1
|
Lathika AG, Jayasankaran SC, Chelakkot PG, Thankappan K, Moorthy S. Diagnostic efficacy of dynamic contrast-enhanced magnetic resonance perfusion imaging in detecting local tumor recurrence in patients with head and neck malignancies after definitive treatment. J Cancer Res Ther 2024; 20:793-801. [PMID: 39023585 DOI: 10.4103/jcrt.jcrt_1775_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIM Accurate interpretation of post-treatment imaging in head and neck malignancies poses a challenge due to treatment sequelae. Magnetic resonance (MR) perfusion helps in this scenario by evaluating the hemodynamic characteristics of lesions. This study aimed to elucidate the diagnostic efficacy of dynamic contrast-enhanced (DCE)-MR perfusion imaging in detecting recurrence in patients after they underwent definitive treatment for head and neck tumors. MATERIALS AND METHODS Thirty patients who had received definitive curative-intent treatment for histopathology-proven malignant head and neck tumors and in whom recurrent tumor was detected on precontrast MR imaging (MRI) were accrued in the study. Patients underwent DCE-MR perfusion imaging. Time to peak (TTP), relative maximum enhancement (RME), and relative washout (RWO) ratio were calculated by using time-intensity curve (TIC). The diagnostic accuracy was compared with histopathology. RESULTS A cut-off value of ≥125.3 for RME showed a sensitivity of 76.2% and specificity of 66.7% for differentiating post-radiation changes and recurrence. The optimal cut-off for RWO ratio was ≥-6.24 with a sensitivity of 76.2% and specificity of 55.6%. The optimal cut-off of TTP was ≤45.8 s with a sensitivity of 61.9% and specificity of 77.8%. Diagnostic accuracies of RME, RWO, and TTP were 73.3%, 70%, and 66.7%, respectively. CONCLUSIONS DCE-MRI had significant diagnostic accuracy in detecting and differentiating recurrences. TIC analysis of high-temporal resolution DCE-MRI can provide information regarding microcirculation of tumors, and hence can be considered as an imaging modality of choice for assessment of early local tumor recurrence in head and neck tumors.
Collapse
Affiliation(s)
- Anand G Lathika
- Department of Radiology, S P Multi-Speciality Hospital, Thiruvananthapuram, Kerala, India
| | - Sandya C Jayasankaran
- Department of Radiology, Amrita Institute of Medical Sciences, Amrita University, Kochi, Kerala, India
| | - Prameela G Chelakkot
- Department of Radiation Oncology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Krishnakumar Thankappan
- Department of Head and Neck Surgery, Amrita Institute of Medical Sciences, Amrita University, Kochi, Kerala, India
| | - Srikanth Moorthy
- Department of Radiology, Amrita Institute of Medical Sciences, Amrita University, Kochi, Kerala, India
| |
Collapse
|
2
|
Yan Q, Yan X, Yang X, Li S, Song J. The use of PET/MRI in radiotherapy. Insights Imaging 2024; 15:63. [PMID: 38411742 PMCID: PMC10899128 DOI: 10.1186/s13244-024-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/21/2024] [Indexed: 02/28/2024] Open
Abstract
Positron emission tomography/magnetic resonance imaging (PET/MRI) is a hybrid imaging technique that quantitatively combines the metabolic and functional data from positron emission tomography (PET) with anatomical and physiological information from MRI. As PET/MRI technology has advanced, its applications in cancer care have expanded. Recent studies have demonstrated that PET/MRI provides unique advantages in the field of radiotherapy and has become invaluable in guiding precision radiotherapy techniques. This review discusses the rationale and clinical evidence supporting the use of PET/MRI for radiation positioning, target delineation, efficacy evaluation, and patient surveillance.Critical relevance statement This article critically assesses the transformative role of PET/MRI in advancing precision radiotherapy, providing essential insights into improved radiation positioning, target delineation, efficacy evaluation, and patient surveillance in clinical radiology practice.Key points• The emergence of PET/MRI will be a key bridge for precise radiotherapy.• PET/MRI has unique advantages in the whole process of radiotherapy.• New tracers and nanoparticle probes will broaden the use of PET/MRI in radiation.• PET/MRI will be utilized more frequently for radiotherapy.
Collapse
Affiliation(s)
- Qi Yan
- Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xia Yan
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Xin Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.
| | - Jianbo Song
- Cancer Center, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China.
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China.
| |
Collapse
|
3
|
Zwittag P, Asel C, Gabriel M, Rubicz N, Bauer B, Poier-Fabian N. MRI and PET/CT in the assessment of lymph node metastases in head and neck cancer. Sci Rep 2023; 13:19347. [PMID: 37935875 PMCID: PMC10630387 DOI: 10.1038/s41598-023-46845-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
The aim of this study is to present the diagnostic accuracy of MRI and PET/CT in the evaluation of cervical lymph nodes in patients with head and neck cancer (HNC). Data of 114 patients who underwent MRI and PET/CT prior to surgery in the time period between January 2010 and September 2021 in our center is analyzed retrospectively. Histopathological results of surgical preparations serve as the gold standard. The mean time from MRI to surgery is 22.9 (± 18.7) days, and from PET/CT to surgery 21.7 (± 19.9) days. Sensitivities of 80.4% and 80.4%, specificities of 85.7% and 87.3%, PPVs of 82.0% and 83.7% and NPVs of 84.4% and 84.6% are registered for MRI and PET/CT, respectively. 37 false results are further analyzed with respect to side and level of the affected lymph node, as well as intersections of the two imaging modalities. In 29 patients (25.4%), additional findings are described in PET/CT, 7 (6.1%) of which were histologically confirmed to be further malignancies. A combination of both MRI and PET/CT imaging modalities could improve diagnostic accuracy, especially with regard to sensitivity. A notable number of additional findings in whole body acquisition leads to the potential diagnosis of further malignancies.
Collapse
Affiliation(s)
- Paul Zwittag
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian Asel
- Department of Radiology, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Nina Rubicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Belinda Bauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Nikolaus Poier-Fabian
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital GmbH, Krankenhausstrasse 9, 4021, Linz, Austria.
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| |
Collapse
|
4
|
Roberts J, Kim SE, Kholmovski EG, Hitchcock Y, Richards TJ, Anzai Y. The arterial input function: Spatial dependence within the imaging volume and its influence on 3D quantitative dynamic contrast-enhanced MRI for head and neck cancer. Magn Reson Imaging 2023; 101:40-46. [PMID: 37030177 PMCID: PMC10194023 DOI: 10.1016/j.mri.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE To evaluate the dependence of the arterial input function (AIF) on the imaging z-axis and its effect on 3D DCE MRI pharmacokinetic parameters as mediated by the SPGR signal equation and Extended Tofts-Kermode model. THEORY For SPGR-based 3D DCE MRI acquisition of the head and neck, inflow effects within vessels violate the assumptions underlying the SPGR signal model. Errors in the SPGR-based AIF estimate propagate through the Extended Tofts-Kermode model to affect the output pharmacokinetic parameters. MATERIALS AND METHODS 3D DCE-MRI data were acquired for six newly diagnosed HNC patients in a prospective single arm cohort study. AIF were selected within the carotid arteries at each z-axis location. A region of interest (ROI) was placed in normal paravertebral muscle and the Extended Tofts-Kermode model solved for each pixel within the ROI for each AIF. Results were compared to those obtained with a published population average AIF. RESULTS Due to inflow effect, the AIF showed extreme variation in their temporal shapes. Ktrans was most sensitive to the initial bolus concentration and showed more variation over the muscle ROI with AIF taken from the upstream portion of the carotid. kep was less sensitive to the peak bolus concentration and showed less variation for AIF taken from the upstream portion of the carotid. CONCLUSION Inflow effects may introduce an unknown bias to SPGR-based 3D DCE pharmacokinetic parameters. Variation in the computed parameters depends on the selected AIF location. In the context of high flow, measurements may be limited to relative rather than absolute quantitative parameters.
