1
|
Schilling KG, Newton A, Tax CMW, Chamberland M, Remedios SW, Gao Y, Li M, Chang C, Rheault F, Sepherband F, Anderson A, Gore JC, Landman B. The relationship of white matter tract orientation to vascular geometry in the human brain. Sci Rep 2025; 15:18396. [PMID: 40419741 PMCID: PMC12106635 DOI: 10.1038/s41598-025-99724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
The white matter of the human brain exhibits highly ordered anisotropic structures of both axonal nerve fibers and cerebral vasculature. Separately, the anisotropic nature of white matter axons and white matter vasculature have been shown to cause an orientation dependence on various MRI contrasts used to study the structure and function of the brain; however, little is known of the relationship between axonal and vascular orientations. Thus, the aim of this study is to compare the orientation between nerve fibers and vasculature within the white matter. To do this, we use diffusion MRI and susceptibility weighted imaging acquired in the same healthy young adult volunteers and analyze the alignment between white matter fibers and blood vessels in different brain regions, and along different pathways, to determine the degree of alignment between these structures. We first describe vascular orientation throughout the brain and note several regions with consistent orientations across individuals. Next, we find that vasculature does not necessarily align with the dominant direction of white matter in many regions, but, due to the presence of crossing fiber populations, does align with at least some white matter within each MRI voxel. Even though the spatial patterns of blood vessels run in parallel to several white matter tracts, they do not do so along the entire pathway, nor for all pathways, suggesting that vasculature does not supply/drain blood in a tract-specific manner. Overall, these findings suggest that the vascular architecture within the white matter is closely related to, but not the same as, the organization of neural pathways. This study contributes to a better understanding of the microstructural arrangement of the brain and may have implications for interpreting neuroimaging data in health and disease.
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Allen Newton
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Samuel W Remedios
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catie Chang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Farshid Sepherband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett Landman
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Turilli D, Piscopo L, Dessì A, Pinna C, Fattacciu LM, Solinas E, Conti I, Tamburrini S, Sica G, Klain M, Masala S, Scaglione M. Birth-Related Subdural Hemorrhage in Asymptomatic Newborns: Magnetic Resonance Imaging Prevalence and Evolution of Intracranial and Intraspinal Localization. Tomography 2025; 11:58. [PMID: 40423260 DOI: 10.3390/tomography11050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Neonatal birth-related intracranial subdural hemorrhages (SDHs) represent a form of bleeding inside the skull that occurs in newborns. This condition includes the extravasation of blood both in the encephalic parenchyma and in the extra-axial spaces. Recent studies have shown that SDH and particularly post-traumatic birth-related hemorrhages represent a frequent occurrence, but they are often asymptomatic. The gold standard for the diagnosis and follow-up of patients with SDH is multiparametric Magnetic Resonance Imaging. The aim of this study is to describe our experience by reporting several cases of SDH with different distribution and Central Nervous System involvement by the MRI of this pathology in infants up to 30 days of age. Methods: We analyzed the age and sex of the patients included in this study, the localization of SDH in different CNS areas, and their frequency using distribution plots and pie charts. Results: About the analysis of the SDH locations in the 32 patients, the most common location was the cerebellum (31/32, 96.9%), followed by parietal and occipital lobes (19/32, 59.4%; 18/32, 56.2%, respectively), falx cerebri (11/32, 34.4%), tentorium cerebelli (10/32, 31.2%), temporal lobes (6/32, 18.7%), and finally cervical and dorsal spine in the same patients (4/32, 12.5%). According to SDH locations, the patients were divided into supratentorial, infratentorial, both, and Spinal Canal. Conclusions: Our study confirmed the literature data regarding the neonatal birth-related SDH high frequency, but also allowed us to focus our attention on the rarest spinal SDH localizations with the same benign evolution.
Collapse
Affiliation(s)
- Davide Turilli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leandra Piscopo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Alberto Dessì
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Claudia Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Emma Solinas
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Ilaria Conti
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Salvatore Masala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
Teixeira PAG, Kessler H, Morbée L, Douis N, Boubaker F, Gillet R, Blum A. Mineralized tissue visualization with MRI: Practical insights and recommendations for optimized clinical applications. Diagn Interv Imaging 2025; 106:147-156. [PMID: 39667997 DOI: 10.1016/j.diii.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
Magnetic resonance imaging (MRI) techniques that enhance the visualization of mineralized tissues (hereafter referred to as MT-MRI) are increasingly being incorporated into clinical practice, particularly in musculoskeletal imaging. These techniques aim to mimic the contrast provided by computed tomography (CT), while taking advantage of MRI's superior soft tissue contrast and lack of ionizing radiation. However, the variety of MT-MRI techniques, including three-dimensional gradient-echo, ultra-short and zero-echo time, susceptibility-weighted imaging, and artificial intelligence-generated synthetic CT, each offer different technical characteristics, advantages, and limitations. Understanding these differences is critical to optimizing clinical application. This review provides a comprehensive overview of the most commonly used MT-MRI techniques, categorizing them based on their technical principles and clinical utility. The advantages and disadvantages of each approach, including their performance in bone morphology assessment, fracture detection, arthropathy-related findings, and soft tissue calcification evaluation are discussed. Additionally, technical limitations and artifacts that may affect image quality and diagnostic accuracy, such as susceptibility effects, signal-to-noise ratio issues, and motion artifacts are addressed. Despite promising developments, MT-MRI remains inferior to conventional CT for evaluating subtle bone abnormalities and soft tissue calcification due to spatial resolution limitations. However, advances in deep learning and hardware innovations, such as artificial intelligence-generated synthetic CT and ultrahigh-field MRI, may bridge this gap in the future.
Collapse
Affiliation(s)
- Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France; Université de Lorraine, Inserm, IADI, Nancy 54000, France.
| | - Hippolyte Kessler
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France
| | - Lieve Morbée
- Department of Radiology, Ghent University Hospital, Ghent 9000, Belgium
| | - Nicolas Douis
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France; Université de Lorraine, Inserm, IADI, Nancy 54000, France
| | - Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France
| | - Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France; Université de Lorraine, Inserm, IADI, Nancy 54000, France
| | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy 54035, France
| |
Collapse
|
4
|
Kishi S, Maeda M, Kogue R, Tanaka F, Umino M, Toma N, Sakuma H. SWI brush sign of cerebral parenchymal veins in central nervous system diseases. Jpn J Radiol 2025; 43:726-735. [PMID: 39730932 PMCID: PMC12052949 DOI: 10.1007/s11604-024-01723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Brush sign (BS) was first reported as prominent hypointensity of deep medullary veins and subependymal veins on T2*-weighted images at 3 T MRI in patients with acute stroke in the territory of the middle cerebral artery. Subsequently, BS in central nervous system (CNS) diseases such as moyamoya disease, cerebral venous thrombosis, and Sturge-Weber syndrome was also described on susceptibility-weighted imaging (SWI), and the clinical implications of BS were discussed. The purpose of this review is to demonstrate BS on SWI in various CNS diseases and its mechanisms in the above-mentioned diseases. We also explain the clinical implications of this finding in each disease.
Collapse
Affiliation(s)
- Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, MIe, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
5
|
Vaccarino F, Quattrocchi CC, Parillo M. Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders. Bioengineering (Basel) 2025; 12:473. [PMID: 40428092 PMCID: PMC12109288 DOI: 10.3390/bioengineering12050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient-echo sequence with high spatial resolution that leverages both phase and magnitude effects. The interaction of paramagnetic (such as hemosiderin and deoxyhemoglobin), diamagnetic (including calcifications and minerals), and ferromagnetic substances with the local magnetic field distorts it, leading to signal changes. Neurodegenerative diseases are typically characterized by the progressive loss of neurons and their supporting cells within the neurovascular unit. This cellular decline is associated with a corresponding deterioration of both cognitive and motor abilities. Many neurodegenerative disorders are associated with increased iron accumulation or microhemorrhages in various brain regions, making SWI a valuable diagnostic tool in clinical practice. Suggestive SWI findings are known in Parkinson's disease, Lewy body dementia, atypical parkinsonian syndromes, multiple sclerosis, cerebral amyloid angiopathy, amyotrophic lateral sclerosis, hereditary ataxias, Huntington's disease, neurodegeneration with brain iron accumulation, and chronic traumatic encephalopathy. This review will assist radiologists in understanding the technical framework of SWI sequences for a correct interpretation of currently established MRI findings and for its potential future clinical applications.
Collapse
Affiliation(s)
- Federica Vaccarino
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
| | - Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
| |
Collapse
|
6
|
Singer ED, Karbasian N, Katz DS, Wong VK, Abdelsalam ME, Stanietzky N, Nguyen TT, Shenoy-Bhangle AS, Badawy M, Revzin MV, Shehata MA, Eltaher M, Elsayes KM, Korivi BR. Renal bleeding: imaging and interventions in patients with tumors. Diagn Interv Radiol 2025; 31:161-170. [PMID: 38874163 PMCID: PMC12057524 DOI: 10.4274/dir.2024.242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
In patients with cancer, spontaneous renal bleeding can stem from a range of underlying factors, necessitating precise diagnostic tools for effective patient management. Benign and malignant renal tumors are among the primary culprits, with angiomyolipomas and renal cell carcinomas being the most common among them. Vascular anomalies, infections, ureteral obstructions, and coagulation disorders can also contribute to renal-related bleeding. Cross-sectional imaging techniques, particularly ultrasound and computed tomography (CT), play pivotal roles in the initial detection of renal bleeding. Magnetic resonance imaging and CT are preferred for follow-up evaluations and aid in detecting underlying enhancing masses. IV contrast-enhanced ultrasound can provide additional information for active bleeding detection and differentiation. This review article explores specific disorders associated with or resembling spontaneous acute renal bleeding in patients with renal tumors; it focuses on the significance of advanced imaging techniques in accurately identifying and characterizing renal bleeding in these individuals. It also provides insights into the clinical presentations, imaging findings, and treatment options for various causes of renal bleeding, aiming to enhance the understanding, diagnosis, and management of the issue.
