1
|
Liang Y, Jiang Y, Liu J, Li X, Cheng X, Bao L, Zhou H, Guo Z. Blood-Brain Barrier Disruption and Imaging Assessment in Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01300-6. [PMID: 39322815 DOI: 10.1007/s12975-024-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Disruption of the blood-brain barrier (BBB) is an important pathological hallmark of ischemic stroke. Blood-brain barrier disruption (BBBD) is a consequence of ischemia and may also exacerbate damage to brain parenchyma. Therefore, maintaining BBB integrity is critical for the central nervous system (CNS) homeostasis. This review offers a concise overview of BBB structure and function, along with the mechanisms underlying its impairment following a stroke. In addition, we review the recent imaging techniques employed to study blood-brain barrier permeability (BBBP) in the context of ischemic brain injury with the goal of providing imaging guidance for stroke diagnosis and treatment from the perspective of the BBBD. This knowledge is vital for developing strategies to safeguard the BBB during cerebral ischemia.
Collapse
Affiliation(s)
- Yuchen Liang
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Yueluan Jiang
- MR Research and Collaboration Team, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Jiaxin Liu
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xinyue Cheng
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Lei Bao
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, the First Hospital of Jilin University, Changchun, China.
| | - Zhenni Guo
- Department of Neurology, Stroke Center, the First Hospital of Jilin University, Changchun, China.
- Department of Neurology, Neuroscience Research Center, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, Jurkiewicz MT, Shao X, Oyeniran O, Manson T, Wang DJJ, Günther M, Achten E, Mutsaerts HJMM, Anazodo UC. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15:1132077. [PMID: 37139088 PMCID: PMC10150073 DOI: 10.3389/fnagi.2023.1132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases. This review aims to provide clinicians with an overview of the emerging field of BBB imaging in humans by answering three key questions: (1. Disease) In which diseases could BBB imaging be useful? (2. Device) What are currently available imaging methods for evaluating BBB integrity? And (3. Distribution) what is the potential of BBB imaging in different environments, particularly in resource limited settings? We conclude that further advances are needed, such as the validation, standardization and implementation of readily available, low-cost and non-contrast BBB imaging techniques, for BBB imaging to be a useful clinical biomarker in both resource-limited and well-resourced settings.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Lawson Health Research Institute, London, ON, Canada
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- *Correspondence: Paulien Moyaert,
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Catherine A. Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Olujide Oyeniran
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Tabitha Manson
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine, University of Bremen, Bremen, Germany
| | - Eric Achten
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Perik TH, van Genugten EAJ, Aarntzen EHJG, Smit EJ, Huisman HJ, Hermans JJ. Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review. Abdom Radiol (NY) 2022; 47:3101-3117. [PMID: 34223961 PMCID: PMC9388409 DOI: 10.1007/s00261-021-03190-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death with a 5-year survival rate of 10%. Quantitative CT perfusion (CTP) can provide additional diagnostic information compared to the limited accuracy of the current standard, contrast-enhanced CT (CECT). This systematic review evaluates CTP for diagnosis, grading, and treatment assessment of PDAC. The secondary goal is to provide an overview of scan protocols and perfusion models used for CTP in PDAC. The search strategy combined synonyms for 'CTP' and 'PDAC.' Pubmed, Embase, and Web of Science were systematically searched from January 2000 to December 2020 for studies using CTP to evaluate PDAC. The risk of bias was assessed using QUADAS-2. 607 abstracts were screened, of which 29 were selected for full-text eligibility. 21 studies were included in the final analysis with a total of 760 patients. All studies comparing PDAC with non-tumorous parenchyma found significant CTP-based differences in blood flow (BF) and blood volume (BV). Two studies found significant differences between pathological grades. Two other studies showed that BF could predict neoadjuvant treatment response. A wide variety in kinetic models and acquisition protocol was found among included studies. Quantitative CTP shows a potential benefit in PDAC diagnosis and can serve as a tool for pathological grading and treatment assessment; however, clinical evidence is still limited. To improve clinical use, standardized acquisition and reconstruction parameters are necessary for interchangeability of the perfusion parameters.
Collapse
Affiliation(s)
- T H Perik
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - E A J van Genugten
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E J Smit
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H J Huisman
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J J Hermans
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
5
|
Tien J, Li X, Linville RM, Feldman EJ. Comparison of blind deconvolution- and Patlak analysis-based methods for determining vascular permeability. Microvasc Res 2020; 133:104102. [PMID: 33166578 DOI: 10.1016/j.mvr.2020.104102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
This study describes a computational algorithm to determine vascular permeability constants from time-lapse imaging data without concurrent knowledge of the arterial input function. The algorithm is based on "blind" deconvolution of imaging data, which were generated with analytical and finite-element models of bidirectional solute transport between a capillary and its surrounding tissue. Compared to the commonly used Patlak analysis, the blind algorithm is substantially more accurate in the presence of solute delay and dispersion. We also compared the performance of the blind algorithm with that of a simpler one that assumed unidirectional transport from capillary to tissue [as described in Truslow et al., Microvasc. Res. 90, 117-120 (2013)]. The algorithm based on bidirectional transport was more accurate than the one based on unidirectional transport for more permeable vessels and smaller extravascular distribution volumes, and less accurate for less permeable vessels and larger extravascular distribution volumes. Our results indicate that blind deconvolution is superior to Patlak analysis for permeability mapping under clinically relevant conditions, and can thus potentially improve the detection of tissue regions with a compromised vascular barrier.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; Division of Materials Science and Engineering, Boston University, 15 St. Mary's Street, Brookline, MA 02446, USA.
| | - Xuanyue Li
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Raleigh M Linville
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Evan J Feldman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
6
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2020; 42:621-646. [PMID: 33125600 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Songsaeng D, Sangrungruang A, Boonma C, Krings T. Permeability-surface area product of the penumbra as a predictor of outcome after endovascular treatment of anterior circulation acute ischemic stroke. Acta Radiol 2020; 61:528-536. [PMID: 31446778 DOI: 10.1177/0284185119870971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Permeability-surface product is a predictor of blood–brain barrier disruption, a condition that may be related to higher likelihoods of hemorrhagic transformations in acute stroke. Purpose To investigate whether permeability-surface product can be used as a parameter for predicting outcome after mechanical thrombectomy in patients with anterior circulation acute ischemic stroke. Material and Methods We retrospectively identified patients with acute middle cerebral artery stroke who underwent successful mechanical thrombectomy between November 2009 and July 2015. Multiple parameters (including age) and CT perfusion-related parameters (including permeability-surface product) were compared between patients with favorable (modified Rankin Scale [mRS] = 0–2) and unfavorable (mRS > 2) outcome. Results Thirty patients were included, 50% having favorable and 50% having unfavorable outcome. Younger age was significantly associated with favorable outcome ( P < 0.03). Other baseline characteristics, such as size of CT perfusion core infarction, perfusion abnormality, and presentation of subcortical infarction were not significantly different between groups. No significant difference was observed between groups for permeability-surface product in the ipsilateral penumbra or for the ratio between permeability-surface product penumbra value and contralateral normal brain (permeability-surface product ratio). Conclusions No significant difference was observed between patients with and without favorable outcome after mechanical thrombectomy for either permeability-surface product value or permeability-surface product ratio. Although permeability-surface product is a good predictor of blood–brain barrier disruption, this study revealed no evidence that either permeability-surface product value or permeability-surface product ratio is associated with future change in the penumbra.
Collapse
Affiliation(s)
- Dittapong Songsaeng
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Athip Sangrungruang
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluck Boonma
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Timo Krings
- Division of Neuroradiology, Department of Medical Imaging, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
8
|
Srinivasan VM, Lang FF, Chen SR, Chen MM, Gumin J, Johnson J, Burkhardt JK, Kan P. Advances in endovascular neuro-oncology: endovascular selective intra-arterial (ESIA) infusion of targeted biologic therapy for brain tumors. J Neurointerv Surg 2020; 12:197-203. [PMID: 31676690 DOI: 10.1136/neurintsurg-2019-015137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Malignant gliomas continue to have a poor clinical outcome with available therapies. In the past few years, new targeted biologic therapies have been studied, with promising results. However, owing to problems with ineffective IV delivery of these newer agents, an alternative, more direct delivery mechanism is needed. Simultaneously, advancements in neuroendovascular technology have allowed endovascular selective intra-arterial approaches to delivery. This method has the potential to increase drug delivery and selectively target tumor vasculature. OBJECTIVE To review the history of IA therapy for brain tumors, prior failures and successes, the emergence of new technologies and therapies, and the future direction of this young field. METHODS A comprehensive literature search of two databases (PubMed, Ovid Medline) was performed for several terms including 'brain tumor', 'glioma', and 'endovascular intra-arterial'. Forty-five relevant articles were identified via a systematic review following PRISMA guidelines. Additional relevant articles were selected for further in-depth review. Emphasis was given to articles discussing selective intra-arterial intracranial delivery using microcatheters. RESULTS Endovascular intra-arterial therapy with chemotherapy has had mixed results, with currently active trials using temozolomide, cetuximab, and bevacizumab. Prior attempts at IA chemotherapy with older-generation medications did not surpass the efficacy of IV administration. Advances in neuro-oncology have brought to the forefront new targeted biologic therapies. CONCLUSIONS In this review, we discuss the emerging field of endovascular neuro-oncology, a field that applies modern neuroendovascular techniques to the delivery of new therapeutic agents to brain tumors. The development of targeted therapies for brain tumors has been concurrent with the development of microcatheter technology, which has made superselective distal intracranial arterial access feasible and safe.