Collapse
Affiliation(s)
- John Roberts
- Dept. Radiology & Imaging Sciences, University of Utah, SLC, UT, USA..
| | - Seong-Eun Kim
- Dept. Radiology & Imaging Sciences, University of Utah, SLC, UT, USA
| | - Eugene G Kholmovski
- Dept. Radiology & Imaging Sciences, University of Utah, SLC, UT, USA.; Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ying Hitchcock
- Radiation Oncology, Huntsman Cancer Institute, SLC, UT, USA
| | | | - Yoshimi Anzai
- Dept. Radiology & Imaging Sciences, University of Utah, SLC, UT, USA
| |
Collapse
|
5
|
Kiser K, Zhang J, Qayyum S, Bracken WC, Kim SG. Simultaneous estimation of the cellular water exchange rate, intracellular volume fraction, and longitudinal relaxation rate in cancer cells. NMR IN BIOMEDICINE 2023; 36:e4914. [PMID: 36889984 DOI: 10.1002/nbm.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 06/15/2023]
Abstract
The purpose of the current study was to investigate the feasibility of simultaneously estimating the cellular water efflux rate ( k ie ), intracellular longitudinal relaxation rate ( R 10 i ), and intracellular volume fraction ( v i ) of a cell suspension using multiple samples with different gadolinium concentrations. Numerical simulation studies were conducted to assess the uncertainty in the estimation of k ie , R 10 i , and v i from saturation recovery data using single (SC) or multiple concentrations (MC) of gadolinium-based contrast agent (GBCA). In vitro experiments with 4 T1 murine breast cancer and SCCVII squamous cell cancer models were conducted at 11 T to compare parameter estimation using the SC protocol with that using the MC protocol. The cell lines were challenged with a Na+ /K+ -ATPase inhibitor, digoxin, to assess the treatment response in terms of k ie , R 10 i , and v i . Data analysis was conducted using the two-compartment exchange model for parameter estimation. The simulation study data demonstrate that the MC method, compared with the SC method, reduces the uncertainty of the estimated k ie by decreasing the interquartile ranges from 27.3% ± 3.7% to 18.8% ± 5.1% and the median differences from ground truth from 15.0% ± 6.3% to 7.2% ± 4.2%, while estimating R 10 i and v i simultaneously. In the cell studies, the MC method demonstrated reduced uncertainty in overall parameter estimation compared with the SC approach. MC method-measured parameter changes in cells treated with digoxin increased R 10 i by 11.7% (p = 0.218) and k ie by 5.9% (p = 0.234) for 4 T1 cells, respectively, and decreased R 10 i by 28.8% (p = 0.226) and k ie by 1.6% (p = 0.751) for SCCVII cells, respectively. v i did not change noticeably by the treatment. The results of this study substantiate the feasibility of using saturation recovery data of multiple samples with different GBCA concentrations for simultaneous measurement of the cellular water efflux rate, intracellular volume fraction, and intracellular longitudinal relaxation rate in cancer cells.
Collapse
Affiliation(s)
- Karl Kiser
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jin Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Sawwal Qayyum
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - W Clay Bracken
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Sungheon Gene Kim
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
6
|
Kiser K, Zhang J, Das AB, Tranos JA, Wadghiri YZ, Kim SG. Evaluation of cellular water exchange in a mouse glioma model using dynamic contrast-enhanced MRI with two flip angles. Sci Rep 2023; 13:3007. [PMID: 36810898 PMCID: PMC9945648 DOI: 10.1038/s41598-023-29991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
This manuscript aims to evaluate the robustness and significance of the water efflux rate constant (kio) parameter estimated using the two flip-angle Dynamic Contrast-Enhanced (DCE) MRI approach with a murine glioblastoma model at 7 T. The repeatability of contrast kinetic parameters and kio measurement was assessed by a test-retest experiment (n = 7). The association of kio with cellular metabolism was investigated through DCE-MRI and FDG-PET experiments (n = 7). Tumor response to a combination therapy of bevacizumab and fluorouracil (5FU) monitored by contrast kinetic parameters and kio (n = 10). Test-retest experiments demonstrated compartmental volume fractions (ve and vp) remained consistent between scans while the vascular functional measures (Fp and PS) and kio showed noticeable changes, most likely due to physiological changes of the tumor. The standardized uptake value (SUV) of tumors has a linear correlation with kio (R2 = 0.547), a positive correlation with Fp (R2 = 0.504), and weak correlations with ve (R2 = 0.150), vp (R2 = 0.077), PS (R2 = 0.117), Ktrans (R2 = 0.088) and whole tumor volume (R2 = 0.174). In the treatment study, the kio of the treated group was significantly lower than the control group one day after bevacizumab treatment and decreased significantly after 5FU treatment compared to the baseline. This study results support the feasibility of measuring kio using the two flip-angle DCE-MRI approach in cancer imaging.
Collapse
Affiliation(s)
- Karl Kiser
- Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, WMC Box 141, USA.
| | - Jin Zhang
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| | - Ayesha Bharadwaj Das
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| | - James A. Tranos
- grid.137628.90000 0004 1936 8753Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Youssef Zaim Wadghiri
- grid.137628.90000 0004 1936 8753Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Sungheon Gene Kim
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| |
Collapse
|
7
|
Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers (Basel) 2023; 15:cancers15041174. [PMID: 36831517 PMCID: PMC9954362 DOI: 10.3390/cancers15041174] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in machine learning and artificial intelligence technology have ensured automated evaluation of medical images. As a result, quantifiable diagnostic and prognostic biomarkers have been created. We discuss radiomics applications for the head and neck region in this paper. Molecular characterization, categorization, prognosis and therapy recommendation are given special consideration. In a narrative manner, we outline the fundamental technological principles, the overall idea and usual workflow of radiomic analysis and what seem to be the present and potential challenges in normal clinical practice. Clinical oncology intends for all of this to ensure informed decision support for personalized and useful cancer treatment. Head and neck cancers present a unique set of diagnostic and therapeutic challenges. These challenges are brought on by the complicated anatomy and heterogeneity of the area under investigation. Radiomics has the potential to address these barriers. Future research must be interdisciplinary and focus on the study of certain oncologic functions and outcomes, with external validation and multi-institutional cooperation in order to achieve this.