Collapse
Affiliation(s)
- Emad D. Singer
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Niloofar Karbasian
- The University of Texas Health Sciences Center Department of Diagnostic and Interventional Radiology, Texas, USA
| | - Douglas S. Katz
- New York University Long Island School of Medicine, Department of Radiology, New York, USA
| | - Vincenzo K. Wong
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Mohamed E. Abdelsalam
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Nir Stanietzky
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Trinh T. Nguyen
- Billings Clinic Hospital Department of Diagnostic Radiology, Montana, USA
| | | | - Mohamed Badawy
- Wayne State University Diagnostic Radiology Department, Michigan, USA
| | - Margarita V. Revzin
- Yale University School of Medicine Department of Radiology, Connecticut, USA
| | - Mostafa A. Shehata
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Mohamed Eltaher
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Khaled M. Elsayes
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| | - Brinda Rao Korivi
- The University of Texas MD Anderson Cancer Center Department of Abdominal Radiology, Texas, USA
| |
Collapse
|
7
|
Kraff O, May MW. Multi-center QA of ultrahigh-field systems. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01232-8. [PMID: 40126781 DOI: 10.1007/s10334-025-01232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
Over the past two decades, ultra-high field (UHF) magnetic resonance imaging (MRI) has evolved from pure investigational devices to now systems with CE and FDA clearance for clinical use. UHF MRI offers enhanced diagnostic value, especially in brain and musculoskeletal imaging, aiding in the differential diagnosis of conditions like multiple sclerosis and epilepsy. However, to fully harness the potential of UHF, multi-center studies and quality assurance (QA) protocols are critical for ensuring reproducibility across different systems and sites. This becomes even more vital as the UHF community comprises three generations of magnet design, and many UHF sites are currently upgrading to the latest system architecture. Hence, this review presents multi-center QA measurements that have been performed at UHF, in particular from larger consortia through their "travelling heads" studies. Despite the technical variability between different vendors and system generations, these studies have shown a high level of reproducibility in structural and quantitative imaging. Furthermore, the review highlights the ongoing challenges in QA, such as transmitter performance drift and the need for a standard reliable multi-tissue phantom for RF coil calibration, which are crucial for advancing UHF MRI in both clinical and research applications.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany.
| | - Markus W May
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Schilling KG, Newton A, Tax CM, Chamberland M, Remedios SW, Gao Y, Li M, Chang C, Rheault F, Sepherband F, Anderson A, Gore JC, Landman B. The relationship of white matter tract orientation to vascular geometry in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641646. [PMID: 40093184 PMCID: PMC11908263 DOI: 10.1101/2025.03.06.641646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The white matter of the human brain exhibits highly ordered anisotropic structures of both axonal nerve fibers and cerebral vasculature. Separately, the anisotropic nature of white matter axons and white matter vasculature have been shown to cause an orientation dependence on various MRI contrasts used to study the structure and function of the brain; however, little is known of the relationship between axonal and vascular orientations. Thus, the aim of this study is to compare the orientation between nerve fibers and vasculature within the white matter. To do this, we use diffusion MRI and susceptibility weighted imaging acquired in the same healthy young adult volunteers and analyze the alignment between white matter fibers and blood vessels in different brain regions, and along different pathways, to determine the degree of alignment between these structures. We first describe vascular orientation throughout the brain and note several regions with consistent orientations across individuals. Next, we find that vasculature does not necessarily align with the dominant direction of white matter in many regions, but, due to the presence of crossing fiber populations, does align with at least some white matter within each MRI voxel. Even though the spatial patterns of blood vessels run in parallel to several white matter tracts, they do not do so along the entire pathway, nor for all pathways, suggesting that vasculature does not supply/drain blood in a tract-specific manner. Overall, these findings suggest that the vascular architecture within the white matter is closely related to, but not the same as, the organization of neural pathways. This study contributes to a better understanding of the microstructural arrangement of the brain and may have implications for interpreting neuroimaging data in health and disease.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen Newton
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chantal M.W. Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Samuel W. Remedios
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catie Chang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering & Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Québec, Canada
| | - Farshid Sepherband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering & Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett Landman
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering & Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Zhou Y, Zhao B, Moore J, Zong X. Automatic segmentation and diameter measurement of deep medullary veins. Magn Reson Med 2025; 93:1380-1393. [PMID: 39481043 DOI: 10.1002/mrm.30341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE As one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility-weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient-echo images. METHODS A neural network model was trained for DMV segmentation based on the gradient-echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV-induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel-size dependence of measurement accuracy for a typical DMV size. RESULTS The automatically segmented DMV masks had Dice similarity coefficients of 0.68 ± 0.03 (voxel level) and 0.83 ± 0.04 (cluster level). The fitted graphite-rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was ≤ 0.45 mm, and 92.2% of DMVs had diameters between 90 μm and 200 μm with a peak at about 120 μm, which agreed well with an earlier ex vivo report. CONCLUSION The proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Bingbing Zhao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Julia Moore
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiaopeng Zong
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
10
|
Cataldi S, Feraco P, Marrale M, Alongi P, Geraci L, La Grutta L, Caruso G, Bartolotta TV, Midiri M, Gagliardo C. Intra-tumoral susceptibility signals in brain gliomas: where do we stand? FRONTIERS IN RADIOLOGY 2025; 5:1546069. [PMID: 40052095 PMCID: PMC11882858 DOI: 10.3389/fradi.2025.1546069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
Nowadays, the genetic and biomolecular profile of neoplasms-related with their biological behaviour-have become a key issue in oncology, as they influence many aspects of both diagnosis and treatment. In the neuro-oncology field, neuroradiological research has recently explored the potential of non-invasively predicting the molecular phenotype of primary brain neoplasms, particularly gliomas, based on magnetic resonance imaging (MRI), using both conventional and advanced imaging techniques. Among these, diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS) and susceptibility-weighted imaging (SWI) and have been used to explore various aspects of glioma biology, including predicting treatment response and understanding treatment-related changes during follow-up imaging. Recently, intratumoral susceptibility signals (ITSSs)-visible on SWI-have been recognised as an important new imaging tool in the evaluation of brain gliomas, as they offer a fast and simple non-invasive window into their microenvironment. These intratumoral hypointensities reflect critical pathological features such as microhemorrhages, calcifications, necrosis and vascularization. Therefore, ITSSs can provide neuroradiologists with more biological information for glioma differential diagnosis, grading and subtype differentiation, providing significant clinical support in prognosis assessment, therapeutic management and treatment response evaluation. This review summarizes recent advances in ITSS applications in glioma assessment, emphasizing both its potential and limitations while referencing key studies in the field.
Collapse
Affiliation(s)
- Simone Cataldi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Paola Feraco
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, Palermo, Italy
| | - Pierpaolo Alongi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Nuclear Medicine Unit, Department of Radiological Sciences, A.R.N.A.S. Civico, Palermo, Italy
| | - Laura Geraci
- Neuroradiology Unit, Department of Radiological Sciences, A.R.N.A.S. Civico, Palermo, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Caruso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Massimo Midiri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Neuroradiology Unit, University-Hospital Paolo Giaccone, Palermo, Italy
| |
Collapse
|
11
|
Wu X, Xu S, Zhang Y, Ye Y, Zhang D, Yu L, Zhang R, Sun J, Huang P. Validation of a Deep Learning-Based Method for Accelerating Susceptibility-Weighted Imaging in Clinical Settings. NMR IN BIOMEDICINE 2025; 38:e5320. [PMID: 39776145 DOI: 10.1002/nbm.5320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Susceptibility-weighted imaging (SWI) has been widely used in clinical contexts, in which the speed of acquisition is frequently a critical issue. In this study, we aim to test the feasibility of a deep learning (DL)-based reconstruction method for accelerating SWI acquisition in clinical settings. A total of 61 subjects were consecutively enrolled. SWI scans using prospective under-sampling and DL-based reconstruction method (acceleration factor = 5, acquisition time: 1:46) and parallel imaging (PI, acceleration factor = 2, acquisition time: 4:45) were acquired from each subject. The DL-based method utilizes a cascaded convolutional neural network, namely, ReconNet3D, to perform k-space to image reconstruction with the capacity of single-channel input and single-channel output. The DL-SWI and PI-SWI results were compared quantitatively using structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). Two raters independently assessed image quality from five aspects: artifacts, noise level, sharpness, lesion conspicuity, and overall image quality. The numbers of microbleeds were also counted. Finally, both sets of images of the same subject were reviewed side-by-side for noninferiority assessments. The DL-SWI images showed good similarity in terms of SSIM (mean ± SD: 0.89 ± 0.02) and PSNR (mean ± SD: 36.91 ± 2.41) with PI-SWI. In comparison, DL-SWI images had significantly better scores in terms of artifacts, noise, and overall image quality score (4.15 vs. 3.33; 3.85 vs. 3.16; 3.85 vs. 3.44, all with p < 0.001). DL-SWI showed reduced image sharpness (p = 0.031), but no significant difference regarding lesion conspicuity. The number of microbleeds identified from the DL-SWI images completely matched the PI-SWI results. We had not observed any false-negative or false-positive readings on DL-SWI images. The DL-based SWI acceleration method could significantly reduce scan time and maintain image quality, suggesting its great potential in clinical applications.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongquan Ye
- United Imaging Healthcare, Houston, Texas, USA
| | - Deying Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Chen Zhou ZH, Hilario A, Salvador Álvarez E, Cárdenas del Carre AM, Romero Coronado J, Lechuga Vázquez C, Martínez de Aragón A, Ramos González A. The "Hypointense Focal Brain" on susceptibility-weighted imaging as a sign of venous congestion in cranial dural arteriovenous fistulas. Neuroradiol J 2025; 38:64-71. [PMID: 39075737 PMCID: PMC11571536 DOI: 10.1177/19714009241269522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Cranial dural arteriovenous fistulas (dAVFs) are complex neurovascular malformations accounting for approximately 10%-15% of all intracranial arteriovenous malformations. The objective is to investigate the utility of susceptibility-weighted imaging (SWI) in identifying "hypointense focal brain" as an additional helpful sign of venous congestion in cranial dAVFs. MATERIALS AND METHODS A retrospective review of patients diagnosed with cranial dAVFs between January 2015 and June 2023 was conducted, and SWI was used to identify the "hypointense focal brain" sign within the venous drainage region of the dAVF. The "hypointense focal brain" on SWI was identified as a low-intensity signal within the venous drainage region, indicative of venous congestion. The presence of this imaging sign was assessed by two neuroradiologists and signal intensity measurements were performed to support the presence of the sign. RESULTS The study included six patients with cranial dAVFs exhibiting cortical venous retrograde drainage and the "hypointense focal brain" on SWI. Follow-up imaging post-treatment revealed resolution or improvement of the hypointense signal, confirming its association with venous congestion. Signal intensity measurements further supported the presence of this imaging sign in pre-treatment scans. CONCLUSION The study's findings demonstrate the presence of a reversible "hypointense focal brain" sign on SWI in patients with cranial dAVFs and CVR, which can be useful as an additional imaging sign for venous congestion.