Collapse
Affiliation(s)
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen R Chen
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa M Chen
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Fu F, Sui B, Liu L, Su Y, Sun S, Li Y. Quantitative assessment of local perfusion change in acute intracerebral hemorrhage areas with and without "dynamic spot sign" using CT perfusion imaging. Acta Radiol 2019; 60:367-373. [PMID: 29871494 DOI: 10.1177/0284185118780893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Positive "dynamic spot sign" has been proven to be a potential risk factor for acute intracerebral hemorrhage (ICH) expansion, but local perfusion change has not been quantitatively investigated. PURPOSE To quantitatively evaluate perfusion changes at the ICH area using computed tomography perfusion (CTP) imaging. MATERIAL AND METHODS Fifty-three patients with spontaneous ICH were recruited. Unenhanced computed tomography (NCCT), CTP within 6 h, and follow-up NCCT were performed for 21 patients in the "spot sign"-positive group and 32 patients in the control group. Cerebral perfusion change was quantitatively measured on regional cerebral blood flow/regional cerebral blood volume (rCBF/rCBV) maps. Regions of interest (ROIs) were set at the "spot-sign" region and the whole hematoma area for "spot-sign"-positive cases, and at one of the highest values of three interested areas and the whole hematoma area for the control group. Hematoma expansion was determined by follow-up NCCT. RESULTS For the "spot-sign"-positive group, the average rCBF (rCBV) values at the "spot-sign" region and the whole hematoma area were 21.34 ± 15.24 mL/min/100 g (21.64 ± 21.48 mL/100g) and 5.78 ± 6.32 mL/min/100 g (6.07 ± 5.45 mL/100g); for the control group, the average rCBF (rCBV) values at the interested area and whole hematoma area were 2.50 ± 1.83 mL/min/100 g (3.13 ± 1.96 mL/100g) and 3.02 ± 1.80 mL/min/100 g (3.40 ± 1.44 mL/100g), respectively. Average rCBF and rCBV values of the "spot-sign" region were significantly different from other regions ( P < 0.001; P = 0.004). The average volumes of hematoma expansion in the "spot-sign"-positive and control groups were 25.24 ± 19.38 mL and -0.41 ± 1.34 mL, respectively. CONCLUSION The higher perfusion change at ICH on CTP images may reflect the contrast extravasation and be associated with the hematoma expansion.
Collapse
Affiliation(s)
- Fan Fu
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Binbin Sui
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Liping Liu
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yaping Su
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Shengjun Sun
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Li
- Neuroradiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
10
|
Kalinin MN, Khasanova DR, Ibatullin MM. A comprehensive assessment of brain perfusion data in patients with acute ischemic stroke for prediction of hemorrhagic transformation. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:24-36. [DOI: 10.17116/jnevro201911903224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Blood-Brain Barrier Permeability in Aneurysmal Subarachnoid Hemorrhage: Correlation With Clinical Outcomes. AJR Am J Roentgenol 2018; 211:891-895. [DOI: 10.2214/ajr.17.18237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Liu C, Shi F, Chen Z, Yan S, Ding X, Lou M. Severe Blood-Brain Barrier Disruption in Cardioembolic Stroke. Front Neurol 2018; 9:55. [PMID: 29472890 PMCID: PMC5809413 DOI: 10.3389/fneur.2018.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies demonstrated that cardioembolism (CE) was prone to develop hemorrhagic transformation (HT), whereas hyper-permeability of blood–brain barrier (BBB) might be one reason for the development of HT. We, thus, aimed to investigate whether the BBB permeability (BBBP) was higher in CE stroke than other stroke subtypes in acute ischemic stroke (AIS) patients. Methods This study was a retrospective review of prospectively collected clinical and imaging database of AIS patients who underwent CT perfusion. Hypoperfusion was defined as Tmax >6 s. The average relative permeability-surface area product (rPS), reflecting the BBBP, was calculated within the hypoperfusion region (rPShypo). CE was diagnosed according to the international Trial of Org 10172 in Acute Stroke Treatment criteria. Receiver operating characteristics (ROC) curve analysis was used to determine predictive value of rPShypo for CE. Logistic regression was used to identify independent predictors for CE. Results A total of 187 patients were included in the final analysis [median age, 73 (61–80) years; 75 (40.1%) females; median baseline National Institutes of Health Stroke Scale score, 12 (7–16)]. Median rPShypo was 65.5 (35.8–110.1)%. Ninety-seven (51.9%) patients were diagnosed as CE. ROC analysis revealed that the optimal rPShypo threshold for CE was 86.71%. The value of rPShypo and the rate of rPShypo>86.71% were significantly higher in patients with CE than other stroke subtypes (p < 0.05), after adjusting for the potential confounds. Conclusion The extent of BBB disruption is more severe in CE stroke than other stroke subtypes during the hyperacute stage.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Feina Shi
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhicai Chen
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfa Ding
- Department of Radiology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liu C, Zhang S, Yan S, Zhang R, Shi F, Ding X, Parsons M, Lou M. Reperfusion facilitates reversible disruption of the human blood–brain barrier following acute ischaemic stroke. Eur Radiol 2017; 28:642-649. [DOI: 10.1007/s00330-017-5025-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 11/30/2022]
|
14
|
Breuer H, Meier M, Schneefeld S, Härtig W, Wittneben A, Märkel M, Ross TL, Bengel FM, Bankstahl M, Bankstahl JP. Multimodality imaging of blood-brain barrier impairment during epileptogenesis. J Cereb Blood Flow Metab 2017; 37:2049-2061. [PMID: 27435624 PMCID: PMC5464700 DOI: 10.1177/0271678x16659672] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insult-associated blood-brain barrier leakage is strongly suggested to be a key step during epileptogenesis. In this study, we used three non-invasive translational imaging modalities, i.e. positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging, to evaluate BBB leakage after an epileptogenic brain insult. Sprague-Dawley rats were scanned during early epileptogenesis initiated by status epilepticus. Positron emission tomography and single photon emission computed tomography scans were performed using the novel tracer [68Ga]DTPA or [99mTc]DTPA, respectively. Magnetic resonance imaging included T2 and post-contrast T1 sequence after infusion of Gd-DTPA, gadobutrol, or Gd-albumin. All modalities revealed increased blood-brain barrier permeability 48 h post status epilepticus, mainly in epileptogenesis-associated brain regions like hippocampus, piriform cortex, thalamus, or amygdala. In hippocampus, Gd-DTPA-enhanced T1 magnetic resonance imaging signal was increased by 199%, [68Ga]DTPA positron emission tomography by 37%, and [99mTc]DTPA single photon emission computed tomography by 56%. Imaging results were substantiated by histological detection of albumin extravasation. Comparison with quantitative positron emission tomography and single photon emission computed tomography shows that magnetic resonance imaging sequences successfully amplify the signal from a moderate amount of extravasated DTPA molecules, enabling sensitive detection of blood-brain barrier disturbance in epileptogenesis. Imaging of the disturbed blood-brain barrier will give further pathophysiologic insights, will help to stratify anti-epileptogenic treatment targeting blood-brain barrier integrity, and may serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Heike Breuer
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.,2 Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Hannover, Germany
| | - Martin Meier
- 3 Preclinical Imaging Labs, Central Laboratory Animal Facility & Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sophie Schneefeld
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Wolfgang Härtig
- 4 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Wittneben
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Märkel
- 4 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Tobias L Ross
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Marion Bankstahl
- 2 Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Hannover, Germany
| | - Jens P Bankstahl
- 1 Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Szarmach A, Halena G, Kaszubowski M, Piskunowicz M, Studniarek M, Lass P, Szurowska E, Winklewski PJ. Carotid Artery Stenting and Blood-Brain Barrier Permeability in Subjects with Chronic Carotid Artery Stenosis. Int J Mol Sci 2017; 18:ijms18051008. [PMID: 28481312 PMCID: PMC5454921 DOI: 10.3390/ijms18051008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023] Open
Abstract
Failure of the blood-brain barrier (BBB) is a critical event in the development and progression of diseases such as acute ischemic stroke, chronic ischemia or small vessels disease that affect the central nervous system. It is not known whether BBB breakdown in subjects with chronic carotid artery stenosis can be restrained with postoperative recovery of cerebral perfusion. The aim of the study was to assess the short-term effect of internal carotid artery stenting on basic perfusion parameters and permeability surface area-product (PS) in such a population. Forty subjects (23 males) with stenosis of >70% within a single internal carotid artery and neurological symptoms who underwent a carotid artery stenting procedure were investigated. Differences in the following computed tomography perfusion (CTP) parameters were compared before and after surgery: global cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP) and PS. PS acquired by CTP is used to measure the permeability of the BBB to contrast material. In all baseline cases, the CBF and CBV values were low, while MTT and TTP were high on both the ipsi- and contralateral sides compared to reference values. PS was approximately twice the normal value. CBF was higher (+6.14%), while MTT was lower (−9.34%) on the contralateral than on the ipsilateral side. All perfusion parameters improved after stenting on both the ipsilateral (CBF +22.66%; CBV +18.98%; MTT −16.09%, TTP −7.62%) and contralateral (CBF +22.27%, CBV +19.72%, MTT −14.65%, TTP −7.46%) sides. PS decreased by almost half: ipsilateral −48.11%, contralateral −45.19%. The decline in BBB permeability was symmetrical on the ipsi- and contralateral sides to the stenosis. Augmented BBB permeability can be controlled by surgical intervention in humans.