Collapse
|
8
|
Solomon E, Lemberskiy G, Baete S, Hu K, Malyarenko D, Swanson S, Shukla-Dave A, Russek SE, Zan E, Kim SG. Time-dependent diffusivity and kurtosis in phantoms and patients with head and neck cancer. Magn Reson Med 2023; 89:522-535. [PMID: 36219464 PMCID: PMC9712275 DOI: 10.1002/mrm.29457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess the reliability of measuring diffusivity, diffusional kurtosis, and cellular-interstitial water exchange time with long diffusion times (100-800 ms) using stimulated-echo DWI. METHODS Time-dependent diffusion MRI was tested on two well-established diffusion phantoms and in 5 patients with head and neck cancer. Measurements were conducted using an in-house diffusion-weighted STEAM-EPI pulse sequence with multiple diffusion times at a fixed TE on three scanners. We used the weighted linear least-squares fit method to estimate time-dependent diffusivity,D ( t ) $$ D(t) $$ , and diffusional kurtosis,K ( t ) $$ K(t) $$ . Additionally, the Kärger model was used to estimate cellular-interstitial water exchange time (τ ex $$ {\tau}_{ex} $$ ) fromK ( t ) $$ K(t) $$ . RESULTS Diffusivity measured by time-dependent STEAM-EPI measurements and commercial SE-EPI showed comparable results with R2 above 0.98 and overall 5.4 ± 3.0% deviation across diffusion times. Diffusional kurtosis phantom data showed expected patterns: constantD $$ D $$ andK $$ K $$ = 0 for negative controls and slow varyingD $$ D $$ andK $$ K $$ for samples made of nanoscopic vesicles. Time-dependent diffusion MRI in patients with head and neck cancer found that the Kärger model could be considered valid in 72% ± 23% of the voxels in the metastatic lymph nodes. The median cellular-interstitial water exchange time estimated for lesions was between 58.5 ms and 70.6 ms. CONCLUSIONS Based on two well-established diffusion phantoms, we found that time-dependent diffusion MRI measurements can provide stable diffusion and kurtosis values over a wide range of diffusion times and across multiple MRI systems. Moreover, estimation of cellular-interstitial water exchange time can be achieved using the Kärger model for the metastatic lymph nodes in patients with head and neck cancer.
Collapse
Affiliation(s)
- Eddy Solomon
- Department of Radiology, MRI Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Gregory Lemberskiy
- Department of Radiology, MRI Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Steven Baete
- Department of Radiology, MRI Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Kenneth Hu
- Department of Radiation Oncology, New York University, New York, NY, United States
| | - Dariya Malyarenko
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Scott Swanson
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen E Russek
- National Institute of Standards and Technology, Boulder, CO, United States
| | - Elcin Zan
- Department of Radiology, MRI Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Sungheon Gene Kim
- Department of Radiology, MRI Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Romeo V, Stanzione A, Ugga L, Cuocolo R, Cocozza S, Quarantelli M, Chawla S, Farina D, Golay X, Parker G, Shukla-Dave A, Thoeny H, Vidiri A, Brunetti A, Surlan-Popovic K, Bisdas S. Clinical indications and acquisition protocol for the use of dynamic contrast-enhanced MRI in head and neck cancer squamous cell carcinoma: recommendations from an expert panel. Insights Imaging 2022; 13:198. [PMID: 36528678 PMCID: PMC9759606 DOI: 10.1186/s13244-022-01317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The clinical role of perfusion-weighted MRI (PWI) in head and neck squamous cell carcinoma (HNSCC) remains to be defined. The aim of this study was to provide evidence-based recommendations for the use of PWI sequence in HNSCC with regard to clinical indications and acquisition parameters. METHODS Public databases were searched, and selected papers evaluated applying the Oxford criteria 2011. A questionnaire was prepared including statements on clinical indications of PWI as well as its acquisition technique and submitted to selected panelists who worked in anonymity using a modified Delphi approach. Each panelist was asked to rate each statement using a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). Statements with scores equal or inferior to 5 assigned by at least two panelists were revised and re-submitted for the subsequent Delphi round to reach a final consensus. RESULTS Two Delphi rounds were conducted. The final questionnaire consisted of 6 statements on clinical indications of PWI and 9 statements on the acquisition technique of PWI. Four of 19 (21%) statements obtained scores equal or inferior to 5 by two panelists, all dealing with clinical indications. The Delphi process was considered concluded as reasons entered by panelists for lower scores were mainly related to the lack of robust evidence, so that no further modifications were suggested. CONCLUSIONS Evidence-based recommendations on the use of PWI have been provided by an independent panel of experts worldwide, encouraging a standardized use of PWI across university and research centers to produce more robust evidence.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Interdepartmental Research Center on Management and Innovation in Healthcare - CIRMIS, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | - Geoff Parker
- Department of Computer Science, Centre for Medical Image Computing, Queen Square Institute of Neurology, University College London, London, UK
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harriet Thoeny
- Department of Radiology, Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Antonello Vidiri
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK.
| |
Collapse
|
10
|
Prospective Investigation of 18FDG-PET/MRI with Intravoxel Incoherent Motion Diffusion-Weighted Imaging to Assess Survival in Patients with Oropharyngeal or Hypopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14246104. [PMID: 36551590 PMCID: PMC9775681 DOI: 10.3390/cancers14246104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
To prospectively investigate the prognostic value of 18F-FDG PET/MRI in patients with oropharyngeal or hypopharyngeal squamous cell carcinomas (OHSCC) treated by chemoradiotherapy. The study cohort consisted of patients with OHSCC who had undergone integrated PET/MRI prior to chemoradiotherapy or radiotherapy. Imaging parameters derived from intravoxel incoherent motion (IVIM), dynamic contrast-enhanced MRI (DCE-MRI), and 18F-FDG PET were analyzed in relation to overall survival (OS) and recurrence-free survival (RFS). In multivariable analysis, T classification (p < 0.001), metabolic tumor volume (p = 0.013), and pseudo-diffusion coefficient (p = 0.008) were identified as independent risk factors for OS. The volume transfer rate constant (p = 0.015), initial area under the curve (p = 0.043), T classification (p = 0.018), and N classification (p = 0.018) were significant predictors for RFS. The Harrell’s c-indices of OS and RFS obtained from prognostic models incorporating clinical and PET/MRI predictors were significantly higher than those derived from the traditional TNM staging system (p = 0.001). The combination of clinical risk factors with functional parameters derived from IVIM and DCE-MRI plus metabolic PET parameters derived from 18F-FDG PET in integrated PET/MRI outperformed the information provided by traditional TNM staging in predicting the survival of patients with OHSCC.
Collapse
|
11
|
Prognostic Value of 18F-Fluorodeoxyglucose–Positron Emission Tomography/Magnetic Resonance Imaging in Patients With Hypopharyngeal Squamous Cell Carcinoma. J Comput Assist Tomogr 2022; 46:968-977. [DOI: 10.1097/rct.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Chawla S, Loevner L, Mohan S, Lin A, Sehgal CM, Poptani H. Dynamic contrast-enhanced MRI and Doppler sonography in patients with squamous cell carcinoma of head and neck treated with induction chemotherapy. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1353-1359. [PMID: 36205388 DOI: 10.1002/jcu.23361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In view of the inherent limitations associated with performing dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in clinical settings, current study was designed to provide a proof of principle that Doppler sonography and DCE-MRI derived perfusion parameters yield similar hemodynamic information from metastatic lymph nodes in squamous cell carcinomas of head and neck (HNSCCs). Strong positive correlations between volume fraction of plasma space in tissues (Vp ) and blood volume (r = 0.72, p = 0.02) and between Vp and %area perfused (r = 0.65, p = 0.04) were observed. Additionally, a moderate positive correlation trending towards significance was obtained between volume transfer constant (Ktrans ) and %area perfused (r = 0.49, p = 0.09).