Collapse
Affiliation(s)
- Zhao Hui Chen Zhou
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | - Amaya Hilario
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | - Elena Salvador Álvarez
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | | | - Juan Romero Coronado
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | - Carmen Lechuga Vázquez
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | - Ana Martínez de Aragón
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| | - Ana Ramos González
- Neuroradiology Section, Department of Radiology, Hospital Universitario 12 de Octubre, Spain
| |
Collapse
|
13
|
Valenzuela RF, Duran Sierra EDJ, Canjirathinkal MA, Amini B, Hwang KP, Ma J, Torres KE, Stafford RJ, Wang WL, Benjamin RS, Bishop AJ, Madewell JE, Murphy WA, Costelloe CM. Novel Use and Value of Contrast-Enhanced Susceptibility-Weighted Imaging Morphologic and Radiomic Features in Predicting Extremity Soft Tissue Undifferentiated Pleomorphic Sarcoma Treatment Response. JCO Clin Cancer Inform 2025; 9:e2400042. [PMID: 39841956 DOI: 10.1200/cci.24.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025] Open
Abstract
PURPOSE Undifferentiated pleomorphic sarcomas (UPSs) demonstrate therapy-induced hemosiderin deposition, granulation tissue formation, fibrosis, and calcification. We aimed to determine the treatment-assessment value of morphologic tumoral hemorrhage patterns and first- and high-order radiomic features extracted from contrast-enhanced susceptibility-weighted imaging (CE-SWI). MATERIALS AND METHODS This retrospective institutional review board-authorized study included 33 patients with extremity UPS with magnetic resonance imaging and resection performed from February 2021 to May 2023. Volumetric tumor segmentation was obtained at baseline, postsystemic chemotherapy (PC), and postradiation therapy (PRT). The pathology-assessed treatment effect (PATE) in surgical specimens separated patients into responders (R; ≥90%, n = 16), partial responders (PR; 89%-31%, n = 10), and nonresponders (NR; ≤30%, n = 7). RECIST, WHO, and volume were assessed for all time points. CE-SWI T2* morphologic patterns and 107 radiomic features were analyzed. RESULTS A Complete-Ring (CR) pattern was observed in PRT in 71.4% of R (P = 7.71 × 10-6), an Incomplete-Ring pattern in 33.3% of PR (P = .2751), and a Globular pattern in 50% of NR (P = .1562). The first-order radiomic analysis from the CE-SWI intensity histogram outlined the values of the 10th and 90th percentiles and their skewness. R showed a 280% increase in 10th percentile voxels (P = .061) and a 241% increase in skewness (P = .0449) at PC. PR/NR showed a 690% increase in the 90th percentile voxels (P = .03) at PC. Multiple high-order radiomic texture features observed at PRT discriminated better R versus PR/NR than the first-order features. CONCLUSION CE-SWI morphologic patterns strongly correlate with PATE. The CR morphology pattern was the most frequent in R and had the highest statistical association predicting response at PRT, easily recognized by a radiologist not requiring postprocessing software. It can potentially outperform size-based metrics, such as RECIST. The first- and high-order radiomic analysis found several features separating R versus PR/NR.
Collapse
Affiliation(s)
| | | | | | - Behrang Amini
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ken-Pin Hwang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingfei Ma
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keila E Torres
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Wei-Lien Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | |
Collapse
|
14
|
Steenhout C, Deprez L, Hustinx R, Withofs N. Brain Tumor Assessment: Integrating PET/Computed Tomography and MR Imaging Modalities. PET Clin 2025; 20:165-174. [PMID: 39477722 DOI: 10.1016/j.cpet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While MR imaging is the main imaging modality to assess brain tumors, PET imaging has a specific role. Among the many tracers that have been proposed and are still being developed, 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F]FET) PET remain the most solidly established in the clinics. In particular, [18F]FET has gained increased acceptance due to its higher sensitivity. In this paper, we present an overview of the current clinical status of brain tumor imaging, with emphasis on PET imaging.
Collapse
Affiliation(s)
- Camille Steenhout
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Louis Deprez
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, University Hopsital of Liège, Avenue de l'Hôpital 1, Liège B-4000, Belgium.
| |
Collapse
|
15
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
16
|
Sun Z, Li C, Muccio M, Jiang L, Masurkar A, Buch S, Chen Y, Zhang J, Haacke EM, Wisniewski T, Ge Y. Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study. J Magn Reson Imaging 2024; 60:2564-2575. [PMID: 38587279 PMCID: PMC11458823 DOI: 10.1002/jmri.29381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE Prospective. SUBJECTS Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun Masurkar
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Departments of Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Gomes NBN, Torres US, Ferraz MLCG, D'Ippolito G. Advanced Magnetic Resonance Imaging for Detection of Liver Fibrosis and Inflammation in Autoimmune Hepatitis: A State-of-the-Art Review. Semin Ultrasound CT MR 2024; 45:464-475. [PMID: 39069278 DOI: 10.1053/j.sult.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Autoimmune hepatitis is a rare chronic liver disease, associated with a high level of morbidity and high mortality; approximately 40% of patients with severe untreated disease die within 6 months of diagnosis. It should be treated to achieve complete biochemical and histologic resolution of the disease using corticosteroids and immunosuppression to prevent further progression to cirrhosis. The use of invasive liver biopsy is recommended for the staging and assessment of inflammation and fibrosis for treatment decision-making in the face of an unsatisfactory response or clinical remission, including being a determinant for withdrawal of immunosuppression. On the other hand, liver biopsy is invasive, costly, and not free of complications. It also has potential sampling error and poor interobserver agreement. The limitations of liver biopsy highlight the importance of developing new imaging biomarkers that allow accurate and non-invasive assessment of autoimmune hepatitis in terms of liver inflammation and fibrosis, developing the virtual biopsy concept. Therefore, we review the state-of-the-art of Magnetic Resonance Imaging sequences for the noninvasive evaluation of autoimmune hepatitis, including historical advances and future directions.
Collapse
Affiliation(s)
- Natália B N Gomes
- Department of Radiology, Grupo Fleury, São Paulo, São Paulo, Brazil; Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ulysses S Torres
- Department of Radiology, Grupo Fleury, São Paulo, São Paulo, Brazil; Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.
| | - Maria Lucia C G Ferraz
- Department of Gastroenterology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Giuseppe D'Ippolito
- Department of Radiology, Grupo Fleury, São Paulo, São Paulo, Brazil; Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Afkandeh R, Abedi I, Zamanian M. Detection of multiple sclerosis lesions by susceptibility-weighted imaging-A systematic review and meta-analyses. Clin Radiol 2024; 79:e1522-e1529. [PMID: 39406601 DOI: 10.1016/j.crad.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 12/07/2024]
Abstract
RATIONALE AND OBJECTIVES Susceptibility-weighted imaging (SWI) is a valuable method in the diagnosis of multiple sclerosis (MS). SWI can show diagnostic biomarkers and also distinguish MS lesions from similar diseases. This study is a systematic review and meta-analysis of the available literature to investigate the diagnostic accuracy of SWI for the detection of MS lesions in the brain, while, specific aspects of its performance were examined. MATERIAL AND METHODS Using specified keywords, a search of the electronic databases MEDLINE/PubMed, Scopus, Embase/Elsevier-Ovid, and Scholar databases was conducted. The search time filter ranged from the year 2010 to 2023 . Sensitivity and specificity were used as effect sizes, and SE as a precision metric (with 95% confidence interval). The study was performed according to PRISMA 2020 guidelines and the prospective register of systematic reviews (PROSPERO) registration. RESULTS The number of 19 studies with a total of 2026 patients to examine both automated and nonautomated assessments. The pooled sensitivities for MS lesion (MSL), paramagnetic rim lesions (PRLs), central vein sign (CVS), and PRL with CVS were 62% (53-72), 37% (17-57), and 60% (31-89). Moreover, the pooled specificities were 93% (90-97), 88% (82-94), 100% (100-100), and 78% (50-100), respectively. CONCLUSION Adding the SWI method to routine sequences for MS investigation can provide useful diagnostic information.
