vivo using microdialysis. Reversal of akinesia in reserpine-treated rats was assessed following intranigral injection of l-SOP and l-AP4. Finally, the neuroprotective effect of 7 days' supra-nigral treatment with l-AP4 was examined in 6-hydroxydopamine (6-OHDA)-lesioned rats. KEY RESULTS l-SOP and l-AP4 inhibited [(3)H]-d-aspartate release by 33 and 44% respectively. These effects were blocked by the selective group III mGlu antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG). l-SOP also reduced glutamate release in the SNpr in vivo by 48%. Injection of l-SOP and l-AP4 into the SNpr reversed reserpine-induced akinesia. Following administration above the SNpc, l-AP4 provided neurochemical, histological and functional protection against 6-OHDA lesion of the nigrostriatal tract. Pretreatment with CPPG inhibited these effects. CONCLUSIONS AND IMPLICATIONS These findings highlight group III mGlu receptors in the SN as potential targets for providing both symptomatic and neuroprotective relief in PD, and indicate that inhibition of glutamate release in the SN may underlie these effects.
Collapse
Affiliation(s)
- P J Austin
- Department of Anatomy and Histology, Anderson Stuart Building, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Ceravolo R, Brusa L, Galati S, Volterrani D, Peppe A, Siciliano G, Pierantozzi M, Moschella V, Bonuccelli U, Stanzione P, Stefani A. Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in Parkinsonian patients. Eur J Neurol 2010; 18:842-9. [DOI: 10.1111/j.1468-1331.2010.03254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, Kulisevsky J, Obeso JA, Albanese A, Hariz MI, Quinn NP, Speelman JD, Benabid AL, Fraix V, Mendes A, Welter ML, Houeto JL, Cornu P, Dormont D, Tornqvist AL, Ekberg R, Schnitzler A, Timmermann L, Wojtecki L, Gironell A, Rodriguez-Oroz MC, Guridi J, Bentivoglio AR, Contarino MF, Romito L, Scerrati M, Janssens M, Lang AE. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord 2010; 25:578-86. [PMID: 20213817 DOI: 10.1002/mds.22735] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report the 5 to 6 year follow-up of a multicenter study of bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) in advanced Parkinson's disease (PD) patients. Thirty-five STN patients and 16 GPi patients were assessed at 5 to 6 years after DBS surgery. Primary outcome measure was the stimulation effect on the motor Unified Parkinson's Disease Rating Scale (UPDRS) assessed with a prospective cross-over double-blind assessment without medications (stimulation was randomly switched on or off). Secondary outcomes were motor UPDRS changes with unblinded assessments in off- and on-medication states with and without stimulation, activities of daily living (ADL), anti-PD medications, and dyskinesias. In double-blind assessment, both STN and GPi DBS were significantly effective in improving the motor UPDRS scores (STN, P < 0.0001, 45.4%; GPi, P = 0.008, 20.0%) compared with off-stimulation, regardless of the sequence of stimulation. In open assessment, both STN- and GPi-DBS significantly improved the off-medication motor UPDRS when compared with before surgery (STN, P < 0.001, 50.5%; GPi, P = 0.002, 35.6%). Dyskinesias and ADL were significantly improved in both groups. Anti-PD medications were significantly reduced only in the STN group. Adverse events were more frequent in the STN group. These results confirm the long-term efficacy of STN and GPi DBS in advanced PD. Although the surgical targets were not randomized, there was a trend to a better outcome of motor signs in the STN-DBS patients and fewer adverse events in the GPi-DBS group.
Collapse
Affiliation(s)
- Elena Moro
- Toronto Western Hospital, Movement Disorders Center, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stefani A, Pierantozzi M, Koch G, Galati S, Stanzione P. Therapy for dyskinesias in Parkinson’s disease patients. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dyskinesia hampers the quality of life for most Parkinson’s disease patients following several years of therapy. However, the severity of L-Dopa-induced dyskinesia (LID) varies between patients, being quite tolerable in late-onset patients. Understanding the pathogenesis of LID has contributed to the development of a set of therapeutic strategies, including the choice, in early stages, of the least pulsatile regimen of dopamine-receptor activation. In cases where LIDs are already disabling, there is only a limited number of options: the optimization of ongoing DOPA-centered treatment, the utilization of glutamate antagonists and the exploration of the benefits of antipsychotic agents. More radical solutions are provided by deep brain stimulation in the subthalamic nucleus (or internal pallidus). This approach has proved efficacious in reducing LID, largely because it allows a reduction in dopaminergic daily doses. Stereotactic neurosurgery has fuelled several lines of investigation regarding the crosstalk between the basal ganglia and motor cortex. Here, we will present interesting evidence highlighting the potential for repetitive transcranial stimulation in reducing the occurrence of LID. The future may disclose important new avenues for the treatment of LIDs, given the current development of promising agents that might target different facets of dyskinesia, such as the impairment of striatal plasticity and non-Dopaminergic contributors such as adenosine, nitric oxide and the nucleotide cascade.