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie Loevner
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
de Ridder M, Raaijmakers CPJ, Pameijer FA, de Bree R, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers (Basel) 2022; 14:3027. [PMID: 35740691 PMCID: PMC9220977 DOI: 10.3390/cancers14123027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Collapse
Affiliation(s)
- Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Cornelis P. J. Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Frank A. Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Floris C. J. Reinders
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Patricia A. H. Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| |
Collapse
|
14
|
Das AB, Tranos JA, Zhang J, Wadghiri YZ, Kim SG. Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles. Invest Radiol 2022; 57:343-351. [PMID: 35025833 PMCID: PMC8986601 DOI: 10.1097/rli.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of this study was to investigate the feasibility of using 2 flip angles (FAs) with an ultrashort echo time during dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for estimation of plasma gadolinium (Gd) concentration without using a precontrast longitudinal relaxation time T1 (T10) measurement. METHODS T1-weighted DCE-MRI experiments were carried out with C57BL/6J mice using the scan protocol with 2 FAs over 3 sequential segments during 1 scan. The data with 2 FAs were used to estimate T10 (T1T) during conversion of a time-intensity curve to the time-concentration curve. Three dosages of gadolinium-based contrast agent were used to achieve a wide range of variability in Gd concentrations when measured at 10 minutes postinjection: 0.05 mmol/kg (n = 6), 0.1 mmol/kg (n = 11), and 0.15 mmol/kg (n = 7). For comparison, the signal-to-concentration conversion was also conducted using the T10 measured from the precontrast scan (T1M) as well as a constant T10 (2.1 seconds) from the literature (T1C). The Gd concentrations ([Gd]) estimated using DCE-MRI data for the time of retro-orbital blood collection ([Gd]T1T, [Gd]T1M, and [Gd]T1C, respectively) were compared against the [Gd] of the blood samples measured by inductively coupled plasma mass spectrometry ([Gd]MS). In addition, contrast kinetic model analysis was conducted on mice with GL261 brain tumors (n = 5) using the 3 different methods for T10. RESULTS T1T strongly correlated with T1M (r = 0.81). [Gd]T1M and [Gd]T1T were significantly different from [Gd]T1C. [Gd]T1M and [Gd]T1T were in good agreement with [Gd]MS with strong correlations (mean percentage error ± standard deviation) of r = 0.70 (16% ± 56%) and r = 0.85 (15% ± 44%), respectively. In contrast, [Gd]T1C had a weak correlation of r = 0.52 with larger errors of 33% ± 24%. The contrast kinetic model parameters of GL261 brain tumors using T1T were not significantly different from those using T1M. CONCLUSIONS This study substantiates the feasibility of using the 2-FA approach during DCE-MRI scan to estimate [Gd] in the plasma without using an extra scan to perform precontrast T1 measurements.
Collapse
Affiliation(s)
| | - James A. Tranos
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Jin Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Youssef Zaim Wadghiri
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - S. Gene Kim
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
Value of Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Prediction of Treatment Outcomes in Nasopharyngeal Carcinoma. J Comput Assist Tomogr 2022; 46:664-672. [PMID: 35483078 DOI: 10.1097/rct.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) parameters that reflect the tumor microenvironment of nasopharyngeal carcinoma (NPC) may predict treatment response and facilitate treatment planning. This study aimed to evaluate the diffusion-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) values for predicting the treatment outcomes in NPC patients. METHODS Eighty-three patients with NPC underwent pretreatment MRI simulation with diffusion-weighted imaging and dynamic contrast-enhanced MRI. Average values of the apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, Vp, and tumor volume of the primary tumors were measured. Other potential clinical characteristics (age, sex, staging, pathology, pretreatment Epstein-Barr virus level, and treatment type) were analyzed. Patients underwent follow-up imaging 6 months after treatment initiation. Treatment responses were assigned according to the Response Evaluation Criteria in Solid Tumors guideline (version 1.1). RESULTS Fifty-one patients showed complete response (CR), whereas 32 patients did not (non-CR). Univariable logistic regression with variables dichotomized by optimal cutoff values showed that ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, tumor volume of ≥14.05 mL, high stage (stages III and IV), and Epstein-Barr virus level of ≥2300 copies/mL were predictors of non-CR (P = 0.008, 0.05, 0.01, 0.009, and 0.04, respectively). The final multivariable model, consisting of a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage, could predict non-CR with a good discrimination ability (area under the receiver operating characteristic curve, 0.76 [95% confidence interval, 0.66-0.87]; sensitivity, 62.50%; specificity, 80.39%; and accuracy 73.49%). CONCLUSIONS A multivariable prediction model using a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage can be effective for treatment response prediction in NPC patients.
Collapse
|
16
|
Bhaduri S, Lesbats C, Sharkey J, Kelly CL, Mukherjee S, Taylor A, Delikatny EJ, Kim SG, Poptani H. Assessing Tumour Haemodynamic Heterogeneity and Response to Choline Kinase Inhibition Using Clustered Dynamic Contrast Enhanced MRI Parameters in Rodent Models of Glioblastoma. Cancers (Basel) 2022; 14:cancers14051223. [PMID: 35267531 PMCID: PMC8909848 DOI: 10.3390/cancers14051223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.
Collapse
Affiliation(s)
- Sourav Bhaduri
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Clémentine Lesbats
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jack Sharkey
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Soham Mukherjee
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Arthur Taylor
- Department of Molecular Physiology & Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK;
| | - Edward J. Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sungheon G. Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Correspondence:
| |
Collapse
|
17
|
Özer H, Yazol M, Erdoğan N, Emmez ÖH, Kurt G, Öner AY. Dynamic contrast-enhanced magnetic resonance imaging for evaluating early response to radiosurgery in patients with vestibular schwannoma. Jpn J Radiol 2022; 40:678-688. [PMID: 35038116 DOI: 10.1007/s11604-021-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE This study aimed to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to evaluate early treatment response in vestibular schwannoma (VS) patients after radiosurgery. METHODS Twenty-four VS patients who underwent gamma knife radiosurgery were prospectively followed up for at least four years. DCE-MRI sequences, in addition to standard MRI protocol, were obtained prior to radiosurgery, at 3 and 6 months. Conventionally, treatment responses based on tumor volume changes were classified as regression or stable (RS), transient tumor enlargement (TTE), and continuous tumor enlargement (CTE). DCE-MRI parameters, such as Ktrans, Kep and Ve, were compared according to follow-up periods and between groups. The diagnostic performance was tested using receiver operating characteristic (ROC) curves. RESULTS Changes in tumor volume were as follows at the last 48 months of follow-up: RS in 11 patients (45.8%), TTE in 10 patients (41.7%), and CTE in three patients (12.5%). The median time required to distinguish TTE from CTE using conventional MRI was 12 months (range 9-18). The Ktrans and Ve were significantly decreased in patients with RS and TTE at 3 and 6 months, but did not differ significantly in patients with CTE. There were no significant differences in Ktrans and Ve between patients with RS and TTE at 3 and 6 months. Both Ktrans and Ve demonstrated high diagnostic performance in evaluating early treatment response to radiosurgery in patients with VS. CONCLUSION DCE-MRI may aid in the monitoring and early prediction of treatment response in patients with VS following radiosurgery.