Collapse
Affiliation(s)
- R Afkandeh
- Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - I Abedi
- Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Zamanian
- Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024; 30:1755-1764. [PMID: 39436837 PMCID: PMC11742271 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Sekiya H, Satoh R, Ali F, Dickson DW, Whitwell JL, Josephs KA. Utilizing quantitative susceptibility mapping to differentiate primary lateral sclerosis from progressive supranuclear palsy: A case report. Neuropathology 2024. [PMID: 39557402 DOI: 10.1111/neup.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
We report a patient who presented clinically with progressive supranuclear palsy (PSP) but was pathologically diagnosed as having primary lateral sclerosis (PLS) with magnetic resonance imaging (MRI) with a quantitative susceptibility mapping (QSM) protocol. A 70-year-old man was clinically diagnosed with PSP due to early falls and unresponsiveness to levodopa therapy. Postmortem pathological examination revealed mild loss of Betz cells, gliosis, and transactive response DNA binding protein of 43 kDa (TDP-43)-positive inclusions in the motor cortex, leading to the pathological diagnosis of PLS. To explore methods for differentiating PLS from PSP, ante-mortem QSM images were visually and quantitatively assessed for abnormal increases in magnetic susceptibility in the motor cortex. Prussian blue and Luxol fast blue combined with periodic acid-Schiff staining were also performed to understand the source of the susceptibility increases. QSM showed clear hyperintense signals in the motor cortex. Magnetic susceptibility in the motor cortex was higher in the PLS patient (Z = 4.7, p < 0.001) compared to normal controls and pathologically diagnosed PSP patients. Pathological examination of the region showed intracortical myelin loss, as well as iron deposition. Underlying pathological processes for the increased magnetic susceptibility include not only iron deposition but also intracortical myelin. Our case suggests that QSM is a potential tool to differentiate PLS from PSP, providing insights for accurate diagnosis and enhancing clinical decision-making.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryota Satoh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Katsi V, Mavroudis A, Liatakis I, Konstantinos M, Tsioufis K. Exploring the Relationship Between Hypertension and Cerebral Microvascular Disease. Diseases 2024; 12:266. [PMID: 39589940 PMCID: PMC11592893 DOI: 10.3390/diseases12110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Hypertension exerts negative effects on the vasculature representing a key risk factor for cardiovascular disorders, cerebral and Cerebral Small Vessel Disease (CSVD). METHODS An extensive research in the literature was implemented in order to elucidate the role of hypertension in the pathogenesis of CSVD. RESULTS Hypertension-mediated vascular dysfunction and chronic cerebral hypoperfusion are closely linked to CSVD. CSVD encompasses a wide range of lesions depicted on brain Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans. The presenting symptoms and clinical course are highly variable, as a significant proportion of patients remain asymptomatic. Nevertheless, CSVD is associated with an increased risk of stroke, dementia and mobility disorders. Various randomised controlled trials have been implemented trying to shed light on the effect of vascular risk-modifying agents and lifestyle interventions on the prevention and treatment of small vessel disease. CONCLUSIONS Hypertension has a pivotal role in the pathogenesis of CSVD. However, further research is required for a better understanding of the relationship between blood pressure levels and CSVD progression.
Collapse
Affiliation(s)
| | - Andreas Mavroudis
- First Cardiology Clinic, School of Medicine, University of Athens, 11527 Athens, Greece; (V.K.); (M.K.); (K.T.)
| | | | | | | |
Collapse
|
22
|
Martín-Noguerol T, Santos-Armentia E, Ramos A, Luna A. An update on susceptibility-weighted imaging in brain gliomas. Eur Radiol 2024; 34:6763-6775. [PMID: 38581609 DOI: 10.1007/s00330-024-10703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
Susceptibility-weighted imaging (SWI) has become a standard component of most brain MRI protocols. While traditionally used for detecting and characterising brain hemorrhages typically associated with stroke or trauma, SWI has also shown promising results in glioma assessment. Numerous studies have highlighted SWI's role in differentiating gliomas from other brain lesions, such as primary central nervous system lymphomas or metastases. Additionally, SWI aids radiologists in non-invasively grading gliomas and predicting their phenotypic profiles. Various researchers have suggested incorporating SWI as an adjunct sequence for predicting treatment response and for post-treatment monitoring. A significant focus of these studies is on the detection of intratumoural susceptibility signals (ITSSs) in gliomas, which are indicative of microhemorrhages and vessels within the tumour. The quantity, distribution, and characteristics of these ITSSs can provide radiologists with more precise information for evaluating and characterising gliomas. Furthermore, the potential benefits and added value of performing SWI after the administration of gadolinium-based contrast agents (GBCAs) have been explored. This review offers a comprehensive, educational, and practical overview of the potential applications and future directions of SWI in the context of glioma assessment. CLINICAL RELEVANCE STATEMENT: SWI has proven effective in evaluating gliomas, especially through assessing intratumoural susceptibility signal changes, and is becoming a promising, easily integrated tool in MRI protocols for both pre- and post-treatment assessments. KEY POINTS: • Susceptibility-weighted imaging is the most sensitive sequence for detecting blood and calcium inside brain lesions. • This sequence, acquired with and without gadolinium, helps with glioma diagnosis, characterisation, and grading through the detection of intratumoural susceptibility signals. • There are ongoing challenges that must be faced to clarify the role of susceptibility-weighted imaging for glioma assessment.
Collapse
Affiliation(s)
| | | | - Ana Ramos
- Department of Neuroradiology, University Hospital, 12 de Octubre, Madrid, Spain
| | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Carmelo Torres 2, 23007, Jaén, Spain
| |
Collapse
|
23
|
Mugnai M, Auriemma E, Contiero B, Franchini D, Zini E, Tirrito F. Effect of gadolinium contrast medium administration on susceptibility-weighted imaging of the canine brain. Vet Radiol Ultrasound 2024; 65:539-546. [PMID: 38881498 DOI: 10.1111/vru.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Susceptibility-weighted imaging (SWI) is a gradient echo (GE) MRI sequence. Intravenous administration of gadolinium (Gd) may affect GE images, but its effect on SWI has not been investigated in veterinary medicine. This cross-sectional prospective study evaluated the effects of Gd on SWI. Seventy-one dogs that underwent brain MRI were included and distributed in two groups. Susceptibility-weighted imaging was performed pre- and postcontrast, obtained immediately after Gd administration (Group A: n = 35) or delayed (Group B: n = 36; median delay 19.9 min). Pre- and post-Gd SWI were analyzed for signal intensity changes in the lentiform nuclei of gray matter (GM), in the centrum semiovale of white matter (WM), and in brain lesions. No difference in GM signal intensity was identified in either group between pre- and postcontrast images (Group A, P = .395; Group B, P = .895). In group A, WM signal intensity was lower in pre- than post-Gd sequences (P = .019). Brain lesions were identified in 30/71 (41%) cases; the signal intensity of intracranial lesions was significantly lower in pre- than post-Gd images in both groups (P < .001); the number of lesions influenced the difference in signal intensity in group B (P = .043). Susceptibility artifacts did not change in appearance between pre- and postcontrast images in either the normal brain or in parenchymal lesions. In conclusion, Gd may modify the signal intensity of WM and brain lesions but does not affect the susceptibility artifacts and does not interfere with SWI interpretation.
Collapse
Affiliation(s)
- Martina Mugnai
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Edoardo Auriemma
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, Legnaro, Padova, Italy
| | - Delia Franchini
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Eric Zini
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, Legnaro, Padova, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Federica Tirrito
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Torino, Italy
| |
Collapse
|
24
|
Singh S, Singh R, Luthra S, Singla A, Tanvir F, Antaal H, Singh A, Singh H, Singh J, Kaur MS. Evolving Radiological Approaches in the Diagnosis and Monitoring of Arachnoiditis Ossificans. Cureus 2024; 16:e68399. [PMID: 39355477 PMCID: PMC11444744 DOI: 10.7759/cureus.68399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Arachnoiditis ossificans (AO) is a rare and complex neurological condition characterized by pathological calcification or ossification of the arachnoid membrane. Arachnoiditis ranks as the third most frequent cause of failed back surgery syndrome (FBSS). This narrative review explores the evolving radiological approaches in its diagnosis and monitoring. The historical perspective traces the progression from plain radiographs to advanced imaging techniques. Current radiological modalities, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), are discussed, highlighting their respective roles, advantages, and limitations. Emerging and advanced imaging modalities, such as high-resolution CT, 3T and 7T MRI, and PET/CT or PET/MRI, are examined for their potential to enhance diagnostic accuracy and monitoring capabilities. A comparative analysis of these imaging modalities considers their sensitivity, specificity, cost-effectiveness, and radiation exposure implications. The review also explores the crucial role of imaging in disease monitoring and treatment planning, including follow-up protocols, evaluation of disease progression, and guidance for interventional procedures. Future directions in the field are discussed, focusing on promising research areas, the potential of artificial intelligence and machine learning in image analysis, and identified gaps in current knowledge. The review emphasizes the importance of a multimodal imaging approach and the need for standardized protocols. It concludes that while significant advancements have been made, further research is necessary to fully understand the correlation between imaging findings and clinical outcomes. The continued evolution of radiological approaches is expected to significantly improve patient care and outcomes in AO.
Collapse
Affiliation(s)
- Sumerjit Singh
- Diagnostic Radiology, Government Medical College Amritsar, Amritsar, IND
| | - Ripudaman Singh
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Shivansh Luthra
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | - Fnu Tanvir
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Harman Antaal
- Internal Medicine, Government Medical College Patiala, Patiala, IND
| | - Agamjit Singh
- Psychiatry, Punjab Institute of Medical Sciences, Jalandhar, IND
| | - Harmanjot Singh
- Internal Medicine, The White Medical College and Hospital, Bungal, IND
| | - Jaskaran Singh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | | |
Collapse
|
25
|
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M, Filippi M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100978. [PMID: 39444702 PMCID: PMC11496980 DOI: 10.1016/j.lanepe.2024.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction, often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpretation of results is performed by qualified (neuro)radiologists in all countries.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Massimiliano Calabrese
- The Multiple Sclerosis Center of University Hospital of Verona, Department of Neurosciences and Biomedicine and Movement, Verona, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Àngela Vidal-Jordana
- Servicio de Neurología, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
26
|
Gaeta M, Galletta K, Cavallaro M, Mormina E, Cannizzaro MT, Lanzafame LRM, D'Angelo T, Blandino A, Vinci SL, Granata F. T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights Imaging 2024; 15:200. [PMID: 39120775 PMCID: PMC11315875 DOI: 10.1186/s13244-024-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. CRITICAL RELEVANCE STATEMENT: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. KEY POINTS: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported.