Collapse
Affiliation(s)
- Alessandro Stefani
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Mariangela Pierantozzi
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Giacomo Koch
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Salvatore Galati
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| | - Paolo Stanzione
- Movement Disorder Centre, Department of Neuroscience, Clinica Neurologica, Policlinico Tor Vergata, Viale Montpellier 1, 00133 Rome, Italy and IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00173 Rome, Italy
| |
Collapse
|
35
|
|
36
|
Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra PM, Paterakis KN, Kapsalaki EZ, Fountas KN, Hadjigeorgiou GM. Genetic basis of Parkinson disease. Neurosurg Focus 2010; 28:E7. [DOI: 10.3171/2009.10.focus09220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the past few years, considerable progress has been made in understanding the molecular mechanisms of Parkinson disease (PD). Mutations in certain genes are found to cause monogenic forms of the disorder, with autosomal dominant or autosomal recessive inheritance. These genes include alpha-synuclein, parkin, PINK1, DJ-1, LRRK2, and ATP13A2. The monogenic variants are important tools in identifying cellular pathways that shed light on the pathogenesis of this disease. Certain common genetic variants are also likely to modulate the risk of PD. International collaborative studies and meta-analyses have identified common variants as genetic susceptibility risk/protective factors for sporadic PD.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
| | - Efthimios Dardiotis
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| | | | | | | | - Eftychia Z. Kapsalaki
- 4Department of Diagnostic Radiology, University of Thessaly, University Hospital of Larissa, Greece
| | | | - Georgios M. Hadjigeorgiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| |
Collapse
|
37
|
Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S, Placidi F, Romigi A, Iani C, Marzetti F, Peppe A. Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive domains. J Neurol Sci 2009; 289:44-8. [PMID: 19765737 DOI: 10.1016/j.jns.2009.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Between 2005 and 2007, six patients affected by idiopathic Parkinson's disease (IPD) were submitted to the bilateral implantation (and subsequent deep brain stimulation - DBS) of the pedunculopontine nucleus (PPN) plus the subthalamic nucleus (STN). This review synthesizes the effects of PPN low-frequency stimulation on non-motor functions, focusing on patient sleep quality and cognitive performance. If not associated to STN-DBS, PPN-DBS promoted a modest amelioration of patient motor performance. However, during PPN-DBS, they experienced on the one hand a significant improvement in executive functions and working memory, on the other hand a beneficial change in sleep architecture. Overall, the limited sample hampers definite conclusions. Yet, although the PPN-DBS induced motor effects are quite disappointing (discouraging extended trials based upon the sole PPN implantation), the neuropsychological profile supports the contention by which in selected PD patients, with subtle cognitive deficits or vanished efficacy of previous implanted STN, PPN-DBS might still represent a reliable and compassionate option.
Collapse
|
38
|
Mazzone P, Sposato S, Insola A, Dilazzaro V, Scarnati E. Stereotactic surgery of nucleus tegmenti pedunculopontini. Br J Neurosurg 2009; 22 Suppl 1:S33-40. [DOI: 10.1080/02688690802448327] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
A systematic review of the efficacy of globus pallidus stimulation in the treatment of Parkinson’s disease. J Clin Neurosci 2009; 16:877-81. [DOI: 10.1016/j.jocn.2008.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 11/18/2022]
|
40
|
Stefani A, Galati S, Pierantozzi M, Peppe A, Brusa L, Moschella V, Marzetti F, Stanzione P. Motor and Non-motor Effects of PPN-DBS in PD Patients: Insights from Intra-operative Electrophysiology. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4419-0340-2_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
41
|
|
42
|
|
43
|
Rezai AR, Machado AG, Deogaonkar M, Azmi H, Kubu C, Boulis NM. Surgery for movement disorders. Neurosurgery 2008; 62 Suppl 2:809-38; discussion 838-9. [PMID: 18596424 DOI: 10.1227/01.neu.0000316285.52865.53] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Movement disorders, such as Parkinson's disease, tremor, and dystonia, are among the most common neurological conditions and affect millions of patients. Although medications are the mainstay of therapy for movement disorders, neurosurgery has played an important role in their management for the past 50 years. Surgery is now a viable and safe option for patients with medically intractable Parkinson's disease, essential tremor, and dystonia. In this article, we provide a review of the history, neurocircuitry, indication, technical aspects, outcomes, complications, and emerging neurosurgical approaches for the treatment of movement disorders.