Collapse
Affiliation(s)
- Halil Özer
- Department of Radiology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey.
| | - Merve Yazol
- Department of Radiology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - Nesrin Erdoğan
- Department of Radiology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - Ömer Hakan Emmez
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gökhan Kurt
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ali Yusuf Öner
- Department of Radiology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| |
Collapse
|
18
|
Early Response Prediction of Multiparametric Functional MRI and 18F-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo)Radiation. Cancers (Basel) 2022; 14:cancers14010216. [PMID: 35008380 PMCID: PMC8750157 DOI: 10.3390/cancers14010216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Patients with locally-advanced head and neck squamous cell carcinoma (HNSCC) have variable responses to (chemo)radiotherapy. A reliable early prediction of outcomes allows for enhancing treatment efficacy and follow-up monitoring. Early tumoral changes can be captured by functional imaging (DWI/IVIM/DCE/18F-FDG-PET-CT) parameters, which allow for the construction of accurate patient-specific prognostic models for locoregional recurrence-free survival, distant metastasis-free survival and overall survival. We also present clinical applicable risk stratification in high/medium/low risks for these patient outcomes. This can enable personalized treatment (adaptation) management early on during treatment, improve counseling and enhance patient-specific post-therapy monitoring. Abstract Background: Patients with locally-advanced head and neck squamous cell carcinoma (HNSCC) have variable responses to (chemo)radiotherapy. A reliable prediction of outcomes allows for enhancing treatment efficacy and follow-up monitoring. Methods: Fifty-seven histopathologically-proven HNSCC patients with curative (chemo)radiotherapy were prospectively included. All patients had an MRI (DW,-IVIM, DCE-MRI) and 18F-FDG-PET/CT before and 10 days after start-treatment (intratreatment). Primary tumor functional imaging parameters were extracted. Univariate and multivariate analysis were performed to construct prognostic models and risk stratification for 2 year locoregional recurrence-free survival (LRFFS), distant metastasis-free survival (DMFS) and overall survival (OS). Model performance was measured by the cross-validated area under the receiver operating characteristic curve (AUC). Results: The best LRFFS model contained the pretreatment imaging parameters ADC_kurtosis, Kep and SUV_peak, and intratreatment imaging parameters change (Δ) Δ-ADC_skewness, Δ-f, Δ-SUV_peak and Δ-total lesion glycolysis (TLG) (AUC = 0.81). Clinical parameters did not enhance LRFFS prediction. The best DMFS model contained pretreatment ADC_kurtosis and SUV_peak (AUC = 0.88). The best OS model contained gender, HPV-status, N-stage, pretreatment ADC_skewness, D, f, metabolic-active tumor volume (MATV), SUV_mean and SUV_peak (AUC = 0.82). Risk stratification in high/medium/low risk was significantly prognostic for LRFFS (p = 0.002), DMFS (p < 0.001) and OS (p = 0.003). Conclusions: Intratreatment functional imaging parameters capture early tumoral changes that only provide prognostic information regarding LRFFS. The best LRFFS model consisted of pretreatment, intratreatment and Δ functional imaging parameters; the DMFS model consisted of only pretreatment functional imaging parameters, and the OS model consisted ofHPV-status, gender and only pretreatment functional imaging parameters. Accurate clinically applicable risk stratification calculators can enable personalized treatment (adaptation) management, early on during treatment, improve counseling and enhance patient-specific post-therapy monitoring.
Collapse
|
19
|
Deng HP, Li XM, Yang L, Wang Y, Wang SY, Zhou P, Lu YJ, Ren J, Wang M. DCE-MRI of esophageal carcinoma using star-VIBE compared with conventional 3D-VIBE. Sci Rep 2021; 11:24091. [PMID: 34916532 PMCID: PMC8677801 DOI: 10.1038/s41598-021-03171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
To investigate the value of the star-VIBE sequence in dynamic contrast-enhanced magnetic resonance imaging of esophageal carcinoma under free breathing conditions. From February 2019 to June 2020, 60 patients with esophageal carcinoma were prospectively enrolled to undergo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with the K-space golden-angle radial stack-of-star acquisition scheme (star-VIBE) sequence (Group A) or conventional 3D volumetric-interpolated breath-hold examination (3D-VIBE) sequence (Group B), completely randomized grouping. The image quality of DCE-MRI was subjectively evaluated at five levels and objectively evaluated according to the image signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). The DCE-MRI parameters of volume transfer constant (Ktrans), rate constant (Kep) and vascular extracellular volume fraction (Ve) were calculated using the standard Tofts double-compartment model in the post-perfusion treatment software TISSUE 4D (Siemens). Each group included 30 randomly selected cases. There was a significant difference in subjective classification between the groups (35.90 vs 25.10, p = 0.009). The study showed that both the SNR and CNR of group A were significantly higher than those of group B (p = 0.004 and < 0.001, respectively). There was no significant difference in Ktrans, Kep or Ve between the groups (all p > 0.05). The star-VIBE sequence can be applied in DCE-MRI examination of esophageal carcinoma, which can provide higher image quality than the conventional 3D-VIBE sequence in the free breathing state.
Collapse
Affiliation(s)
- He-Ping Deng
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Xue-Ming Li
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Liu Yang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Yi Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Shao-Yu Wang
- Xi'an Branch of Siemens Healthcare Ltd., Xian, 710075, China
| | - Peng Zhou
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Yu-Jie Lu
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China
| | - Jin Ren
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China.
| | - Min Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55# Lan 4 RenMing Road (South), Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Lu H, Wu Y, Liu X, Huang H, Jiang H, Zhu C, Man Y, Liu P, Li X, Chen Z, Long X, Pang Q, Deng S, Gu J. The Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Predicting Treatment Response for Cervical Cancer Treated with Concurrent Chemoradiotherapy. Cancer Manag Res 2021; 13:6065-6078. [PMID: 34377025 PMCID: PMC8349537 DOI: 10.2147/cmar.s314289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting early treatment response. Materials and Methods Patients with locally advanced cervical cancer (LACC) treated with concurrent chemoradiotherapy (CCRT) were enrolled. Pelvic DCE-MRI scans were performed before RT (pre-RT), in the middle of RT (mid-RT), and at the end of RT (post-RT), separately. Parameters (ie, Ktrans, Kep, and Ve) were measured. Pre-, mid-, and post-RT Ktrans were denoted as Ktrans-preTx, Ktrans-midTx, and Ktrans-postTx, respectively. And the same denoting rule also went for Kep and Ve. Difference for the same parameter such as Ktrans measured between two consecutive time points was calculated as second Ktrans value minus first Ktrans value. The differences in Ktrans between pre-RT and post-RT, between pre-RT and mid-RT, and between mid-RT and post-RT were denoted as ΔKtrans-post-preTx, ΔKtrans-mid-preTx, and ΔKtrans-post-midTx, respectively, and the same denoting rule was also applied to Kep and Ve. Results A total of 57 patients were enrolled. After the treatment, 31 patients had complete response (CR group). The remaining 26 patients had partial response (NCR group). Significant differences were found in Ktrans-postTx, Kep-postTx, Ve-midTx, ΔKtrans-post-preTx, ΔKtrans-post-midTx, ΔKep-post-preTx, ΔKep-mid-preTx and ΔKep-post-midTx between the two groups. Receiver operating characteristic (ROC) analysis for their performances in predicting treatment response showed an area under curve (AUC) of 0.656-0.849, sensitivity of 61.3-93.5%, specificity of 46.1-73.1%, and maximal Youden Index of 36.5-66.6. Among those parameters, Kep-postTx was the best, and its AUC, sensitivity, specificity, maximal Youden Index, and cutoff value were 0.849, 87.1%, 73.1%, 60.2, and 0.341, respectively. These combined parameters showed an AUC of 0.952, with sensitivity of 87.1%, specificity of 96.1%, and maximal Youden Index of 83.2. Conclusion DCE-MRI parameters can predict early treatment outcome. Among those parameters, Kep-postTx is the best predictor. The combination of multi-parameters can increase the predictive potency.