Collapse
Affiliation(s)
- Michele Gaeta
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Karol Galletta
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Marco Cavallaro
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | | | | | - Tommaso D'Angelo
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.
| | - Alfredo Blandino
- Radiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology Unit - Biomorf Department, University of Messina, Messina, Italy
| |
Collapse
|
27
|
Juhász C, Behen ME, Gjolaj N, Luat AF, Xuan Y, Jeong JW. Feasibility and Potential Diagnostic Value of Noncontrast Brain MRI in Nonsedated Children With Sturge-Weber Syndrome and Healthy Siblings. J Child Neurol 2024; 39:343-353. [PMID: 39175387 PMCID: PMC11500831 DOI: 10.1177/08830738241272064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Postcontrast magnetic resonance imaging (MRI), obtained under anesthesia, is often used to evaluate brain parenchymal and vascular abnormalities in young children, including those with Sturge-Weber syndrome. However, anesthesia and contrast administration may carry risks. We explored the feasibility and potential diagnostic value of a noncontrast, nonsedate MRI acquisition in Sturge-Weber syndrome children and their siblings with a wide range of cognitive and behavioral functioning. METHODS Twenty children (10 with Sturge-Weber syndrome and 10 healthy siblings; age: 0.7-13.5 years) underwent nonsedate 3-tesla (T) brain MRI acquisition with noncontrast sequences (including susceptibility-weighted imaging) prospectively along with neuropsychology assessment. All images were evaluated for quality, and MRI abnormalities identified in the Sturge-Weber syndrome group were compared to those identified on previous clinical pre- and postcontrast MRI. RESULTS Nineteen participants (95%) completed the MRI with good (n = 18) or adequate (n = 1) quality, including all children with Sturge-Weber syndrome and all 5 children ≤5 years of age. The Sturge-Weber syndrome group had lower cognitive functions than the controls, and both groups had several children with behavioral issues, without an apparent effect on the success and quality of the MR images. Susceptibility-weighted imaging detected key venous vascular abnormalities and calcifications and, along with the other noncontrast sequences, provided diagnostic information comparable to previous clinical MRI performed with contrast administration under anesthesia. CONCLUSION This study demonstrates the feasibility and the potential diagnostic value of a nonsedate, noncontrast MRI acquisition protocol in young children including those with cognitive impairment and/or behavioral concerns. This approach can facilitate clinical trials in children where safe serial MRI is warranted.
Collapse
Affiliation(s)
- Csaba Juhász
- Department of Pediatrics, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Imaging, University Health Center, Detroit, MI, USA
| | - Michael E. Behen
- Department of Pediatrics, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Imaging, University Health Center, Detroit, MI, USA
| | - Nore Gjolaj
- Department of Pediatrics, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Translational Imaging, University Health Center, Detroit, MI, USA
| | - Aimee F. Luat
- Department of Pediatrics, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University, Detroit, MI, USA
| | - Yang Xuan
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
- MR Core Research Facility, Wayne State University, Harper University Hospital, Detroit, MI, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Imaging, University Health Center, Detroit, MI, USA
| |
Collapse
|
28
|
Sun Z, Li C, Wisniewski TW, Haacke EM, Ge Y. In Vivo Detection of Age-Related Tortuous Cerebral Small Vessels using Ferumoxytol-enhanced 7T MRI. Aging Dis 2024; 15:1913-1926. [PMID: 38270121 PMCID: PMC11272199 DOI: 10.14336/ad.2023.1110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
Histopathological studies suggest that cerebral small vessel tortuosity is crucial in age-related blood flow reduction and cellular degeneration. However, in vivo evidence is lacking. Here, we used Ferumoxytol-enhanced 7T MRI to directly visualize cerebral small vessels (<300 µm), enabling the identification of vascular tortuosity and exploration of its links to age, tissue atrophy, and vascular risk factors. High-resolution 2D/3D gradient echo MRI at 7T enhanced with Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO), was obtained and analyzed for cerebral small medullary artery tortuosity from 37 healthy participants (21-70 years; mean/SD: 38±14 years; 19 females). Tortuous artery count and tortuosity indices were compared between young and old groups. Age effects on vascular tortuosity were examined through partial correlations and multiple linear regression, adjusting for sex, body mass index (BMI), blood pressure (BP), and other vascular risk factors. Associations between tortuous medullary arteries and tissue atrophy, perivascular spaces (PVS), and white matter (WM) hyperintensities were explored. Age and BMI, rather than BP, showed positive correlations with both tortuous artery count and tortuosity indices. A significant correlation existed between the number of tortuous arteries and WM atrophy. WM lesions were found in proximity to or at the distal ends of tortuous medullary arteries, especially within the deep WM. Moreover, the elderly population displayed a higher prevalence of PVS, including those containing enclosed tortuous arteries. Leveraging the blooming effect of Ferumoxytol, 7T MRI excels in directly detecting cerebral small arterial tortuosity in vivo, unveiling its associations with age, BMI, tissue atrophy, WMH and PVS.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA.
| | - Thomas W Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA.
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Ariz M, Martínez M, Alvarez I, Fernández-Seara MA, Castellanos G, Pastor P, Pastor MA, Ortiz de Solórzano C. Automatic Segmentation and Quantification of Nigrosome-1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease. J Magn Reson Imaging 2024; 60:534-547. [PMID: 37915245 DOI: 10.1002/jmri.29073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE Prospective. SUBJECTS Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Mikel Ariz
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Maria A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- Movement Disorders Unit, Neurology, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz de Solórzano
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
30
|
Limaye W, Ahmad T. Advanced MRI imaging techniques in pediatric brain tumors. Pediatr Radiol 2024; 54:1235-1246. [PMID: 38913187 DOI: 10.1007/s00247-024-05966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
There is a diverse array of pediatric brain tumors with considerable associated morbidity. Like adult brain tumors, MRI serves as the primary imaging modality for pediatric brain tumors. In addition to standard sequences, more advanced MRI techniques can enhance the precision of diagnosis and assist in prognostication, and treatment planning. This paper discusses these various advanced techniques categorizing them into those that assist in identifying tissue characteristics, and those that evaluate the functional impact of tumors to aid in treatment planning.
Collapse
Affiliation(s)
- Warda Limaye
- Department of Radiology, Dalhousie University, Halifax, NS, Canada.
| | - Tahani Ahmad
- Department of Radiology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatric Radiology, IWK Health, Halifax, NS, Canada.
| |
Collapse
|
31
|
Ma L, Hoz SS, Grossberg JA, Lang MJ, Gross BA. Developmental Venous Anomalies. Neurosurg Clin N Am 2024; 35:355-361. [PMID: 38782528 DOI: 10.1016/j.nec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Developmental venous anomalies (DVAs) are the most common vascular malformation detected on intracranial cross-sectional imaging. They are generally benign lesions thought to drain normal parenchyma. Spontaneous hemorrhages attributed to DVAs are rare and should be ascribed to associated cerebral cavernous malformations, flow-related shunts, or venous outflow obstruction. Contrast-enhanced MRI, susceptibility-weighted imaging, and high-field MRI are ideal tools for visualizing vessel connectivity and associated lesions. DVAs are not generally considered targets for treatment. Preservation of DVAs is an established practice in the microsurgical or radiosurgical treatment of associated lesions.
Collapse
Affiliation(s)
- Li Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Samer S Hoz
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Michael J Lang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
32
|
Wu G, Wang H, Ma X, Li H, Song B, Zhao J, Wang X, Lin J. SWI and CTP fusion model based on sparse representation method to predict cerebral infarction trend. Front Neurosci 2024; 18:1360459. [PMID: 38966761 PMCID: PMC11222412 DOI: 10.3389/fnins.2024.1360459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Objective SWI image signal is related to venous reflux disorder and perfusion defect. Computed tomography perfusion (CTP) contains perfusion information in space and time. There is a complementary basis between them to affect the prognosis of cerebral infarction. Methods Sixty-six patients included in the retrospective study were designated as the training set. Effective perfusion indicator features and imaging radiomic features of the peri-infarction area on Susceptibility weighted imaging (SWI) and CTP modality images were extracted from each case. Thirty-three patients from the prospectively included group were designated as the test set of the machine learning model based on a sparse representation method. The predicted results were compared with the DWI results of the patients' 7-10 days review to assess the validity and accuracy of the prediction. Results The AUC of the SWI + CTP integrated model was 0.952, the ACC was 0.909, the SEN was 0.889, and the SPE was 0.933. The prediction performance is the highest. Compared with the value of AUC: the SWI model is 0.874, inferior to the performance of the SWI + CTP model, and the CTP model is 0.715. Conclusion The prediction efficiency of the changing trend of infarction volume is further improved by the correlation between the combination of the two image features.
Collapse
Affiliation(s)
- Guoqing Wu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Radiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaojun Ma
- Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanyin Li
- Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Bin Song
- Department of Radiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Fiscone C, Sighinolfi G, Manners DN, Motta L, Venturi G, Panzera I, Zaccagna F, Rundo L, Lugaresi A, Lodi R, Tonon C, Castelli M. Multiparametric MRI dataset for susceptibility-based radiomic feature extraction and analysis. Sci Data 2024; 11:575. [PMID: 38834674 DOI: 10.1038/s41597-024-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Multiple sclerosis (MS) is a progressive demyelinating disease impacting the central nervous system. Conventional Magnetic Resonance Imaging (MRI) techniques (e.g., T2w images) help diagnose MS, although they sometimes reveal non-specific lesions. Quantitative MRI techniques are capable of quantifying imaging biomarkers in vivo, offering the potential to identify specific signs related to pre-clinical inflammation. Among those techniques, Quantitative Susceptibility Mapping (QSM) is particularly useful for studying processes that influence the magnetic properties of brain tissue, such as alterations in myelin concentration. Because of its intrinsic quantitative nature, it is particularly well-suited to be analyzed through radiomics, including techniques that extract a high number of complex and multi-dimensional features from radiological images. The dataset presented in this work provides information about normal-appearing white matter (NAWM) in a cohort of MS patients and healthy controls. It includes QSM-based radiomic features from NAWM and its tracts, and MR sequences necessary to implement the pipeline: T1w, T2w, QSM, DWI. The workflow is outlined in this article, along with an application showing feature reliability assessment.