Collapse
Affiliation(s)
- Arkadiusz Szarmach
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk 80-210, Poland.
| | - Grzegorz Halena
- Department of Cardiovascular Surgery, Medical University of Gdansk, Gdansk 80-210, Poland.
| | - Mariusz Kaszubowski
- Department of Economic Sciences, Faculty of Management and Economics, Gdansk University of Technology, Gdansk 80-210, Poland.
| | - Maciej Piskunowicz
- 1st Department of Radiology, Medical University of Gdansk, Gdansk 80-210, Poland.
| | - Michal Studniarek
- 1st Department of Radiology, Medical University of Gdansk, Gdansk 80-210, Poland.
- Department of Diagnostic Imaging, Medical University of Warsaw, Warsaw 03-242, Poland.
| | - Piotr Lass
- Department of Nuclear Medicine, Medical University of Gdansk, Gdansk 80-210, Poland.
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk 80-210, Poland.
| | - Pawel J Winklewski
- Institute of Human Physiology, Medical University of Gdansk, Gdansk 80-210, Poland.
- Department of Clinical Sciences, Institute of Health Sciences, Pomeranian University of Slupsk, Slupsk 76-200, Poland.
| |
Collapse
|
16
|
Bennink E, Horsch AD, Dankbaar JW, Velthuis BK, Viergever MA, de Jong HWAM. CT perfusion analysis by nonlinear regression for predicting hemorrhagic transformation in ischemic stroke. Med Phys 2016; 42:4610-8. [PMID: 26233188 DOI: 10.1118/1.4923751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Intravenous thrombolysis can improve clinical outcome in acute ischemic stroke patients but increases the risk of hemorrhagic transformation (HT). Blood-brain barrier damage, which can be quantified by the vascular permeability for contrast agents, is a potential predictor for HT. This study aimed to assess whether this prediction can be improved by measuring vascular permeability using a novel fast nonlinear regression (NLR) method instead of Patlak analysis. METHODS From a prospective ischemic stroke multicenter cohort study, 20 patients with HT on follow-up imaging and 40 patients without HT were selected. The permeability transfer constant K(trans) was measured in three ways; using standard Patlak analysis, Patlak analysis with a fixed offset, and the NLR method. In addition, the permeability-surface (PS) area product and the conventional perfusion parameters (blood volume, flow, and mean transit time) were measured using the NLR method. Relative values were calculated in two ways, i.e., by dividing the average in the infarct core by the average in the contralateral hemisphere, and by dividing the average in the ipsilateral hemisphere by the average in the contralateral hemisphere. Mann-Whitney U tests and receiver operating characteristic (ROC) analyses were performed to assess the discriminative power of each of the relative parameters. RESULTS Both the infarct-core and whole-hemisphere averaged relative K(trans) (rK(trans)) values, measured with the NLR method, were significantly higher in the patients who developed HT as compared with those who did not. The rK(trans) measured with standard Patlak analysis was not significantly different. The relative PS (rPS), measured with NLR, had the highest discriminative power (P = 0.002). ROC analysis of rPS showed an area under the curve (AUC) of 0.75 (95% confidence interval: 0.62-0.89) and a sensitivity of 0.75 at a specificity of 0.75. The AUCs of the Patlak rK(trans), the Patlak rK(trans) with fixed offset, and the NLR rK(trans) were 0.58, 0.66, and 0.67, respectively. CONCLUSIONS CT perfusion analysis may aid in predicting HT, but standard Patlak analysis did not provide estimates for rK(trans) that were significantly higher in the HT group. The rPS, measured in the infarct core with NLR, had superior discriminative power compared with K(trans) measured with either Patlak analysis with a fixed offset or NLR, and conventional perfusion parameters.
Collapse
Affiliation(s)
- Edwin Bennink
- Department of Radiology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands and Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Alexander D Horsch
- Department of Radiology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Jan Willem Dankbaar
- Department of Radiology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Hugo W A M de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands and Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
17
|
Ivanidze J, Kallas ON, Gupta A, Weidman E, Baradaran H, Mir D, Giambrone A, Segal AZ, Claassen J, Sanelli PC. Application of Blood-Brain Barrier Permeability Imaging in Global Cerebral Edema. AJNR Am J Neuroradiol 2016; 37:1599-603. [PMID: 27127002 DOI: 10.3174/ajnr.a4784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier permeability is not routinely evaluated in the clinical setting. Global cerebral edema occurs after SAH and is associated with BBB disruption. Detection of global cerebral edema using current imaging techniques is challenging. Our purpose was to apply blood-brain barrier permeability imaging in patients with global cerebral edema by using extended CT perfusion. MATERIALS AND METHODS Patients with SAH underwent CTP in the early phase after aneurysmal rupture (days 0-3) and were classified as having global cerebral edema or nonglobal cerebral edema using established noncontrast CT criteria. CTP data were postprocessed into blood-brain barrier permeability quantitative maps of PS (permeability surface-area product), K(trans) (volume transfer constant from blood plasma to extravascular extracellular space), Kep (washout rate constant of the contrast agent from extravascular extracellular space to intravascular space), VE (extravascular extracellular space volume per unit of tissue volume), VP (plasmatic volume per unit of tissue volume), and F (plasma flow) by using Olea Sphere software. Mean values were compared using t tests. RESULTS Twenty-two patients were included in the analysis. Kep (1.32 versus 1.52, P < .0001), K(trans) (0.15 versus 0.19, P < .0001), VP (0.51 versus 0.57, P = .0007), and F (1176 versus 1329, P = .0001) were decreased in global cerebral edema compared with nonglobal cerebral edema while VE (0.81 versus 0.39, P < .0001) was increased. CONCLUSIONS Extended CTP was used to evaluate blood-brain barrier permeability in patients with SAH with and without global cerebral edema. Kep is an important indicator of altered blood-brain barrier permeability in patients with decreased blood flow, as Kep is flow-independent. Further study of blood-brain barrier permeability is needed to improve diagnosis and monitoring of global cerebral edema.
Collapse
Affiliation(s)
- J Ivanidze
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - O N Kallas
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - A Gupta
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - E Weidman
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - H Baradaran
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - D Mir
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| | - A Giambrone
- Healthcare Policy and Research (A.Giambrone)
| | - A Z Segal
- Neurology (A.Z.S.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - J Claassen
- Department of Neurology (J.C.), New York-Presbyterian Hospital, Columbia University Medical Center, New York, New York
| | - P C Sanelli
- From the Departments of Radiology (J.I., O.N.K., A.Gupta, E.W., H.B., D.M., P.C.S.)
| |
Collapse
|
18
|
Evaluation of glioblastomas and lymphomas with whole-brain CT perfusion: Comparison between a delay-invariant singular-value decomposition algorithm and a Patlak plot. J Neuroradiol 2016; 43:266-72. [PMID: 26947963 DOI: 10.1016/j.neurad.2016.01.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/26/2015] [Accepted: 01/23/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Correction of contrast leakage is recommended when enhancing lesions during perfusion analysis. The purpose of this study was to assess the diagnostic performance of computed tomography perfusion (CTP) with a delay-invariant singular-value decomposition algorithm (SVD+) and a Patlak plot in differentiating glioblastomas from lymphomas. MATERIALS AND METHODS This prospective study included 17 adult patients (12 men and 5 women) with pathologically proven glioblastomas (n=10) and lymphomas (n=7). CTP data were analyzed using SVD+ and a Patlak plot. The relative tumor blood volume and flow compared to contralateral normal-appearing gray matter (rCBV and rCBF derived from SVD+, and rBV and rFlow derived from the Patlak plot) were used to differentiate between glioblastomas and lymphomas. The Mann-Whitney U test and receiver operating characteristic (ROC) analyses were used for statistical analysis. RESULTS Glioblastomas showed significantly higher rFlow (3.05±0.49, mean±standard deviation) than lymphomas (1.56±0.53; P<0.05). There were no statistically significant differences between glioblastomas and lymphomas in rBV (2.52±1.57 vs. 1.03±0.51; P>0.05), rCBF (1.38±0.41 vs. 1.29±0.47; P>0.05), or rCBV (1.78±0.47 vs. 1.87±0.66; P>0.05). ROC analysis showed the best diagnostic performance with rFlow (Az=0.871), followed by rBV (Az=0.771), rCBF (Az=0.614), and rCBV (Az=0.529). CONCLUSION CTP analysis with a Patlak plot was helpful in differentiating between glioblastomas and lymphomas, but CTP analysis with SVD+ was not.