Collapse
Affiliation(s)
- Heming Lu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Yuying Wu
- Department of Gynecology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Xu Liu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Huixian Huang
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Hailan Jiang
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Chaohua Zhu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Yuping Man
- Department of Radiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Pei Liu
- Department of Oncology, Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Xianglong Li
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Zhaohong Chen
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Xianfeng Long
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Qiang Pang
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Shan Deng
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - Junzhao Gu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| |
Collapse
|
21
|
Paudyal R, Grkovski M, Oh JH, Schöder H, Nunez DA, Hatzoglou V, Deasy JO, Humm JL, Lee NY, Shukla-Dave A. Application of Community Detection Algorithm to Investigate the Correlation between Imaging Biomarkers of Tumor Metabolism, Hypoxia, Cellularity, and Perfusion for Precision Radiotherapy in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:3908. [PMID: 34359810 PMCID: PMC8345739 DOI: 10.3390/cancers13153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to investigate the correlation at pre-treatment (TX) between quantitative metrics derived from multimodality imaging (MMI), including 18F-FDG-PET/CT, 18F-FMISO-PET/CT, DW- and DCE-MRI, using a community detection algorithm (CDA) in head and neck squamous cell carcinoma (HNSCC) patients. Twenty-three HNSCC patients with 27 metastatic lymph nodes underwent a total of 69 MMI exams at pre-TX. Correlations among quantitative metrics derived from FDG-PET/CT (SUL), FMSIO-PET/CT (K1, k3, TBR, and DV), DW-MRI (ADC, IVIM [D, D*, and f]), and FXR DCE-MRI [Ktrans, ve, and τi]) were investigated using the CDA based on a "spin-glass model" coupled with the Spearman's rank, ρ, analysis. Mean MRI T2 weighted tumor volumes and SULmean values were moderately positively correlated (ρ = 0.48, p = 0.01). ADC and D exhibited a moderate negative correlation with SULmean (ρ ≤ -0.42, p < 0.03 for both). K1 and Ktrans were positively correlated (ρ = 0.48, p = 0.01). In contrast, Ktrans and k3max were negatively correlated (ρ = -0.41, p = 0.03). CDA revealed four communities for 16 metrics interconnected with 33 edges in the network. DV, Ktrans, and K1 had 8, 7, and 6 edges in the network, respectively. After validation in a larger population, the CDA approach may aid in identifying useful biomarkers for developing individual patient care in HNSCC.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (H.S.); (V.H.)
| | - David Aramburu Nunez
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (H.S.); (V.H.)
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - John L. Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (M.G.); (J.H.O.); (D.A.N.); (J.O.D.); (J.L.H.)
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (H.S.); (V.H.)
| |
Collapse
|
22
|
LoCastro E, Paudyal R, Mazaheri Y, Hatzoglou V, Oh JH, Lu Y, Konar AS, Vom Eigen K, Ho A, Ewing JR, Lee N, Deasy JO, Shukla-Dave A. Computational Modeling of Interstitial Fluid Pressure and Velocity in Head and Neck Cancer Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Feasibility Analysis. ACTA ACUST UNITED AC 2021; 6:129-138. [PMID: 32548289 PMCID: PMC7289251 DOI: 10.18383/j.tom.2020.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D parametric IFP and IFV maps, using the Darcy equation and Ktrans values (min−1, estimated from the extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman correlation (ρ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV. CFM-estimated tumor IFP and IFV mean ± standard deviation for the neck nodal metastases were 1.73 ± 0.39 (kPa) and 1.82 ± 0.9 × (10−7 m/s), respectively. High IFP estimates corresponds to very low IFV throughout the tumor core, but IFV rises rapidly near the tumor boundary where the drop in IFP is precipitous. A significant correlation was found between pretreatment total tumor volume and CFM estimates of mean tumor IFP (ρ = 0.50, P = 0.004). Future studies can validate these initial findings in larger patients with HN cancer cohorts using CFM of the tumor in concert with DCE characterization, which holds promise in radiation oncology and drug-therapy clinical trials.
Collapse
Affiliation(s)
| | | | - Yousef Mazaheri
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Yonggang Lu
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Alan Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James R Ewing
- Departments of Neurology and.,Neurosurgery, Henry Ford Hospital, Detroit, MI; and
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
23
|
Kinh Do R, Reyngold M, Paudyal R, Oh JH, Konar AS, LoCastro E, Goodman KA, Shukla-Dave A. Diffusion-Weighted and Dynamic Contrast-Enhanced MRI Derived Imaging Metrics for Stereotactic Body Radiotherapy of Pancreatic Ductal Adenocarcinoma: Preliminary Findings. ACTA ACUST UNITED AC 2021; 6:261-271. [PMID: 32548304 PMCID: PMC7289241 DOI: 10.18383/j.tom.2020.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We aimed to assess longitudinal changes in quantitative imaging metric values obtained from diffusion-weighted (DW-) and dynamic contrast-enhanced magnetic resonance imaging (DCE)-MRI at pre-treatment (TX[0]), immediately after the first fraction of stereotactic body radiotherapy (D1-TX[1]), and 6 weeks post-TX (Post-TX[2]) in patients with pancreatic ductal adenocarcinoma. Ten enrolled patients (n = 10) underwent DW- and DCE-MRI examinations on a 3.0 T scanner. The apparent diffusion coefficient, ADC (mm2/s), was derived from DW imaging data using a monoexponential model. The tissue relaxation rate, R 1t, time-course data were fitted with a shutter-speed model, which provides estimates of the volume transfer constant, K trans (min-1), extravascular extracellular volume fraction, ve , and mean lifetime of intracellular water protons, τ i (seconds). Wilcoxon rank-sum test compared the mean values, standard deviation, skewness, kurtosis, and relative percentage (r, %) changes (Δ) in ADC, K trans, ve , and τ i values between the magnetic resonance examinations. rADCΔ2-0 values were significantly greater than rADCΔ1-0 values (P = .009). rK trans Δ2-0 values were significantly lower than rK trans Δ1-0 values (P = .048). rve Δ2-1 and rveΔ2-0 values were significantly different (P = .016). rτ i Δ2-1 values were significantly lower than rτ i Δ2-0 values (P = .008). For group comparison, the pre-TX mean and kurtosis of ADC (P = .18 and P = .14), skewness and kurtosis of K trans values (P = .14 for both) showed a leaning toward significant difference between patients who experienced local control (n = 2) and failed early (n = 4). DW- and DCE-MRI-derived quantitative metrics could be useful biomarkers to evaluate longitudinal changes to stereotactic body radiotherapy in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
| | | | - Ramesh Paudyal
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Jung Hun Oh
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | | | - Eve LoCastro
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Karyn A Goodman
- Tisch Cancer Institute at Mount Sinai Hospital, New York, NY
| | - Amita Shukla-Dave
- Departments of Radiology.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| |
Collapse
|
24
|
Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov DS, Kim SG. Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging. NMR IN BIOMEDICINE 2021; 34:e4496. [PMID: 33634508 PMCID: PMC8170918 DOI: 10.1002/nbm.4496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/08/2021] [Indexed: 05/10/2023]
Abstract
PURPOSE To assess the feasibility of using diffusion-time-dependent diffusional kurtosis imaging (tDKI) to measure cellular-interstitial water exchange time (τex ) in tumors, both in animals and in humans. METHODS Preclinical tDKI studies at 7 T were performed with the GL261 glioma model and the 4T1 mammary tumor model injected into the mouse brain. Clinical studies were performed at 3 T with women who had biopsy-proven invasive ductal carcinoma. tDKI measurement was conducted using a diffusion-weighted STEAM pulse sequence with multiple diffusion times (20-800 ms) at a fixed echo time, while keeping the b-values the same (0-3000 s/mm2 ) by adjusting the diffusion gradient strength. The tDKI data at each diffusion time t were used for a weighted linear least-squares fit method to estimate the diffusion-time-dependent diffusivity, D(t), and diffusional kurtosis, K(t). RESULTS Both preclinical and clinical studies showed that, when diffusion time t ≥ 200 ms, D(t) did not have a noticeable change while K(t) decreased monotonically with increasing diffusion time in tumors and t ≥ 100 ms for the cortical ribbon of the mouse brain. The estimated τex averaged median and interquartile range (IQR) of GL261 and 4T1 tumors were 93 (IQR = 89) ms and 68 (78) ms, respectively. For the cortical ribbon, the estimated τex averaged median and IQR were 41 (34) ms for C57BL/6 and 30 (17) ms for BALB/c. For invasive ductal carcinoma, the estimated τex median and IQR of the two breast cancers were 70 (94) and 106 (92) ms. CONCLUSION The results of this proof-of-concept study substantiate the feasibility of using tDKI to measure cellular-interstitial water exchange time without using an exogenous contrast agent.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Gregory Lemberskiy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
25
|
MRI Dynamic Contrast Imaging of Oral Cavity and Oropharyngeal Tumors. Top Magn Reson Imaging 2021; 30:97-104. [PMID: 33828061 DOI: 10.1097/rmr.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the past decade, dynamic contrast-enhanced magnetic resonance imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced magnetic resonance imaging allows noninvasive assessment of permeability and blood flow, both important parametric features of tumor hypoxia, which is in turn a marker for treatment resistance for head and neck cancer.In this article we will provide a comprehensive review technique in evaluating tumor proliferation and application of its parameters in differentiating between various tumor types of the oral cavity and how its parameters can correlate between epidermal growth factor receptor and human papillomavirus which can have an implication in patient's overall survival rates.We will also review how the parameters of this method can predict local tumor control after treatment and compare its efficacy with other imaging modalities. Lastly, we will review how its parameters can be used prospectively to identify early complications from treatment.