Collapse
Affiliation(s)
- Cristiana Fiscone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Sighinolfi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David Neil Manners
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Department for Life Quality Sciences, University of Bologna, Bologna, Italy.
| | - Lorenzo Motta
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Greta Venturi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ivan Panzera
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fulvio Zaccagna
- Department of Imaging, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Investigative Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano, Italy
| | - Alessandra Lugaresi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal
| |
Collapse
|
34
|
Hua VT, Benhammida S, Nguyen TP, Boulouis G, Doucet A, Caucheteux N, Soize S, Moulin S. Brush Sign on pre-treatment imaging is associated with good functional outcome in stroke patients treated with mechanical thrombectomy: A prospective monocentric study. J Neuroradiol 2024; 51:101186. [PMID: 38367958 DOI: 10.1016/j.neurad.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND The Brush Sign (BrS) is a radiological biomarker (MRI) showing signal decrease of subependymal and deep medullary veins on paramagnetic-sensitive magnetic resonance sequences. Previous studies have shown controversial results regarding the prognostic value of BrS. We aimed to assess whether BrS on T2*-weighted sequences could predict functional prognosis in patients treated with mechanical thrombectomy (MT). METHODS We included all consecutive patients with large artery occlusion related stroke in anterior circulation treated with MT between February 2020 and August 2022 at Reims University Hospital. Multivariable logistic regression models were used to investigate factors associated with BrS and its impact on outcomes. RESULTS Of the 327 included patients, 124 (37,9%) had a BrS on baseline MRI. Mean age was 72 ± 16 years and 184 (56,2 %) were female. In univariate analysis, BrS was associated with a younger age (67 vs 74; p<0.001), a higher NIHSS score (16(10-20) vs 13(8-19); p = 0.047) history of diabetes (15.3% vs 26.1 %; p = 0.022) and a shorter onset to MRI time (145.5 (111.3-188.5) vs 162 (126-220) p = 0.008). In multivariate analyses, patients with a BrS were younger (OR:0.970 (0.951 - 0.989)), tend to have a higher NIHSS score at baseline (OR:1.046 (1.000 - 1.094) and were less likely to have diabetes (OR: 0.433; 0.214-0.879). The presence of BrS was independently associated with functional independence (OR: 2.234(1.158-4,505) at 3 months but not with mortality nor with symptomatic intracerebral hemorrhage. CONCLUSION BrS on pre-treatment imaging could be considered as a biomarker of physiological adaptation to cerebral ischemia, allowing prolonged viability of brain tissue and might participate in the therapeutic decision.
Collapse
Affiliation(s)
- Vi Tuan Hua
- Stroke Unit, Reims University Hospital, Reims, France
| | | | | | | | | | | | | | - Solène Moulin
- Stroke Unit, Reims University Hospital, Reims, France.
| |
Collapse
|
35
|
Huang Y, Chen L, Li X, Liu J. Improved test-retest reliability of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and susceptibility quantification using multishot multi-echo 3D EPI. Magn Reson Med 2024; 91:2310-2319. [PMID: 38156825 PMCID: PMC10997481 DOI: 10.1002/mrm.29992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE This study aimed to evaluate the potential of 3D EPI for improving the reliability ofT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted data and quantification ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ decay rate and susceptibility (χ) compared with conventional gradient-echo (GRE)-based acquisition. METHODS Eight healthy subjects in a wide age range were recruited. Each subject received repeated scans for both GRE and EPI acquisitions with an isotropic 1 mm resolution at 3 T. Maps ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ were quantified, and their interscan differences were used to evaluate the test-retest reliability. Interprotocol differences ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ between GRE and EPI were also measured voxel by voxel and in selected regions of interest to test the consistency between the two acquisition methods. RESULTS The quantifications ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ using EPI protocols showed increased test-retest reliability with higher EPI factors up to 5 as performed in the experiment and were consistent with those based on GRE. CONCLUSION The result suggests that multishot multi-echo 3D EPI can be a useful alternative acquisition method forT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI and quantification ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ with reduced scan time, improved test-retest reliability, and similar accuracy compared with commonly used 3D GRE.
Collapse
Affiliation(s)
- Yujia Huang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaen Liu
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Assis Lopes P, Raposo N, Charidimou A, Zotin MCZ, Gurol ME, Greenberg S, Viswanathan A. SWI versus GRE-T2*: Assessing cortical superficial siderosis in advanced cerebral amyloid angiopathy. Rev Neurol (Paris) 2024; 180:532-538. [PMID: 38061969 DOI: 10.1016/j.neurol.2023.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND PURPOSE Cortical superficial siderosis (cSS) is a key neuroimaging marker of cerebral amyloid angiopathy (CAA) detected on blood-sensitive magnetic resonance imaging (MRI). We aimed to assess cSS in advanced CAA patients and explore differences in its evaluation between susceptibility weighted imaging (SWI) and gradient recalled echo-T2* (GRE-T2*). MATERIALS AND METHODS Neuroimaging data gathered from a prospective cohort of CAA patients with probable or definite CAA were retrospectively analyzed by two independent raters. SWI and GRE-T2* were used to assess presence and severity (absent, focal [≤3 sulci] or disseminated [>3 sulci]) of cSS and number of foci. Ratings were compared between sequences and inter-rater agreement was determined. Post hoc analysis explored differences in cSS multifocality scores. RESULTS We detected cSS in 38 patients with SWI and in 36 with GRE-T2* (70.4% versus 66.7%; P=0.5). The two raters agreed in detecting more disseminated cSS when using SWI: 16 focal (29.63%) and 20 disseminated (37.04%) cases of cSS seen on GRE-T2* and 11 (20.37%) focal and 27 (50%) disseminated cSS cases seen using SWI (P=0.008). Inter-rater agreement was equivalent for the two sequences (κpresence 0.7 versus 0.69; κseverity 0.74 versus 0.66) for assessing both presence and severity of cSS. Post hoc analysis showed higher multifocality scores from both raters' SWI evaluations, with agreement equivalent to that for T2* evaluations. CONCLUSIONS Our findings suggest that SWI ratings could show more disseminated cSS and higher multifocality scores in advanced CAA patients with inter-rater reliability equivalent to that obtained using GRE-T2*, regardless of level of experience.
Collapse
Affiliation(s)
- P Assis Lopes
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Faculdade de Medicina da Bahia, UFBA, Salvador, Bahia, Brazil.
| | - N Raposo
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, CHU de Toulouse, Toulouse, France
| | - A Charidimou
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - M C Zanon Zotin
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Department of Medical Imaging, Hematology and Clinical Oncology. Ribeirão-Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - M Edip Gurol
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - S Greenberg
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - A Viswanathan
- J. P. Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Du L, Ye F, Gao W, Yang A, Luan J, Xu M, Lv K, Hu P, Liu B, Yu H, Wang Y, Huang W, Shu N, Ouyang G, Yin Q, Shmuel A, Wang Y, Zhang Q, Xu P, Ma G. Decreased brain iron deposition based on quantitative susceptibility mapping correlates with reduced neurodevelopmental status in children with autism spectrum disorder. Cereb Cortex 2024; 34:63-71. [PMID: 38696609 DOI: 10.1093/cercor/bhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/04/2024] Open
Abstract
To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian, Beijing 100142, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, the Sixth Medical Center of People's Liberation Army (PLA) General Hospital, No. 6 Fucheng Road, Haidian, Beijing 100048, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Manxi Xu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Yuli Wang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Qian Yin
- School of Artificial Intelligence, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
| | - Yunfeng Wang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| |
Collapse
|
38
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Lapusan R, Borlan R, Focsan M. Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. NANOSCALE ADVANCES 2024; 6:2234-2259. [PMID: 38694462 PMCID: PMC11059564 DOI: 10.1039/d3na01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
The nexus of advanced technology and medical therapeutics has ushered in a transformative epoch in contemporary medicine. Within this arena, Magnetic Resonance Imaging (MRI) emerges as a paramount tool, intertwining the advancements of technology with the art of healing. MRI's pivotal role is evident in its broad applicability, spanning from neurological diseases, soft-tissue and tumour characterization, to many more applications. Though already foundational, aspirations remain to further enhance MRI's capabilities. A significant avenue under exploration is the incorporation of innovative nanotechnological contrast agents. Forefront among these are Superparamagnetic Iron Oxide Nanoparticles (SPIONs), recognized for their adaptability and safety profile. SPION's intrinsic malleability allows them to be tailored for improved biocompatibility, while their functionality is further broadened when equipped with specific targeting molecules. Yet, the path to optimization is not devoid of challenges, from renal clearance concerns to potential side effects stemming from iron overload. This review endeavors to map the intricate journey of SPIONs as MRI contrast agents, offering a chronological perspective of their evolution and deployment. We provide an in-depth current outline of the most representative and impactful pre-clinical and clinical studies centered on the integration of SPIONs in MRI, tracing their trajectory from foundational research to contemporary applications.
Collapse
Affiliation(s)
- Radu Lapusan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
40
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Tang Z, Mahmoodi S, Meng D, Darekar A, Vollmer B. Rule-based deep learning method for prognosis of neonatal hypoxic-ischemic encephalopathy by using susceptibility weighted image analysis. MAGMA (NEW YORK, N.Y.) 2024; 37:227-239. [PMID: 38252196 DOI: 10.1007/s10334-023-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Susceptibility weighted imaging (SWI) of neonatal hypoxic-ischemic brain injury can provide assistance in the prognosis of neonatal hypoxic-ischemic encephalopathy (HIE). We propose a convolutional neural network model to classify SWI images with HIE. MATERIALS AND METHODS Due to the lack of a large dataset, transfer learning method with fine-tuning a pre-trained ResNet 50 is introduced. We randomly select 11 datasets from patients with normal neurology outcomes (n = 31) and patients with abnormal neurology outcomes (n = 11) at 24 months of age to avoid bias in classification due to any imbalance in the data. RESULTS We develop a rule-based system to improve the classification performance, with an accuracy of 0.93 ± 0.09. We also compute heatmaps produced by the Grad-CAM technique to analyze which areas of SWI images contributed more to the classification patients with abnormal neurology outcome. CONCLUSION Such regions that are important in the classification accuracy can interpret the relationship between the brain regions affected by hypoxic-ischemic and neurodevelopmental outcomes of infants with HIE at the age of 2 years.