Collapse
|
19
|
Gariani J, Cuvinciuc V, Courvoisier D, Krauss B, Mendes Pereira V, Sztajzel R, Lovblad KO, Vargas MI. Diagnosis of acute ischemia using dual energy CT after mechanical thrombectomy. J Neurointerv Surg 2015; 8:996-1000. [PMID: 26534867 DOI: 10.1136/neurintsurg-2015-011988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE To assess the performance of dual energy unenhanced CT in the detection of acute ischemia after mechanical thrombectomy. METHODS Retrospective study, approved by the local institutional review board, including all patients that underwent intra-arterial thrombectomy in our institution over a period of 2 years. The presence of acute ischemia and hemorrhage was evaluated by three readers. Sensitivity and specificity of the non-contrast CT weighted sum image (NCCT) and the virtual non-contrast reconstructed image (VNC) were estimated and compared using generalized estimating equations to account for the non-independence of regions in each patient. RESULTS 58 patients (27 women and 31 men; mean age 70.4 years) were included in the study, yielding 580 regions of interest. Sensitivity and specificity in detecting acute ischemia were higher for all readers when using VNC, with a significant increase in sensitivity for two readers (p<0.001 and 0.01) and a significant increase in specificity in one reader (p<0.001). Specificity in detecting hemorrhage was excellent for all readers. CONCLUSIONS Dual energy unenhanced CT VNC images were superior in the identification of acute ischemia in comparison with NCCT.
Collapse
Affiliation(s)
- Joanna Gariani
- Department of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Victor Cuvinciuc
- Department of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Delphine Courvoisier
- Department of Clinical Epidemiology, Department of Health and Community Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Roman Sztajzel
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lovblad
- Department of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Isabel Vargas
- Department of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
20
|
Kassner A, Merali Z. Assessment of Blood–Brain Barrier Disruption in Stroke. Stroke 2015; 46:3310-5. [DOI: 10.1161/strokeaha.115.008861] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Andrea Kassner
- From the Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.K., Z.M.); and Division of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (A.K., Z.M.)
| | - Zamir Merali
- From the Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada (A.K., Z.M.); and Division of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada (A.K., Z.M.)
| |
Collapse
|
21
|
Merali Z, Wong T, Leung J, Gao MM, Mikulis D, Kassner A. Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood-brain barrier permeability in a rodent stroke model. Magn Reson Imaging 2015; 33:1007-12. [PMID: 26117703 DOI: 10.1016/j.mri.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/25/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022]
Abstract
In the current management of acute ischemic stroke (AIS), clinical criteria are used to estimate the risk of hemorrhagic transformation (HT), which is a devastating early complication. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computed tomography (DCE-CT) may serve as physiologically-based decision making tools to more reliably assess the risk of HT. Before these tools can be properly validated, the comparability of the blood-brain barrier (BBB) permeability measurements they generate should be assessed. Sixteen rats were subjected to a transient middle cerebral artery occlusion before successively undergoing DCE-CT and DCE-MRI at 24-hours. BBB permeability (K(trans)) values were generated from both modalities. A correlation of R=0.677 was found (p<0.01) and the resulting relationship was [DCE-CT=(0.610*DCE-MRI)+4.140]. A variance components analysis found the intra-rat coefficient of variation to be 0.384 and 0.258 for K(trans) values from DCE-MRI and DCE-CT respectively. Permeability measures from DCE-CT were 22% higher than those from DCE-MRI. The results of this study demonstrate for the first time comparability between DCE-CT and DCE-MRI in the assessment of AIS. These results may provide a foundation for future clinical trials making combined use of these modalities.
Collapse
Affiliation(s)
- Zamir Merali
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Teser Wong
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jackie Leung
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meah MingYang Gao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Mikulis
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andrea Kassner
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Abramyuk A, Hietschold V, Appold S, von Kummer R, Abolmaali N. Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol 2015; 88:20140412. [PMID: 25412001 DOI: 10.1259/bjr.20140412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate radiochemotherapy (RChT)-induced changes of transfer coefficient (K(trans)) and relative tumour blood volume (rTBV) estimated by dynamic contrast-enhanced CT (DCE-CT) and fractal analysis in head and neck tumours (HNTs). METHODS DCE-CT was performed in 15 patients with inoperable HNTs before RChT, and after 2 and 5 weeks. The dynamics of K(trans) and rTBV as well as lacunarity, slope of log(lacunarity) vs log(box size), and fractal dimension were compared with tumour behaviour during RChT and in the 24-month follow-up. RESULTS In 11 patients, an increase of K(trans) and/or rTBV after 20 Gy followed by a decrease of both parameters after 50 Gy was noted. Except for one local recurrence, no tumour residue was found during the follow-up. In three patients with partial tumour reduction during RChT, a decrease of K(trans) accompanied by an increase in rTBV between 20 and 50 Gy was detected. In one patient with continuous elevation of both parameters, tumour progressed after RChT. Pre-treatment difference in intratumoral heterogeneity with its decline under RChT for the responders vs non-responders was observed. CONCLUSION Initial growth of K(trans) and/or rTBV followed by further reduction of both parameters along with the decline of the slope of log(lacunarity) vs log(box size) was associated with positive radiochemotherapeutic response. Increase of K(trans) and/or rTBV under RChT indicated a poor outcome. ADVANCES IN KNOWLEDGE The modification of K(trans) and rTBV as measured by DCE-CT may be applied for the assessment of tumour sensitivity to chose RChT regimen and, consequently, to reveal clinical impact allowing individualization of RChT strategy in patients with HNT.
Collapse
Affiliation(s)
- A Abramyuk
- 1 Department of Neuroradiology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Germany
| | | | | | | | | |
Collapse
|
23
|
Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 2015; 49:107-14. [PMID: 26029020 PMCID: PMC4387985 DOI: 10.2478/raon-2014-0029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/02/2014] [Indexed: 12/11/2022] Open
Abstract
Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases. Conclusions. Blood-brain barrier permeability can be evaluated in vivo by perfusion computed tomography - an efficient diagnostic method that involves the sequential acquisition of tomographic images during the intravenous administration of iodinated contrast material. The major clinical applications of perfusion computed tomography are in acute stroke and in brain tumor imaging.
Collapse
|
24
|
Giraud M, Cho TH, Nighoghossian N, Maucort-Boulch D, Deiana G, Østergaard L, Baron JC, Fiehler J, Pedraza S, Derex L, Berthezène Y. Early Blood Brain Barrier Changes in Acute Ischemic Stroke: A Sequential MRI Study. J Neuroimaging 2015; 25:959-63. [PMID: 25702824 DOI: 10.1111/jon.12225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We sought to identify MRI factors associated with BBB changes at the acute stage of ischemic stroke. METHODS We analyzed BBB changes on admission and within 3 hours after the first scan. BBB changes was defined as the presence of leptomeningeal and parenchymal contrast enhancement on T1-weighted imaging. Tmax , CBV, and DWI lesion volume were assessed on baseline MRI. Clinical and MRI factors associated with BBB changes were assessed by univariate and multivariate logistic regressions analyses. RESULTS Forty-four patients were included. BBB changes on baseline MRI was observed in 2 of 44 patients (3%). BBB disruption on H3-MRI was present in 19 of 44 patients (43%). Hemodynamic status and baseline ischemic core size were not different between patients with or without BBB changes. BBB alteration on H3 MRI was strongly associated with FLAIR MRI sequence positivity, 16/19 patients (83%) P = .001. CONCLUSION BBB changes are exceptional during the first 3 hours after stroke onset. Delayed BBB alteration was associated with FLAIR positivity mainly reflecting vasogenic edema.