Collapse
|
26
|
Paudyal R, Chen L, Oh JH, Zakeri K, Hatzoglou V, Tsai CJ, Lee N, Shukla-Dave A. Nongaussian Intravoxel Incoherent Motion Diffusion Weighted and Fast Exchange Regime Dynamic Contrast-Enhanced-MRI of Nasopharyngeal Carcinoma: Preliminary Study for Predicting Locoregional Failure. Cancers (Basel) 2021; 13:1128. [PMID: 33800762 PMCID: PMC7961986 DOI: 10.3390/cancers13051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to identify whether the quantitative metrics from pre-treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients underwent pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve, and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray (FG) modeling were performed considering death as a competing risk. Mean ve values were significantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of ADC ≤ 0.68 × 10-3 (mm2/s), D ≤ 0.74 × 10-3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff value showed borderline significance (p = 0.098). FG's modeling showed a significant difference for the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR DCE-MRI-derived metrics for predicting LRF in NPC than alone.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - C. Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
27
|
Subramaniam N, Poptani H, Schache A, Bhat V, Iyer S, Sunil HV, Chandrasekhar N, Pillai V, Chaturvedi P, Krishna S, Krishnamurthy A, Kekatpure V, Kuriakose M, Iyer NG, Thakkar A, Kantharia R, Sonkar A, Shetty V, Rangappa V, Kolur T, Vidhyadharan S, Murthy S, Kudpaje A, Srinivasalu V, Mahajan A. Imaging advances in oral cavity cancer and perspectives from a population in need: Consensus from the UK-India oral cancer imaging group. JOURNAL OF HEAD & NECK PHYSICIANS AND SURGEONS 2021. [DOI: 10.4103/jhnps.jhnps_10_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Chen J, Hagiwara M, Givi B, Schmidt B, Liu C, Chen Q, Logan J, Mikheev A, Rusinek H, Kim SG. Assessment of metastatic lymph nodes in head and neck squamous cell carcinomas using simultaneous 18F-FDG-PET and MRI. Sci Rep 2020; 10:20764. [PMID: 33247166 PMCID: PMC7695736 DOI: 10.1038/s41598-020-77740-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we investigate the feasibility of using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), diffusion weighted imaging (DWI), and dynamic positron emission tomography (PET) for detection of metastatic lymph nodes in head and neck squamous cell carcinoma (HNSCC) cases. Twenty HNSCC patients scheduled for lymph node dissection underwent DCE-MRI, dynamic PET, and DWI using a PET-MR scanner within one week prior to their planned surgery. During surgery, resected nodes were labeled to identify their nodal levels and sent for routine clinical pathology evaluation. Quantitative parameters of metastatic and normal nodes were calculated from DCE-MRI (ve, vp, PS, Fp, Ktrans), DWI (ADC) and PET (Ki, K1, k2, k3) to assess if an individual or a combination of parameters can classify normal and metastatic lymph nodes accurately. There were 38 normal and 11 metastatic nodes covered by all three imaging methods and confirmed by pathology. 34% of all normal nodes had volumes greater than or equal to the smallest metastatic node while 4 normal nodes had SUV > 4.5. Among the MRI parameters, the median vp, Fp, PS, and Ktrans values of the metastatic lymph nodes were significantly lower (p = <0.05) than those of normal nodes. ve and ADC did not show any statistical significance. For the dynamic PET parameters, the metastatic nodes had significantly higher k3 (p value = 8.8 × 10-8) and Ki (p value = 5.3 × 10-8) than normal nodes. K1 and k2 did not show any statistically significant difference. Ki had the best separation with accuracy = 0.96 (sensitivity = 1, specificity = 0.95) using a cutoff of Ki = 5.3 × 10-3 mL/cm3/min, while k3 and volume had accuracy of 0.94 (sensitivity = 0.82, specificity = 0.97) and 0.90 (sensitivity = 0.64, specificity = 0.97) respectively. 100% accuracy can be achieved using a multivariate logistic regression model of MRI parameters after thresholding the data with Ki < 5.3 × 10-3 mL/cm3/min. The results of this preliminary study suggest that quantitative MRI may provide additional value in distinguishing metastatic nodes, particularly among small nodes, when used together with FDG-PET.
Collapse
Affiliation(s)
- Jenny Chen
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Mari Hagiwara
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Babak Givi
- grid.137628.90000 0004 1936 8753Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY USA
| | - Brian Schmidt
- grid.137628.90000 0004 1936 8753Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY USA
| | - Cheng Liu
- grid.137628.90000 0004 1936 8753Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Qi Chen
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Jean Logan
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Artem Mikheev
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Henry Rusinek
- grid.137628.90000 0004 1936 8753Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016 USA
| | - Sungheon Gene Kim
- Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
29
|
Baboli M, Winters KV, Freed M, Zhang J, Kim SG. Evaluation of metronomic chemotherapy response using diffusion and dynamic contrast-enhanced MRI. PLoS One 2020; 15:e0241916. [PMID: 33237905 PMCID: PMC7688103 DOI: 10.1371/journal.pone.0241916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To investigate the feasibility of using diffusion MRI (dMRI) and dynamic contrast-enhanced (DCE) MRI to evaluate the treatment response of metronomic chemotherapy (MCT) in the 4T1 mammary tumor model of locally advanced breast cancer. METHODS Twelve Balb/c mice with metastatic breast cancer were divided into treated and untreated (control) groups. The treated group (n = 6) received five treatments of anti-metabolite agent 5-Fluorouracil (5FU) in the span of two weeks. dMRI and DCE-MRI were acquired for both treated and control groups before and after MCT. Immunohistochemically staining and measurements were performed after the post-MRI measurements for comparison. RESULTS The control mice had significantly (p<0.005) larger tumors than the MCT treated mice. The DCE-MRI analysis showed a decrease in contrast enhancement for the control group, whereas the MCT mice had a more stable enhancement between the pre-chemo and post-chemo time points. This confirms the antiangiogenic effects of 5FU treatment. Comparing amplitude of enhancement revealed a significantly (p<0.05) higher enhancement in the MCT tumors than in the controls. Moreover, the MCT uptake rate was significantly (p<0.001) slower than the controls. dMRI analysis showed the MCT ADC values were significantly larger than the control group at the post-scan time point. CONCLUSION dMRI and DCE-MRI can be used as potential biomarkers for assessing the treatment response of MCT. The MRI and pathology observations suggested that in addition to the cytotoxic effect of cell kills, the MCT with a cytotoxic drug, 5FU, induced changes in the tumor vasculature similar to the anti-angiogenic effect.