Collapse
Affiliation(s)
- Zhen Tang
- School of Computer Science and Technology, AnHui University of Technology, Maxiang Street, Maanshan, 243032, Anhui, China.
| | - Sasan Mahmoodi
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Di Meng
- School of Computer Science and Technology, AnHui University of Technology, Maxiang Street, Maanshan, 243032, Anhui, China
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Brigitte Vollmer
- Clinical Neurosciences and Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
42
|
Kishi S, Maeda M, Tanaka F, Kogue R, Umino M, Sakuma H. Cortical Brush Sign: A Novel Finding on Thin-slice 3T Susceptibility-weighted Imaging in Acute Cerebral Infarct and Cerebral Venous Thrombosis. Magn Reson Med Sci 2024; 23:238-241. [PMID: 36697029 PMCID: PMC11024716 DOI: 10.2463/mrms.bc.2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 01/24/2023] Open
Abstract
We observed a new SWI finding, "cortical brush sign," that represents prominent venous structures in the cortex of patients with acute cerebral infarct with or without moyamoya disease and cerebral venous thrombosis. The cortical brush sign disappeared on follow-up SWI in all cases. Cortical brush sign may help to understand the pathophysiology of venous structures in the cortex at acute phase.
Collapse
Affiliation(s)
- Seiya Kishi
- Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Fumine Tanaka
- Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Maki Umino
- Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
43
|
Jeong JW, Lee MH, Luat AF, Xuan Y, Haacke EM, Juhász C. Quantification of enlarged deep medullary vein volumes in Sturge-Weber syndrome. Quant Imaging Med Surg 2024; 14:1916-1929. [PMID: 38415136 PMCID: PMC10895099 DOI: 10.21037/qims-23-1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024]
Abstract
Background Enlarged deep medullary veins (EDMVs) in patients with Sturge-Weber syndrome (SWS) may channel venous blood from the surface to the deep vein system in brain regions affected by the leptomeningeal venous malformation. Thus, the quantification of EDMV volume may provide an objective imaging marker for this vascular compensatory process. The present study proposes a novel analytical method to quantify enlarged EDMV volumes in the affected hemisphere of patients with unilateral SWS. Methods Twenty young subjects, including 10 patients with unilateral SWS and 10 healthy siblings (age 14.5±6.7 and 16.0±7.0 years, respectively) underwent 3T brain MRI scanning using susceptibility-weighted imaging (SWI) and volumetric T1-weighted sequences. The proposed image analytic steps segmented EDMVs in white matter regions, defined on the volumetric T1-weighted images, by statistically associating the likelihood of intensity, location, and tubular shape on SWI. The volumes of the segmented EDMVs, calculated in each hemisphere, were compared between affected and unaffected hemispheres. EDMV volumes were also correlated with visually assessed EDMV scores, hemispheric white matter volumes, and cortical surface areas. Parametric tests including Pearson's correlation, unpaired and paired t-tests, were used. A P value <0.05 was considered statistically significant. Results It was found that EDMVs were identified well in SWS-affected hemispheres while calcified regions were excluded. Mean EDMV volumes in the SWS-affected hemispheres were 10-12-fold greater than in the unaffected or healthy control hemispheres; while white matter volumes and cortical surface areas were lower. EDMV volumes in the SWS-affected hemispheres showed a strong positive correlation with the visual EDMV scores (r=0.88, P=0.001) and an inverse correlation with cortical surface area ratios (r=-0.65, P=0.04) but no correlation with white matter volume ratios. Conclusions EDMVs were detected in the SWS-affected atrophic hemispheres reliably while avoiding calcified regions. The approach can be used to quantify enlarged deep cerebral veins in the human brain, which may provide a potential marker of cerebral venous remodeling.
Collapse
Affiliation(s)
- Jeong-Won Jeong
- Department of Pediatrics, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Imaging Laboratory, University Health Center, Detroit, MI, USA
| | - Min-Hee Lee
- Department of Pediatrics, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
- Translational Imaging Laboratory, University Health Center, Detroit, MI, USA
| | - Aimee F. Luat
- Department of Pediatrics, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, USA
| | - Yang Xuan
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E. Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Imaging Laboratory, University Health Center, Detroit, MI, USA
| |
Collapse
|
44
|
Dennis EL, Keleher F, Bartnik-Olson B. Neuroimaging Correlates of Functional Outcome Following Pediatric TBI. ADVANCES IN NEUROBIOLOGY 2024; 42:33-84. [PMID: 39432037 DOI: 10.1007/978-3-031-69832-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, School of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
45
|
Heiss R, Höger SA, Uder M, Hotfiel T, Hanspach J, Laun FB, Nagel AM, Roemer FW. Early functional and morphological changes of calf muscles in delayed onset muscle soreness (DOMS) assessed with 7T MRI. Ann Anat 2024; 251:152181. [PMID: 37871829 DOI: 10.1016/j.aanat.2023.152181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND To assess morphological and functional alterations of the skeletal muscle in exercise-induced delayed onset muscle soreness (DOMS) using 7 Tesla (T) magnetic resonance imaging (MRI). METHODS DOMS was induced in 16 volunteers performing an eccentric exercise protocol of the calf muscles of one randomized leg. 7 T MRI including T1w- (0.18×0.18×1mm3), T2w-images (0.2×0.2×2mm3), T2-maps (0.5×0.5×5mm3), and susceptibility weighted imaging (SWI, 0.7×0.7×0.7 mm3) were acquired at baseline, directly (t1) and 60 hours (t2) after the exercise. T2 signal intensity (SI), T2 values [ms], T1 SI and SWI were assessed in the medial (MG) and lateral gastrocnemius muscle (LG) and in the soleus muscle (SM). In addition, the serum creatine kinase (CK) activity, range of motion (ROM) of the ankle, calf circumference, and muscle soreness were assessed at each time point. RESULTS Directly after exercise (t1), T2 SI (p=0.04) and T2 values (p=0.03) increased significantly in the LG. No changes of SI and T2 values for MG and SM were present at t1. At t2, T2 SI and T2 values of LG (p=0.001, p=0.02) and MG (p=0.04, p=0.03) increased significantly compared to baseline. T1 SI did not change in any muscle at any time point. In SWI, no signs of intramuscular signal drop could be detected. Clinical parameters confirmed the induction of DOMS, with a significant increase of CK (p=0.03), muscle soreness (p<0.001), calf circumference (p=0.001), and respective a decrease of ROM (p=0.04). CONCLUSIONS 7 T MRI has the potential to visualize microstructural muscle damage immediately after an exercise that induces DOMS. No changes in susceptibility which could, for example, reflect micro-hemorrhage, could be detected with SWI immediately after exercise or in DOMS. Ultra-high field MRI may potentially be used in sports medicine to monitor intramuscular structural changes, allowing for modification of training intensity or to implement appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany.
| | - Svenja A Höger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany; Department of Sports Orthopaedics, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany
| | - Thilo Hotfiel
- Department of Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Krankenhausstr. 12, Erlangen 91054, Germany; Center for Muskuloskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück GmbH, Klinikum Osnabrück, Am Finkenhügel 1, Osnabrück 49076, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany
| | - Frank W Roemer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Maximiliansplatz 3, Erlangen 91054, Germany; Boston University Chobanian & Avedisian School of Medicine, 820 Harrison Ave, Boston, MA 02118, USA
| |
Collapse
|
46
|
Okromelidze L, Patel V, Singh RB, Lopez Chiriboga AS, Tao S, Zhou X, Straub S, Westerhold EM, Gupta V, Agarwal AK, Murray JV, Desai A, Sandhu SJS, Marin Collazo IV, Middlebrooks EH. Central Vein Sign in Multiple Sclerosis: A Comparison Study of the Diagnostic Performance of 3T versus 7T MRI. AJNR Am J Neuroradiol 2023; 45:76-81. [PMID: 38164557 PMCID: PMC10756573 DOI: 10.3174/ajnr.a8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND PURPOSE An early and accurate diagnosis of multiple sclerosis remains challenging in clinical neurology. Established diagnostic methods have less than desirable sensitivity and specificity. An accurate, noninvasive diagnostic test for MS could have a major impact on diagnostic criteria. We compared the frequency of detection of the central vein sign (CVS) in white matter lesions of MS and controls on 7T T2*-weighted and SWI to 3T SWI. Additionally, we assessed the diagnostic performance of 7T T2*, 7T SWI, and 3T SWI for MS. MATERIALS AND METHODS A retrospective case-control study was performed of patients with MS having both 7T MRI and 3T MRI. A control group of patients without MS was selected. Diagnosis of MS was established by board-certified neurologists with fellowship training in autoimmune neurology in line with the 2017 McDonald criteria. Percentage of lesions with a CVS was blindly measured for each technique. Diagnostic performance was computed by sensitivity, specificity, and positive and negative likelihood ratios (LRs). RESULTS Sixty-one patients with MS (903 lesions) and 39 controls (1088 lesions) were included. 7T T2* showed significantly more CVS (87%) than both 7T SWI (73%) and 3T SWI (31%) (all P < .001). CVS was identified in the control group in ≤6% of lesions on all sequences. Using a threshold of >40% of lesions with CVS on 7T T2* and >15% on 7T SWI, both sequences had an accuracy = 100%, sensitivity = 100%, specificity = 100%, infinite positive LR, and zero negative LR. Using an optimal threshold of >12%, 3T SWI had an accuracy = 96.0%, sensitivity = 93.4%, specificity = 100%, infinite positive LR, and negative LR = 0.066. CONCLUSIONS 7T MRI had 100% sensitivity and specificity for the diagnosis of MS and is superior to 3T. Future revisions to MS diagnostic criteria may consider recommendations for 7T MRI and inclusion of CVS as a biomarker.