Collapse
Affiliation(s)
- Marc Giraud
- Department of Neuroradiology, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Tae-Hee Cho
- Department of Stroke Medicine, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Delphine Maucort-Boulch
- Department of Biostatistics, Hospices Civils de Lyon, Lyon, France, CNRS UMR 5558, Equipe Biostatistique Santé, Pierre-Bénite, France, Université Lyon I, Villeurbanne, France
| | - Gianluca Deiana
- Department of Neuroradiology, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Leif Østergaard
- Department of Neuroradiology, Center of Functionally Integrative Neuroscience, Århus University, Århus, Denmark
| | - Jean-Claude Baron
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK, Centre de Psychiatrie & Neurosciences, Inserm U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France
| | - Jens Fiehler
- Departments of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Salvador Pedraza
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Laurent Derex
- Department of Stroke Medicine, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Yves Berthezène
- Department of Neuroradiology, Université Lyon 1, CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
25
|
McCourt R, Gould B, Kate M, Asdaghi N, Kosior JC, Coutts S, Hill MD, Demchuk A, Jeerakathil T, Emery D, Butcher KS. Blood-brain barrier compromise does not predict perihematoma edema growth in intracerebral hemorrhage. Stroke 2015; 46:954-60. [PMID: 25700288 DOI: 10.1161/strokeaha.114.007544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE There are limited data on the extent of blood-brain barrier (BBB) compromise in acute intracerebral hemorrhage patients. We tested the hypotheses that BBB compromise measured with permeability-surface area product (PS) is increased in the perihematoma region and predicts perihematoma edema growth in acute intracerebral hemorrhage patients. METHODS Patients were randomized within 24 hours of symptom onset to a systolic blood pressure (SBP) treatment of <150 (n=26) or <180 mm Hg (n=27). Permeability maps were generated using computed tomographic perfusion source data acquired 2 hours after randomization, and mean PS was measured in the hematoma, perihematoma, and hemispheric regions. Hematoma and edema volumes were measured on noncontrast computed tomographic scans obtained at baseline, 2 hours and 24 hours after randomization. RESULTS Patients were randomized at a median (interquartile range) time of 9.3 hours (14.1) from symptom onset. Treatment groups were balanced with respect to baseline SBP and hematoma volume. Perihematoma PS (5.1±2.4 mL/100 mL per minute) was higher than PS in contralateral regions (3.6±1.7 mL/100 mL per minute; P<0.001). Relative edema growth (0-24 hours) was not predicted by perihematoma PS (β=-0.192 [-0.06 to 0.01]) or SBP change (β=-0.092 [-0.002 to 0.001]). SBP was lower in the <150 target group (139.2±22.1 mm Hg) than in the <180 group (159.7±12.3 mm Hg; P<0.0001). Perihematoma PS was not different between groups (4.9±2.4 mL/100 mL per minute for the <150 group, 5.3±2.4 mL/100 mL per minute for the <180 group; P=0.51). CONCLUSIONS BBB permeability is focally increased in the hematoma and perihematoma regions of acute intracerebral hemorrhage patients. BBB compromise does not predict acute perihematoma edema volume or edema growth. SBP reduction does not affect BBB permeability. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00963976.
Collapse
Affiliation(s)
- Rebecca McCourt
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Bronwen Gould
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Mahesh Kate
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Negar Asdaghi
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Jayme C Kosior
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Shelagh Coutts
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Michael D Hill
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Andrew Demchuk
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Thomas Jeerakathil
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Derek Emery
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.)
| | - Kenneth S Butcher
- From the Department of Medicine, Division of Neurology (R.M., B.G., M.K., J.C.K., T.J., K.S.B.) and Department of Radiology and Diagnostic Imaging (D.E.), University of Alberta, Edmonton, Canada; Division of Neurology, University of British Columbia, Vancouver, Canada (N.A.); and Department of Clinical Neurosciences, University of Calgary, Calgary, Canada (S.C., M.D.H., A.D.).
| |
Collapse
|
26
|
Abstract
Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events in neurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is reestablished. Therefore, there is a critical need for novel therapeutic approaches that can "rescue" salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia.
Collapse
|
27
|
van Seeters T, Biessels GJ, van der Schaaf IC, Dankbaar JW, Horsch AD, Luitse MJA, Niesten JM, Mali WPTM, Kappelle LJ, van der Graaf Y, Velthuis BK. Prediction of outcome in patients with suspected acute ischaemic stroke with CT perfusion and CT angiography: the Dutch acute stroke trial (DUST) study protocol. BMC Neurol 2014; 14:37. [PMID: 24568540 PMCID: PMC3939816 DOI: 10.1186/1471-2377-14-37] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
Background Prediction of clinical outcome in the acute stage of ischaemic stroke can be difficult when based on patient characteristics, clinical findings and on non-contrast CT. CT perfusion and CT angiography may provide additional prognostic information and guide treatment in the early stage. We present the study protocol of the Dutch acute Stroke Trial (DUST). The DUST aims to assess the prognostic value of CT perfusion and CT angiography in predicting stroke outcome, in addition to patient characteristics and non-contrast CT. For this purpose, individualised prediction models for clinical outcome after stroke based on the best predictors from patient characteristics and CT imaging will be developed and validated. Methods/design The DUST is a prospective multi-centre cohort study in 1500 patients with suspected acute ischaemic stroke. All patients undergo non-contrast CT, CT perfusion and CT angiography within 9 hours after onset of the neurological deficits, and, if possible, follow-up imaging after 3 days. The primary outcome is a dichotomised score on the modified Rankin Scale, assessed at 90 days. A score of 0–2 represents good outcome, and a score of 3–6 represents poor outcome. Three logistic regression models will be developed, including patient characteristics and non-contrast CT (model A), with addition of CT angiography (model B), and CT perfusion parameters (model C). Model derivation will be performed in 60% of the study population, and model validation in the remaining 40% of the patients. Additional prognostic value of the models will be determined with the area under the curve (AUC) from the receiver operating characteristic (ROC) curve, calibration plots, assessment of goodness-of-fit, and likelihood ratio tests. Discussion This study will provide insight in the added prognostic value of CTP and CTA parameters in outcome prediction of acute stroke patients. The prediction models that will be developed in this study may help guide future treatment decisions in the acute stage of ischaemic stroke.
Collapse
Affiliation(s)
- Tom van Seeters
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, HP E01,132, 3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A fast nonlinear regression method for estimating permeability in CT perfusion imaging. J Cereb Blood Flow Metab 2013; 33:1743-51. [PMID: 23881247 PMCID: PMC3824172 DOI: 10.1038/jcbfm.2013.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 01/25/2023]
Abstract
Blood-brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation-time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting.
Collapse
|
29
|
Improving low-dose blood-brain barrier permeability quantification using sparse high-dose induced prior for Patlak model. Med Image Anal 2013; 18:866-80. [PMID: 24200529 DOI: 10.1016/j.media.2013.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
Abstract
Blood-brain barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis.
Collapse
|
30
|
Determination of vascular permeability coefficients under slow luminal filling. Microvasc Res 2013; 90:117-20. [PMID: 23891569 DOI: 10.1016/j.mvr.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/03/2013] [Accepted: 07/12/2013] [Indexed: 11/22/2022]
Abstract
This Communication describes a method to obtain the permeability product (permeability coefficient normalized by vascular dimensions) from time-lapse intensity data for which the introduction of labeled solute into the vasculature does not occur at a sharply defined time. This method has an error of ~10% across a wide range of filling times and noise levels, and is particularly well-suited for situations in which the permeability coefficient is greater than 10(-6)cm/s. We show that it is applicable whether the increase in vascular solute concentration is sustained or transient.
Collapse
|
31
|
Nguyen GT, Coulthard A, Wong A, Sheikh N, Henderson R, O'Sullivan JD, Reutens DC. Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. NEUROIMAGE-CLINICAL 2013; 2:658-62. [PMID: 24179816 PMCID: PMC3777785 DOI: 10.1016/j.nicl.2013.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 11/28/2022]
Abstract
Background and purpose Increased blood–brain barrier permeability is believed to be associated with complications following acute ischemic stroke and with infarct expansion. Measurement of blood–brain barrier permeability requires a delayed image acquisition methodology, which prolongs examination time, increasing the likelihood of movement artefacts and radiation dose. Existing quantitative methods overestimate blood–brain barrier permeability when early phase CT perfusion data are used. The purpose of this study is to develop a method that yields the correct blood–brain barrier permeability value using first-pass perfusion CT data. Methods We acquired 43 CT perfusion datasets, comprising experimental (n = 30) and validation subject groups (n = 13). The Gjedde–Patlak method was used to estimate blood–brain barrier permeability using first-pass (30–60 s after contrast administration) and delayed phase (30–200 s) data. In the experimental group, linear regression was used to obtain a function predicting first-pass blood–brain barrier permeability estimates from delayed phase estimates in each stroke compartment. The reliability of prediction with this function was then tested using data from the validation group. Results The predicted delayed phase blood–brain barrier permeability was strongly correlated with the measured delayed phase value (r = 0.67 and 0.6 for experimental and validation group respectively; p < 0.01). Predicted and measured delayed phase blood–brain barrier permeability in each stroke compartment were not significantly different in both experimental and validation groups. Conclusion We have developed a method of estimating blood–brain barrier permeability using first-pass perfusion CT data. This predictive method allows reliable blood–brain barrier permeability estimation within standard acquisition time, minimizing the likelihood of motion artefacts thereby improving image quality and reducing radiation dose. Delayed phase BBBP can be predicted from first-pass perfusion CT data. Predicted BBBP was not significantly different from delayed phase measurements. Prediction model allows reliable BBBP estimation within the standard acquisition time.
Collapse
|
32
|
Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013; 40:343-58. [PMID: 23468415 PMCID: PMC3663257 DOI: 10.1007/s10928-013-9306-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/12/2013] [Indexed: 12/24/2022]
Abstract
The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants.