Collapse
Affiliation(s)
- Ali R Rezai
- Center for Neurological Restoration, and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio 44122, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Stefani A, Peppe A, Pierantozzi M, Galati S, Moschella V, Stanzione P, Mazzone P. Multi-target strategy for Parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull 2008; 78:113-8. [PMID: 18812214 DOI: 10.1016/j.brainresbull.2008.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intra-laminar (IL) thalamic complex, composed of centromedian (CM) and parafascicular (Pf) nucleus, is a strategic crossroad for the activity of the basal ganglia and is recently regaining its position has a putative neurosurgical target for Parkinsonian syndromes. The multi-target approach we have encouraged since the late nineties has allowed the combined implantation of a standard target (the subthalamic nucleus-STN or the internal pallidus-GPi) plus an innovative one (CM/Pf) in well-identified Parkinson's disease (PD) patients; hence, it is possible to study, in the same PD patients, the specific target-mediated effects on different clinical signs. Here, we focus on the potential usefulness of implanting the CM/Pf complex when required in the management of contra-lateral tremor (resistant to standard deep brain stimulation-DBS - in STN - , n=2) and disabling involuntary movements, partially responsive to GPi-DBS (n=6). When considering global UPDRS scores, CM/Pf-DBS ameliorate extra-pyramidal symptoms but not as strongly as STN (or GPi) does. Yet, CM/Pf acts very powerfully on tremor and contributes to the long-term management of l-Dopa-induced involuntary movements. The lack of cognitive deficits and psychic impairment associated with the improvement of their quality of life, in our small cohort of CM/Pf implanted patients, reinforces the notion of CM/Pf as a safe and attractive area for surgical treatment of advanced PD, possibly affecting not only motor but also associative functions.
Collapse
|
45
|
Remple MS, Sarpong Y, Neimat JS. Frontiers in the surgical treatment of Parkinson's disease. Expert Rev Neurother 2008; 8:897-906. [PMID: 18505355 DOI: 10.1586/14737175.8.6.897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the continued refinement of medical and surgical therapies, the treatment of Parkinson's disease (PD) remains challenging. Current treatment strategies are largely focused on managing the motor symptoms of the disease, either by dopamine-based medications or, in advanced stages, by the application of deep brain stimulation to more stably alter the function of the basal ganglia. Important advances have been made in the last decade, but unfortunately a number of the motor symptoms of late-stage PD remain poorly treated, and while currently available therapies address the symptoms of the disease, they fail to alter the course of the disease itself. This has spurred basic and clinical exploration on a number of fronts. Several centers have examined novel stimulation targets to treat refractory symptoms of gait difficulty and axial imbalance. Basic and clinical researchers are examining whether the use of deep brain stimulation might slow the progress of the disease and thus be a useful neuroprotective therapy if initiated earlier in the progression of the disease. An expanded understanding of the genetic and cellular events that underlie PD has led some researchers to explore the use of neurotrophic factors or genetic restoration to preserve threatened neuronal populations. Finally, there has been much research on the use of fetal mesencephalic or stem cell populations to restore dopaminergic function. In this report, we will examine each of these potential new surgical therapies and the promise they may hold for the future treatment of PD.