Collapse
Affiliation(s)
- Lela Okromelidze
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Vishal Patel
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Rahul B Singh
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | | | - Shengzhen Tao
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Xiangzhi Zhou
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Sina Straub
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Erin M Westerhold
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit K Agarwal
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - John V Murray
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - S J S Sandhu
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | | | - Erik H Middlebrooks
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
47
|
Donatelli G, Emmi A, Costagli M, Cecchi P, Macchi V, Biagi L, Lancione M, Tosetti M, Porzionato A, De Caro R, Cosottini M. Brainstem anatomy with 7-T MRI: in vivo assessment and ex vivo comparison. Eur Radiol Exp 2023; 7:71. [PMID: 37968363 PMCID: PMC10651583 DOI: 10.1186/s41747-023-00389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The brainstem contains grey matter nuclei and white matter tracts to be identified in clinical practice. The small size and the low contrast among them make their in vivo visualisation challenging using conventional magnetic resonance imaging (MRI) sequences at high magnetic field strengths. Combining higher spatial resolution, signal- and contrast-to-noise ratio and sensitivity to magnetic susceptibility (χ), susceptibility-weighted 7-T imaging could improve the assessment of brainstem anatomy. METHODS We acquired high-resolution 7-T MRI of the brainstem in a 46-year-old female healthy volunteer (using a three-dimensional multi-echo gradient-recalled-echo sequence; spatial resolution 0.3 × 0.3 × 1.2 mm3) and in a brainstem sample from a 48-year-old female body donor that was sectioned and stained. Images were visually assessed; nuclei and tracts were labelled and named according to the official nomenclature. RESULTS This in vivo imaging revealed structures usually evaluated through light microscopy, such as the accessory olivary nuclei, oculomotor nucleus and the medial longitudinal fasciculus. Some fibre tracts, such as the medial lemniscus, were visible for most of their course. Overall, in in vivo acquisitions, χ and frequency maps performed better than T2*-weighted imaging and allowed for the evaluation of a greater number of anatomical structures. All the structures identified in vivo were confirmed by the ex vivo imaging and histology. CONCLUSIONS The use of multi-echo GRE sequences at 7 T allowed the visualisation of brainstem structures that are not visible in detail at conventional magnetic field and opens new perspectives in the diagnostic and therapeutical approach to brain disorders. RELEVANCE STATEMENT In vivo MR imaging at UHF provides detailed anatomy of CNS substructures comparable to that obtained with histology. Anatomical details are fundamentals for diagnostic purposes but also to plan a direct targeting for a minimally invasive brain stimulation or ablation. KEY POINTS • The in vivo brainstem anatomy was explored with ultrahigh field MRI (7 T). • In vivo T2*-weighted magnitude, χ, and frequency images revealed many brainstem structures. • Ex vivo imaging and histology confirmed all the structures identified in vivo. • χ and frequency imaging revealed more brainstem structures than magnitude imaging.
Collapse
Affiliation(s)
- Graziella Donatelli
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Imago7 Research Foundation, Pisa, Italy
| | - Aron Emmi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Imago7 Research Foundation, Pisa, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Mirco Cosottini
- Department of Translational Research On New Technologies in Medicine and Surgery, Neuroradiology Unit, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
48
|
Fu X, Ke J, Li J, Lv K, Chen J, Li J, Zheng W, Shi Z. Prominent Vessel Signs After Endovascular Thrombectomy Corelates with Unexplained Neurological Deterioration and is a More Reliable Imaging Predictor of Prognosis in Anterior Large Vessel Occlusion Stroke. World Neurosurg 2023; 179:e201-e211. [PMID: 37619843 DOI: 10.1016/j.wneu.2023.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Fifty percent of patients who undergo endovascular thrombectomy (EVT) for large-vessel occlusion exhibit unfavorable outcomes. The primary factor is attributed to persistent brain impairment even after successful EVT. The prominent vessel sign (PVS) on magnetic resonance susceptibility-weighted imaging reflects the territory of dysmetabolism and may facilitate an expeditious assessment for prognostication. We aimed to examine the relationship between PVS after EVT and the occurrence of early neurological deterioration (END) and 3-month outcomes. METHODS Patients who underwent EVT and multimodal magnetic resonance imaging were included. END was defined as an increase of ≥2 in the National Institutes of Health Stroke Scale within 72 hours after EVT. Symptomatic intracranial hemorrhage, malignant edema, and surgical complications were defined as definite END, whereas the other symptoms were categorized as unexplained END (ux-END). The PVS-Alberta Stroke Program Early CT Score (ASPECTS) score was used to evaluate the asymmetric cerebral venous signal on the susceptibility-weighted imaging sequences semiquantitatively. RESULTS A total of 116 eligible patients were included, 18 (15.5%) of whom presented with ux-END. The 72 hour National Institutes of Health Stroke Scale was strongly correlated with diffusion-weighted imaging infarct volume and PVS-ASPECTS and was significantly higher in the ux-END group (16 ± 6 vs. 5 ± 4, P = 0.001). The PVS-ASPECTS score was significantly associated with poor outcomes (odds ratio 2.551, 95% confidence interval (CI) 1.722-3.780, P<0.001), and PVS-ASPECTS (area under the curve 0.884, 95% CI 0.815-0.953, P < 0.001) was superior to diffusion-weighted imaging infarct volume (area under the cure 0.720, 95% CI 0.620-0.820, P = 0.001) in predicting 3-month poor outcome. At the optimal cut-off of 2, the PVS-ASPECT predicted poor outcomes with a sensitivity of 89.7% and a specificity of 78.2%. CONCLUSIONS PVS 72 hours after EVT correlated with ux-END. The PVS-ASPECTS is a more reliable predictor of stroke prognosis and provides valuable information regarding post-EVT management.
Collapse
Affiliation(s)
- Xiaoli Fu
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Jianxia Ke
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Jintao Li
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Kefeng Lv
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Junting Chen
- Postgraduate School, Guangdong Medical University, Zhanjiang, China
| | - Jinrui Li
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Weicheng Zheng
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zhu Shi
- Department of Neurology and Stroke Center, Affiliate Dongguan People's Hospital, Southern Medical University, Dongguan, China; Postgraduate School, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
49
|
Jung YH, Park M, Joo B, Suh SH, Lee K, Ahn SJ. Prominent cerebral veins on susceptibility-weighted angiography in acute meningoencephalitis. Brain Behav 2023; 13:e3255. [PMID: 37721542 PMCID: PMC10636387 DOI: 10.1002/brb3.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND AND PURPOSE We have commonly observed prominent cerebral veins on susceptibility-weighted angiography (SWAN) in acute meningoencephalitis. This study aimed to investigate the clinical significance of these findings. METHODS Cerebral veins on SWAN of 98 patients with acute meningoencephalitis diagnosed from February 2016 through October 2020 were classified into three groups according to the degree of venous prominence (mild, 23; moderate, 53; and prominent, 22). Clinical variables and laboratory findings were compared between these groups. The influence of variables on the prediction of prominent cerebral veins was measured by random forest (RF) and gradient boosting machine (GBM). RESULTS As cerebral veins became more prominent, cerebrospinal fluid (CSF) glucose level decreased (69.61 ± 29.05 vs. 59.72 ± 22.57 vs. 48.36 ± 20.29 mg/dL, p = .01) and CSF protein level increased (100.73 ± 82.98 vs. 104.73 ± 70.99 vs. 159.12 ± 118.15 mg/dL, p = .03). The etiology of meningoencephalitis, neurological symptoms, and increased intracranial pressure (ICP) signs differed between groups (p < .05). RF and GBM demonstrated that CSF protein level was the variable with the highest power to predict the prominent cerebral vein (mean decrease in node impurity: 4.19, relative influence: 50.66). CONCLUSION The presence of prominent cerebral veins on SWAN in acute meningoencephalitis was significantly associated with a low CSF glucose level and a high CSF protein level, as well as ICP. Thus, the visual grade of the cerebral veins on SWAN may be utilized for the management of patients with acute meningoencephalitis.
Collapse
Affiliation(s)
- Yo Han Jung
- Department of Neurology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
- Severance Institute for Vascular and Metabolic ResearchYonsei University College of MedicineSeoulSouth Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
| | - Bio Joo
- Department of Radiology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
- Severance Institute for Vascular and Metabolic ResearchYonsei University College of MedicineSeoulSouth Korea
| | - Kyung‐Yul Lee
- Department of Neurology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
- Severance Institute for Vascular and Metabolic ResearchYonsei University College of MedicineSeoulSouth Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance HospitalYonsei University, College of MedicineSeoulSouth Korea
| |
Collapse
|
50
|
Ghaderi S, Batouli SAH, Mohammadi S, Fatehi F. Iron quantification in basal ganglia using quantitative susceptibility mapping in a patient with ALS: a case report and literature review. Front Neurosci 2023; 17:1229082. [PMID: 37877011 PMCID: PMC10593460 DOI: 10.3389/fnins.2023.1229082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can measure the magnetic susceptibility of tissues, which can reflect their iron content. QSM has been used to detect iron accumulation in cortical and subcortical brain regions. However, its application in subcortical regions such as the basal ganglia, particularly the putamen, is rare in patients with amyotrophic lateral sclerosis (ALS). CASE PRESENTATION AND LITERATURE REVIEW We present the case of a 40-year-old male patient with ALS who underwent an MRI for QSM. We compared his QSM images with those of a control subject and performed a quantitative analysis of the magnetic susceptibility values in the putamen regions. We also reviewed the literature on previous QSM studies in ALS and summarized their methods and findings. Our QSM analysis revealed increased magnetic susceptibility values in the bilateral putamen of the ALS patient compared to controls, indicating iron overload. This finding is consistent with previous studies reporting iron dysregulation in subcortical nuclei in ALS. We also discussed the QSM processing techniques used in our study and in the literature, highlighting their advantages and limitations. CONCLUSION This case report demonstrates the potential of QSM as a sensitive MRI biomarker for evaluating iron levels in subcortical regions of ALS patients. QSM can provide quantitative information on iron deposition patterns in both motor and extra-motor areas of ALS patients, which may help understand the pathophysiology of ALS and monitor disease progression. Further studies with larger samples are needed to validate these results and explore the clinical implications of QSM in ALS.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|