Collapse
|
33
|
Taheri S, Rosenberg GA, Ford C. Quantification of blood-to-brain transfer rate in multiple sclerosis. Mult Scler Relat Disord 2012; 2:124-32. [PMID: 25877634 DOI: 10.1016/j.msard.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 01/05/2023]
Abstract
Blood-brain barrier (BBB) disruption visualized in lesions by MRI is a major biomarker of disease activity in multiple sclerosis (MS). However, in MS, destruction occurs to a variable extent in lesions as well as in gray matter (GM) and in the normal appearing white matter (NAWM). A method to quantify the BBB disruption in lesions as well as in non-lesion areas would be useful for assessment of MS progression and treatments. The objective of this study was to quantify the BBB transfer rate (Ki) in WM lesions, in the NAWM, and in the full-brain of MS patients. Thirteen MS patients with active lesions and 10 healthy controls with age and gender matching were recruited for full-brain and WM Ki studies. Dynamic contrast-enhanced MRI (DCEMRI) scans were conducted using T1 mapping with partial inversion recovery (TAPIR), a fast T1 mapping technique, following administration of a quarter-dose of the contrast agent Gadolinium-DTPA (Gd-DTPA). The Patlak modeling technique was used to derive a voxel-based map of Ki. In all patients contrast-enhanced lesions, quantified by Ki maps, were observed. Compared with controls, patients with MS exhibited an increase in mean Ki of the full-brain (P-value<0.05) but no significant difference in mean Ki of NAWM. The identified increase in full-brain Ki of MS patients suggests a global vascular involvement associated with MS disease. The lack of observed significant decrease in Ki in NAWM suggests lower involvement of WM vasculature than full-brain vasculature in MS. Ki maps constructed from time series data acquired by DCEMRI provide additional information about BBB that could be used for evaluation of vascular involvement in MS and monitoring treatment effectiveness.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Radiology and Radiological Sciences, MSC 323, Medical University of South Carolina, Charleston, SC 29425-3230, United States.
| | - Gary A Rosenberg
- Department of Neurology, Departments of Neurosciences, and Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87107, United States
| | - Corey Ford
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87107, United States
| |
Collapse
|
34
|
d’Esterre CD, Fainardi E, Aviv RI, Lee TY. Improving Acute Stroke Management with Computed Tomography Perfusion: A Review of Imaging Basics and Applications. Transl Stroke Res 2012; 3:205-20. [DOI: 10.1007/s12975-012-0178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|
35
|
d'Esterre CD, Chia TL, Jairath A, Lee TY, Symons SP, Aviv RI. Early rate of contrast extravasation in patients with intracerebral hemorrhage. AJNR Am J Neuroradiol 2011; 32:1879-84. [PMID: 21885714 PMCID: PMC7965988 DOI: 10.3174/ajnr.a2669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/04/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE For patients with ICH, knowing the rate of CT contrast extravasation may provide insight into the pathophysiology of hematoma expansion. This study assessed whether the PCT-derived PS can measure different rates of CT contrast extravasation for admission CTA spot signs, PCCT, PCL, and regions without extravasation in patients with ICH. MATERIALS AND METHODS CT was performed at admission and at 24 hours for 16 patients with ICH with/without contrast extravasation seen on CTA and PCCT. PCT-PS was measured at admission. The Wilcoxon rank sum test with a Bonferroni correction was used to compare PS values from the following regions of interest: 1) spot sign lesions only (9 foci), 2) PCL lesions only (9 foci), 3) hematoma excluding extravasation, 4) regions contralateral to extravasation, 5) hematoma in patients without extravasation, and 6) an area contralateral to that in 5. Additionally, hematoma expansion was determined at 24 hours defined by NCCT. RESULTS PS was 6.5 ± 1.60 mL · min(-1) × (100 g)(-1), 0.95 ± 0.39 mL · min(-1) × (100 g)(-1), 0.12 ± 0.39 mL · min(-1) × (100 g)(-1), 0.26 ± 0.09 mL · min(-1) × (100 g)(-1), 0.38 ± 0.26 mL · min(-1) × (100 g)(-1), and 0.09 ± 0.32 mL · min(-1) × (100 g)(-1) for the following: 1) spot sign lesions only (9 foci), 2) PCL lesions only (9 foci), 3) hematoma excluding extravasation, 4) regions contralateral to extravasation, 5) hematoma in patients without extravasation, and 6) an area contralateral to that in 5. PS values from spot sign lesions and PCL lesions were significantly different from each other and all other regions, respectively (P < .05). Hematoma volume increased from 34.1 ± 41.0 mL to 40.2 ± 46.1 mL in extravasation-positive patients and decreased from 19.8 ± 31.8 mL to 17.4 ± 27.3 mL in extravasation-negative patients. CONCLUSIONS The PCT-PS parameter measures a higher rate of contrast extravasation for CTA spot sign lesions compared with PCL lesions and hematoma. Early extravasation was associated with hematoma expansion.
Collapse
Affiliation(s)
- C D d'Esterre
- Robarts Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Hoffmann A, Bredno J, Wendland MF, Derugin N, Hom J, Schuster T, Su H, Ohara PT, Young WL, Wintermark M. Validation of in vivo magnetic resonance imaging blood-brain barrier permeability measurements by comparison with gold standard histology. Stroke 2011; 42:2054-60. [PMID: 21636816 DOI: 10.1161/strokeaha.110.597997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We sought to validate the blood-brain barrier permeability measurements extracted from perfusion-weighted MRI through a relatively simple and frequently applied model, the Patlak model, by comparison with gold standard histology in a rat model of ischemic stroke. METHODS Eleven spontaneously hypertensive rats and 11 Wistar rats with unilateral 2-hour filament occlusion of the right middle cerebral artery underwent imaging during occlusion at 4 hours and 24 hours after reperfusion. Blood-brain barrier permeability was imaged by gradient echo imaging after the first pass of the contrast agent bolus and quantified by a Patlak analysis. Blood-brain barrier permeability was shown on histology by the extravasation of Evans blue on fluorescence microscopy sections matching location and orientation of MR images. Cresyl-violet staining was used to detect and characterize hemorrhage. Landmark-based elastic image registration allowed a region-by-region comparison of permeability imaging at 24 hours with Evans blue extravasation and hemorrhage as detected on histological slides obtained immediately after the 24-hour image set. RESULTS Permeability values in the nonischemic tissue (marginal mean ± SE: 0.15 ± 0.019 mL/min 100 g) were significantly lower compared to all permeability values in regions of Evans blue extravasation or hemorrhage. Permeability values in regions of weak Evans blue extravasation (0.23 ± 0.016 mL/min 100 g) were significantly lower compared to permeability values of in regions of strong Evans blue extravasation (0.29 ± 0.020 mL/min 100 g) and macroscopic hemorrhage (0.35 ± 0.049 mL/min 100 g). Permeability values in regions of microscopic hemorrhage (0.26 ± 0.024 mL/min 100 g) only differed significantly from values in regions of nonischemic tissue (0.15 ± 0.019 mL/min 100 g). CONCLUSIONS Areas of increased permeability measured in vivo by imaging coincide with blood-brain barrier disruption and hemorrhage observed on gold standard histology.
Collapse
Affiliation(s)
- Angelika Hoffmann
- University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kassner A, Mandell DM, Mikulis DJ. Measuring Permeability in Acute Ischemic Stroke. Neuroimaging Clin N Am 2011; 21:315-25, x-xi. [PMID: 21640302 DOI: 10.1016/j.nic.2011.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Lin K. Predicting transformation to type 2 parenchymal hematoma in acute ischemic stroke by CT permeability imaging. AJNR Am J Neuroradiol 2011; 32:E124; author reply E125. [PMID: 21511856 DOI: 10.3174/ajnr.a2602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintermark M. Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 2011; 32:41-8. [PMID: 20947643 DOI: 10.3174/ajnr.a2244] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE SHT and ME are feared complications in patients with acute ischemic stroke. They occur >10 times more frequently in tPA-treated versus placebo-treated patients. Our goal was to evaluate the sensitivity and specificity of admission BBBP measurements derived from PCT in predicting the development of SHT and ME in patients with acute ischemic stroke. MATERIALS AND METHODS We retrospectively analyzed a dataset consisting of 32 consecutive patients with acute ischemic stroke with appropriate admission and follow-up imaging. We calculated admission BBBP by using delayed-acquisition PCT data and the Patlak model. Collateral flow was assessed on the admission CTA, while recanalization and reperfusion were assessed on the follow-up CTA and PCT, respectively. SHT and ME were defined according to ECASS III criteria. Clinical data were obtained from chart review. In our univariate and forward selection-based multivariate analysis for predictors of SHT and ME, we incorporated both clinical and imaging variables, including age, admission NIHSS score, admission blood glucose level, admission blood pressure, time from symptom onset to scanning, treatment type, admission PCT-defined infarct volume, admission BBBP, collateral flow, recanalization, and reperfusion. Optimal sensitivity and specificity for SHT and ME prediction were calculated by using ROC analysis. RESULTS In our sample of 32 patients, 3 developed SHT and 3 developed ME. Of the 3 patients with SHT, 2 received IV tPA, while 1 received IA tPA and treatment with the Merci device; of the 3 patients with ME, 2 received IV tPA, while 1 received IA tPA and treatment with the Merci device. Admission BBBP measurements above the threshold were 100% sensitive and 79% specific in predicting SHT and ME. Furthermore, all patients with SHT and ME--and only those with SHT and ME--had admission BBBP measurements above the threshold, were older than 65 years of age, and received tPA. Admission BBBP, age, and tPA were the independent predictors of SHT and ME in our forward selection-based multivariate analysis. Of these 3 variables, only BBBP measurements and age were known before making the decision of administering tPA and thus are clinically meaningful. CONCLUSIONS Admission BBBP, a pretreatment measurement, was 100% sensitive and 79% specific in predicting SHT and ME.