Collapse
Affiliation(s)
- Michael S Remple
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
46
|
Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 2008; 109:130-2. [DOI: 10.3171/jns/2008/109/7/0130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation is now accepted as a safe and efficient treatment for movement disorders including selected types of dystonia and dyskinesia. Very little, however, is known about its effect on other movement disorders, particularly for “choreic” movements. Huntington disease is a fatal autosomal-dominant neurodegenerative disorder characterized by movement disorders, progressive cognitive impairment, and psychiatric symptoms. Bilateral chronic stimulation of the internal globus pallidus was performed to control choreic movements in a 60-year-old man with a 10-year history of Huntington disease. Chronic deep brain stimulation resulted in remarkable improvement of choreic movements. Postoperative improvement was sustained after 4 years of follow-up with a marked improvement in daily quality of life.
Collapse
Affiliation(s)
- Brigitte Biolsi
- 1Department of Neurosurgery, University Hospital Guy de Chauliac; and
| | - Laura Cif
- 1Department of Neurosurgery, University Hospital Guy de Chauliac; and
- 2Research Unit on Movement Disorder, Institut National de la Santé et de la Recherche Médicale U661, Centre National de la Recherche Scientifique UMR 5203, Montpellier, France
| | - Hassan El Fertit
- 1Department of Neurosurgery, University Hospital Guy de Chauliac; and
| | | | - Philippe Coubes
- 1Department of Neurosurgery, University Hospital Guy de Chauliac; and
- 2Research Unit on Movement Disorder, Institut National de la Santé et de la Recherche Médicale U661, Centre National de la Recherche Scientifique UMR 5203, Montpellier, France
| |
Collapse
|
47
|
Videnovic A, Metman LV. Deep brain stimulation for Parkinson's disease: prevalence of adverse events and need for standardized reporting. Mov Disord 2008; 23:343-9. [PMID: 17987644 DOI: 10.1002/mds.21753] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Deep brain stimulation (DBS) has assumed a prominent role in the treatment of Parkinson's disease (PD). In this manuscript, we attempt to estimate the prevalence and categorize adverse events (AEs) of DBS in PD, based on efficacy studies published over the last decade. We conclude that reliable categorization and quantification of AEs based on available data poses many challenges and argue that a standardized scheme for reporting AEs should be created. This would provide a foundation for a meaningful risk/benefit analysis, for comparison of results between centers and, ultimately, for a well informed decision by physicians and patients as to whether surgery should be pursued.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Section of Movement Disorders, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
48
|
Deep brain stimulation promotes excitation and inhibition in subthalamic nucleus in Parkinson's disease. Neuroreport 2008; 19:661-6. [DOI: 10.1097/wnr.0b013e3282fb78af] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Abstract
The surgical treatment of Parkinson's disease has been through a revival phase over the last 20 years with the development of deep brain stimulation (DBS). Thalamic DBS was developed first and has proven to be a very effective treatment for tremor. The limitation is the lack of effect on other symptoms. Other targets were therefore investigated, and the procedure was applied to the subthalamic nucleus (STN) and the internal globus pallidus (GPi). STN stimulation can improve a wide range of symptoms and is currently the preferred target for many patients. Nevertheless, the morbidity seems higher than with other targets, and the selection criteria have to be quite strict. When STN DBS is not advised, thalamic DBS remains an option for patients with severe tremor, and GPi stimulation for those with severe dyskinesias. DBS remains a symptomatic treatment for a limited number of patients; it does not seem to alter the disease progression, and many patients are not suitable. There is, therefore, the need for further research into other targets and other approaches.
Collapse
Affiliation(s)
- Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, England, United Kingdom.
| | | |
Collapse
|
50
|
Peppe A, Gasbarra A, Stefani A, Chiavalon C, Pierantozzi M, Fermi E, Stanzione P, Caltagirone C, Mazzone P. Deep brain stimulation of CM/PF of thalamus could be the new elective target for tremor in advanced Parkinson's Disease? Parkinsonism Relat Disord 2008; 14:501-4. [PMID: 18337153 DOI: 10.1016/j.parkreldis.2007.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/04/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
Aim of this study was to investigate whether Deep Brain Stimulation (DBS) of the Centre Median Nucleus/Parafascicular (CM/PF) Complex is useful in reducing extrapyramidal symptoms in advanced Parkinson's Disease (PD) patients. In particular, we compared the action of CM/PF and subthalamic nucleus (STN) DBS on resting hand tremor using EMG surface of ulnar and radial right-hand muscles. Our results show that C/M DBS is very effective in reducing tremor, indicating this complex as a new target in advanced PD patients.
Collapse
Affiliation(s)
- A Peppe
- IRCCS Fondazione Santa Lucia, Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|