Collapse
Affiliation(s)
- J Hom
- Department of Radiology, Neuroradiology Section, Neurovascular Service, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Taheri S, Gasparovic C, Shah NJ, Rosenberg GA. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn Reson Med 2010; 65:1036-42. [PMID: 21413067 DOI: 10.1002/mrm.22686] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/19/2010] [Accepted: 09/26/2010] [Indexed: 11/09/2022]
Abstract
Breakdown of the blood-brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast-enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T(1) mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) from plasma into brain. A quarter of the standard Gd-DTPA dose for dynamic contrast-enhanced magnetic resonance imaging was found to give both sufficient contrast-to-noise and high T(1) sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T(1). Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10(-4) L/g min. MRI measurements were not [corrected] correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast-enhanced magnetic resonance imaging with low dose Gd-DTPA and fast T(1) imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
| | | | | | | |
Collapse
|
41
|
Dankbaar JW, Hom J, Schneider T, Cheng SC, Bredno J, Lau BC, van der Schaaf IC, Wintermark M. Dynamic perfusion-CT assessment of early changes in blood brain barrier permeability of acute ischaemic stroke patients. J Neuroradiol 2010; 38:161-6. [PMID: 20950860 DOI: 10.1016/j.neurad.2010.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE Damage to the blood brain barrier (BBB) may lead to haemorrhagic transformation after ischaemic stroke. The purpose of this study was to evaluate the effect of patient characteristics and stroke severity on admission BBB permeability (BBBP) values measured with perfusion-CT (PCT) in acute ischaemic stroke patients. METHODS We retrospectively identified 65 patients with proven ischaemic stroke admitted within 12 hours after symptom onset. Patients' charts were reviewed for demographic variables and vascular risk factors. The Patlak's model was applied to calculate BBBP values from the PCT data in the infarct core, penumbra and non-ischaemic tissue in the contralateral hemisphere. Mean BBBP values and their 95% confidence intervals (CI) were calculated in the different tissue types. Effects of demographic variables and risk factors on BBBP were analyzed using a multivariate, generalized estimating equations (GEE) model. RESULTS BBBP values in the infarct core (mean [95%CI]: 2.48 [2.16-2.85]) and penumbra (2.48 [2.21-2.79]) were significantly higher than in non-ischaemic tissue (2.12 [1.88-2.39]). Multivariate analysis demonstrated that collateral filling has effect on BBBP. Less elevated BBBP values were associated with more than 50% collateral filling. CONCLUSIONS BBBP values are increased in ischaemic brain tissue on the admission PCT scan of acute ischaemic stroke patients. Less abnormally elevated BBBP values were observed in patients with more than 50% collateral filling, possibly explaining why there is a relationship between more collateral filling and a lower incidence of haemorrhagic transformation.
Collapse
Affiliation(s)
- J W Dankbaar
- University of California, Department of Radiology and Biomedical Imaging, Neuroradiology Section, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bektas H, Wu TC, Kasam M, Harun N, Sitton CW, Grotta JC, Savitz SI. Increased blood-brain barrier permeability on perfusion CT might predict malignant middle cerebral artery infarction. Stroke 2010; 41:2539-44. [PMID: 20847316 DOI: 10.1161/strokeaha.110.591362] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Perfusion CT has been used to assess the extent of blood-brain barrier breakdown. The purpose of this study was to determine the predictive value of blood-brain barrier permeability measured using perfusion CT for development of malignant middle cerebral artery infarction requiring hemicraniectomy (HC). METHODS We retrospectively identified patients from our stroke registry who had middle cerebral artery infarction and were evaluated with admission perfusion CT. Blood-brain barrier permeability and cerebral blood volume maps were generated and infarct volumes calculated. Clinical and radiographic characteristics were compared between those who underwent HC versus those who did not undergo HC. RESULTS One hundred twenty-two patients (12 HC, 110 no HC) were identified. Twelve patients who underwent HC had developed edema, midline shift, or infarct expansion. Infarct permeability area, infarct cerebral blood volume area, and infarct volumes were significantly different (P < 0.018, P < 0.0211, P < 0.0001, P < 0.0014) between HC and no HC groups. Age (P = 0.03) and admission National Institutes of Health Stroke Scale (P = 0.0029) were found to be independent predictors for HC. Using logistic regression modeling, there was an association between increased infarct permeability area and HC. The OR for HC based on a 5-, 10-, 15-, or 20-cm² increase in infarct permeability area were 1.179, 1.390, 1.638, or 1.932, respectively (95% CI, 1.035 to 1.343, 1.071 to 1.804, 1.108 to 2.423, 1.146 to 3.255, respectively). CONCLUSIONS Increased infarct permeability area is associated with an increased likelihood for undergoing HC. Because early HC for malignant middle cerebral artery infarction has been associated with better outcomes, the infarct permeability area on admission perfusion CT might be a useful tool to predict malignant middle cerebral artery infarction and need for HC.
Collapse
Affiliation(s)
- Hesna Bektas
- Department of Neurology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Relative recirculation: a fast, model-free surrogate for the measurement of blood-brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest Radiol 2010; 44:662-8. [PMID: 19724234 DOI: 10.1097/rli.0b013e3181ae9c40] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To retrospectively evaluate the prognostic performance of a dynamic susceptibility contrast (DSC) MRI metric for permeability (relative recirculation or rR) for the prediction of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS). To compare rR with dynamic contrast-enhanced (DCE) MRI estimates of blood-brain barrier permeability (KPS). MATERIALS AND METHODS Data obtained from 26 patients (age: 27-89 years) with a working diagnosis of AIS were examined retrospectively. Patients were examined within a mean of 3.5 hours of symptom onset. Eleven patients received intravenous recombinant tissue-plasminogen activator (rt-PA). HT was determined by follow-up computed tomography and/or magnetic resonance imaging 24 to 72 hours after initial imaging. Permeability (DCE) always preceded DSC imaging and consisted of a 3D gradient-recalled echo scan acquired in 4 minutes 48 s. DSC imaging consisted of a T2*-weighted single shot EPI scan acquired in 43 to 86 seconds. Gadodiamide (0.1 mmol/kg) was injected as a bolus for each scan. Permeability (KPS) and rR were calculated offline for regions of interest (ROI) defined within the core of the infarct, as well as within the homologous location in the contralateral hemisphere. The relationship between KPS and rR was investigated using linear regression and receiver operating characteristic (ROC) curves were computed for predicting HT from either rR or KPS. RESULTS Eleven patients proceeded to HT (including 5 treated with rt-PA). Mean KPS values were significantly elevated in infarct relative to contralateral areas (0.84 +/- 0.57 vs. 0.42 +/- 0.34 mL/100 g/min; P = 0.0003). For infarct ROIs, KPS values were significantly greater in patients with HT compared with non-HT patients (1.25 +/- 0.63 vs. 0.53 +/- 0.23 mL/100 g/min; P = 0.0015). KPS values were higher in patients who received rt-PA than in untreated patients (1.09 +/- 0.61 vs. 0.65 +/- 0.47 mL/100 g/min; P = 0.0497). ROC analysis indicated a KPS threshold value of 0.67 mL/100 g/min for providing an optimal sensitivity and specificity for predicting HT of 91% and 80%, respectively. Mean rR values for infarct ROIs were significantly higher than those determined for contralateral regions (0.17 +/- 0.06 vs. 0.09 +/- 0.03; P < 0.0001). The mean rR for the HT group was significantly greater than for the non-HT group (0.22 +/- 0.05 vs. 0.14 +/- 0.05; P = 0.0002). As with KPS, the mean rR for patients who were treated with rt-PA was significantly greater than for untreated patients (0.21 +/- 0.07 vs. 0.15 +/- 0.05; P = 0.0112). ROC analysis indicated a threshold value of 0.17 for providing optimal sensitivity and specificity for predicting HT of 91% and 87%, respectively. There was a significant correlation between rR and KPS for infarct ROIs (r = 0.67; P < 0.001). CONCLUSIONS Both KPS and rR are significantly elevated in infarcted, relative to uninfarcted tissue in the same AIS patient. Both parameters were also significantly elevated in HT, relative to non-HT infarcts. The strong correlation between rR and KPS, coupled with the high sensitivity and specificity of rR for the prediction of HT suggest that rR is related to blood-brain barrier integrity in AIS and may prove valuable in the prediction of HT.
Collapse
|
44
|
Schneider T, Hom J, Bredno J, Dankbaar JW, Cheng SC, Wintermark M. Delay correction for the assessment of blood-brain barrier permeability using first-pass dynamic perfusion CT. AJNR Am J Neuroradiol 2010; 32:E134-8. [PMID: 20538824 DOI: 10.3174/ajnr.a2152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Hemorrhagic transformation is a serious potential complication of ischemic stroke with damage to the BBB as one of the contributing mechanisms. BBB permeability measurements extracted from PCT by using the Patlak model can provide a valuable assessment of the extent of BBB damage. Unfortunately, Patlak assumptions require extended PCT acquisition, increasing the risk of motion artifacts. A necessary correction is presented for obtaining accurate BBB permeability measurements from first-pass PCT.
Collapse
Affiliation(s)
- T Schneider
- Department of Radiology, Neuroradiology Section, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Although intracranial hypertension may arise from diverse pathology, several basic principles remain paramount to understanding its dynamics; however, the management of elevated intracranial pressure (ICP) may be very complex. Initial management of common ICP exacerbants is important, such as addressing venous outflow obstruction with upright midline head positioning and treating agitation and pain with sedation and analgesia. Surgical decompression of mass effect may rapidly improve ICP elevation, but the impact on outcome is unclear. Considerable effort has been put forth to understand the roles of multimodal intensive care monitoring, osmolar therapy, cerebral metabolic suppression, and temperature augmentation in the advanced management of elevated ICP. Establishing a protocol-driven approach to the management of ICP enables the rapid bedside assessment of multiple physiologic variables to implement appropriate treatments, which limit the risk of developing secondary brain injury.
Collapse
Affiliation(s)
- Thomas J Wolfe
- Department of Neurology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
46
|
Vidarsson L, Thornhill RE, Liu F, Mikulis DJ, Kassner A. Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan? Magn Reson Imaging 2009; 27:1216-22. [PMID: 19695816 DOI: 10.1016/j.mri.2009.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/09/2008] [Accepted: 01/26/2009] [Indexed: 11/26/2022]
Abstract
Blood-brain barrier (BBB) permeability estimation with dynamic contrast-enhanced MRI (DCE-MRI) has shown significant potential for predicting hemorrhagic transformation (HT) in patients presenting with acute ischemic stroke (AIS). In this work, the effects of scan duration on quantitative BBB permeability estimates (KPS) were investigated. Data from eight patients (three with HT) aged 37-93 years old were retrospectively studied by directly calculating the standard deviation of KPS as a function of scan time. The uncertainty in KPS was reduced only slightly for a scan time of 3 min and 30 s (4% reduction in P value from .047 to .045). When more than 3 min and 30 s of data were used, quantitative permeability MRI was able to separate those patients who proceeded to HT from those who did not (P value <.05). Our findings indicate that reducing permeability acquisition times is feasible in keeping with the need to maintain time-efficient MR protocols in the setting of AIS.
Collapse
Affiliation(s)
- Logi Vidarsson
- Department of Diagnostic Imaging, The Hospital for Sick Children and The University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
47
|
Kassner A, Roberts TPL, Moran B, Silver FL, Mikulis DJ. Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol 2009; 30:1864-9. [PMID: 19661169 DOI: 10.3174/ajnr.a1774] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although thrombolytic therapy (recombinant tissue plasminogen activator [rtPA]) represents an important step forward in acute ischemic stroke (AIS) management, there is a clear need to identify high-risk patients. The purpose of this study was to investigate the role of quantitative permeability (KPS) MR imaging in patients with AIS treated with and without rtPA. We hypothesized that rtPA would increase KPS and that KPS MR imaging can be used to predict the risk of hemorrhagic transformation (HT). MATERIALS AND METHODS Thirty-six patients with AIS were examined within a mean of 3.6 hours of documented symptom onset. KPS MR imaging was performed as part of our AIS protocol. KPS coefficients in the stroke lesion were estimated for all patients, and the relationship between KPS and both HT and rtPA was investigated by using Student t tests. Receiver operating characteristic (ROC) curves were computed for predicting HT from KPS. RESULTS The occurrence rate of HT for patients who received rtPA and those who did not was 43% and 37%, respectively. Assessment of KPS in the lesion revealed significant differences between those who hemorrhaged and those who did not (P < .0001) as well as between rtPA-treated and untreated patients (P = .008). ROC analysis indicated a KPS threshold of 0.67 mL/100 g/min, with a sensitivity of 92% and a specificity of 78%. CONCLUSIONS The results of this study indicate that KPS is able to identify patients at higher risk of HT and may allow use of physiologic imaging rather than time from onset of symptoms to guide treatment decision.
Collapse
Affiliation(s)
- A Kassner
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
48
|
Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion CT assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 2009; 30:1366-70. [PMID: 19369610 DOI: 10.3174/ajnr.a1592] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A previous study demonstrated the need to use delayed acquisition rather than first-pass data for accurate blood-brain barrier permeability surface product (BBBP) calculation from perfusion CT (PCT) according to the Patlak model, but the optimal duration of the delayed acquisition has not been established. Our goal was to determine the optimal duration of the delayed PCT acquisition to obtain accurate BBBP measurements while minimizing potential motion artifacts and radiation dose. MATERIALS AND METHODS We retrospectively identified 23 consecutive patients with acute ischemic anterior circulation stroke who underwent a PCT study with delayed acquisition. The Patlak model was applied for the full delayed acquisition (90-240 seconds) and also for truncated analysis windows (90-210, 90-180, 90-150, 90-120 seconds). Linear regression of Patlak plots was performed separately for the full and truncated analysis windows, and the slope of these regression lines was used to indicate BBBP. The full and truncated analysis windows were compared in terms of the resulting BBBP values and the quality of the Patlak fitting. RESULTS BBBP values in the infarct and penumbra were similar for the full 90- to 240-second acquisition (95% confidence intervals for the infarct and penumbra: 1.62-2.47 and 1.75-2.41 mL x100 g(-1) x min(-1), respectively) and the 90- to 210-second analysis window (1.82-2.76 and 2.01-2.74 mL x 100 g(-1) x min(-1), respectively). BBBP values increased significantly with shorter acquisitions. The quality of the Patlak fit was excellent for the full 90- to 240-second and 90- to 210-second acquisitions, but it degraded with shorter acquisitions. CONCLUSIONS The duration for the delayed PCT acquisition should be at least 210 seconds, because acquisitions shorter than 210 seconds lead to significantly overestimated BBBP values.
Collapse
Affiliation(s)
- J Hom
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif 94143-0628, USA
| | | | | | | | | | | |
Collapse
|
49
|
Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability. Neuroradiology 2009; 51:445-51. [PMID: 19274457 PMCID: PMC2694925 DOI: 10.1007/s00234-009-0516-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/20/2009] [Indexed: 12/29/2022]
Abstract
Introduction The purpose of this study is to compare the variability of PCT results obtained by automatic selection of the arterial input function (AIF), venous output function (VOF) and symmetry axis versus manual selection. Methods Imaging data from 30 PCT studies obtained as part of standard clinical stroke care at our institution in patients with suspected acute hemispheric ischemic stroke were retrospectively reviewed. Two observers performed the post-processing of 30 CTP datasets. Each observer processed the data twice, the first time employing manual selection of AIF, VOF and symmetry axis, and a second time using automated selection of these same parameters, with the user being allowed to adjust them whenever deemed appropriate. The volumes of infarct core and of total perfusion defect were recorded. The cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and blood–brain barrier permeability (BBBP) values in standardized regions of interest were recorded. Interobserver variability was quantified using the Bland and Altman's approach. Results Automated post-processing yielded lower coefficients of variation for the volume of the infarct core and the volume of the total perfusion defect (15.7% and 5.8%, respectively) compared to manual post-processing (31.0% and 12.2%, respectively). Automated post-processing yielded lower coefficients of variation for PCT values (11.3% for CBV, 9.7% for CBF, and 9.5% for MTT) compared to manual post-processing (23.7% for CBV, 32.8% for CBF, and 16.7% for MTT). Conclusion Automated post-processing of PCT data improves interobserver agreement in measurements of CBV, CBF and MTT, as well as volume of infarct core and penumbra.
Collapse
|
50
|
Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, Virmani S, Pohlman S, Wintermark M. Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol 2009; 36:219-27. [PMID: 19251320 DOI: 10.1016/j.neurad.2009.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/10/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The goal of this study was to determine blood-brain barrier permeability (BBBP) values extracted from perfusion-CT (PCT) using the Patlak model and possible variations related to age, gender, race, vascular risk factors and their treatment and anatomy in non-stroke patients. MATERIALS AND METHODS We retrospectively identified 96 non-stroke patients who underwent a PCT study using a prolonged acquisition time up to 3 minutes. Patients' charts were reviewed for demographic data, vascular risk factors and their treatment. The Patlak model was applied to calculate BBBP values in regions of interest drawn within the basal ganglia and the gray and white matter of the different cerebral lobes. Differences in BBBP values were analyzed using a multivariate analysis considering clinical variables and anatomy. RESULTS Mean absolute BBBP values were 1.2 ml 100 g(-1) min(-1) and relative BBBP/CBF values were 3.5%. Statistical differences between gray and white matter were not clinically relevant. BBBP values were influenced by age, history of diabetes and/or hypertension and aspirin intake. CONCLUSION This study reports ranges of BBBP values in non-stroke patients calculated from delayed phase PCT data using the Patlak model. These ranges will be useful to detect abnormal BBBP values when assessing patients with cerebral infarction for the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- J W Dankbaar
- Department of Radiology, Neuroradiology Section, University of California, San Francisco, 505, Parnassus Avenue, Box 0628, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | |
Collapse
|