Collapse
Affiliation(s)
- Mehran Baboli
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| | - Kerryanne V. Winters
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
| | - Melanie Freed
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
| | - Jin Zhang
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
| | - Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, United States of America
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
30
|
Guo W, Zhang Y, Luo D, Yuan H. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pretreatment prediction of neoadjuvant chemotherapy response in locally advanced hypopharyngeal cancer. Br J Radiol 2020; 93:20200751. [PMID: 32915647 DOI: 10.1259/bjr.20200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective:The aim of this study was to predict response to neoadjuvant chemotherapy (NAC) in patients with locally advanced hypopharyngeal cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Methods:A retrospective study enrolled 46 diagnosed locally advanced hypopharyngeal cancer. DCE-MRI were performed prior to and after two cycles of NAC. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (Ve), and plasma volume fraction (Kep) were computed from primary tumors. DCE-MRI parameters were used to measure tumor response according to the Response Evaluation Criteria in Solid Tumors criteria (RECIST).Results:After 2 NAC cycles, 30 out of 46 patients were categorized into the responder group, whereas the other 16 were categorized into non-responder group. Compared with the pretreatment value, the post-treatment Ktrans and Kep was significantly lower (P < 0.05), but no significant change in Ve (P > 0.05). Compared with non-responders, a notably higher pretreatment Ktrans, Kep, lower post-treatment Ktrans, higher ΔKtrans and ΔKep were observed in responders (all P < 0.05). While the pretreatment Ve, post-treatment Ve, and ΔVe did not differ significantly (P>0.05) between the two groups. The receiver operating characteristic curve analysis revealed that pretreatment Ktrans of 0.202/min is the most optimal cut-off in predicting response to chemotherapy, resulting in an AUC of 0.837 and corresponding sensitivity and specificity of 76.7%, and 81.1%, respectively.Conclusion:DCE-MRI especially pretreatment Ktrans can potentially predict the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.Advances in knowledge:Few studies of DCE-MRI on hypopharyngeal cancer treated with chemoradiation reported. The results demonstrate that DCE-MRI especially pretreatment Ktrans may be more potential value in predicting the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ya Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dehong Luo
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
31
|
Guo N, Zeng W, Deng H, Hu H, Cheng Z, Yang Z, Jiang S, Duan X, Shen J. Quantitative dynamic contrast-enhanced MR imaging can be used to predict the pathologic stages of oral tongue squamous cell carcinoma. BMC Med Imaging 2020; 20:117. [PMID: 33066760 PMCID: PMC7566024 DOI: 10.1186/s12880-020-00516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To investigate whether quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) pharmacokinetic parameters can be used to predict the pathologic stages of oral tongue squamous cell carcinoma (OTSCC). METHODS For this prospective study, DCE-MRI was performed in participants with OTSCC from May 2016 to June 2017. The pharmacokinetic parameters, including Ktrans, Kep, Ve, and Vp, were derived from DCE-MRI by utilizing a two-compartment extended Tofts model and a three-dimensional volume of interest. The postoperative pathologic stage was determined in each patient based on the 8th AJCC cancer staging manual. The quantitative DCE-MRI parameters were compared between stage I-II and stage III-IV lesions. Logistic regression analysis was used to determine independent predictors of tumor stages, followed by receiver operating characteristic (ROC) analysis to evaluate the predictive performance. RESULTS The mean Ktrans, Kep and Vp values were significantly lower in stage III-IV lesions compared with stage I-II lesions (p = 0.013, 0.005 and 0.011, respectively). Kep was an independent predictor for the advanced stages as determined by univariate and multivariate logistic analysis. ROC analysis showed that Kep had the highest predictive capability, with a sensitivity of 64.3%, a specificity of 82.6%, a positive predictive value of 81.8%, a negative predictive value of 65.5%, and an accuracy of 72.5%. CONCLUSION The quantitative DCE-MRI parameter Kep can be used as a biomarker for predicting pathologic stages of OTSCC.
Collapse
Affiliation(s)
- Na Guo
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Department of Nuclear Medicine, Peking University Third Hospital, No. 49 Huayuan Road North, Beijing, 100191, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Hong Deng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Ziliang Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shuqi Jiang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
32
|
Multiparametric functional MRI and 18F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo)radiation. Eur Radiol 2020; 31:616-628. [PMID: 32851444 PMCID: PMC7813703 DOI: 10.1007/s00330-020-07163-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022]
Abstract
Objectives To assess (I) correlations between diffusion-weighted (DWI), intravoxel incoherent motion (IVIM), dynamic contrast-enhanced (DCE) MRI, and 18F-FDG-PET/CT imaging parameters capturing tumor characteristics and (II) their predictive value of locoregional recurrence-free survival (LRFS) and overall survival (OS) in patients with head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy. Methods Between 2014 and 2018, patients with histopathologically proven HNSCC, planned for curative (chemo) radiotherapy, were prospectively included. Pretreatment clinical, anatomical, and functional imaging parameters (obtained by DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT) were extracted for primary tumors (PT) and lymph node metastases. Correlations and differences between parameters were assessed. The predictive value of LRFS and OS was assessed, performing univariable, multivariable Cox and CoxBoost regression analyses. Results In total, 70 patients were included. Significant correlations between 18F-FDG-PET parameters and DWI-/DCE volume parameters were found (r > 0.442, p < 0.002). The combination of HPV (HR = 0.903), intoxications (HR = 1.065), PT ADCGTV (HR = 1.252), Ktrans (HR = 1.223), and Ve (HR = 1.215) was predictive for LRFS (C-index = 0.546; p = 0.023). N-stage (HR = 1.058), HPV positivity (HR = 0.886), hypopharyngeal tumor location (HR = 1.111), ADCGTV (HR = 1.102), ADCmean (HR = 1.137), D* (HR = 0.862), Ktrans (HR = 1.106), Ve (HR = 1.195), SUVmax (HR = 1.094), and TLG (HR = 1.433) were predictive for OS (C-index = 0.664; p = 0.046). Conclusions Functional imaging parameters, performing DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT, yielded complementary value in capturing tumor characteristics. More specific, intoxications, HPV-negative status, large tumor volume-related parameters, high permeability (Ktrans), and high extravascular extracellular space (Ve) parameters were predictive for adverse locoregional recurrence-free survival and adverse overall survival. Low cellularity (high ADC) and high metabolism (high SUV) were additionally predictive for decreased overall survival. These different predictive factors added to estimated locoregional and overall survival. Key Points • Parameters of DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT were able to capture complementary tumor characteristics. • Multivariable analysis revealed that intoxications, HPV negativity, large tumor volume and high vascular permeability (Ktrans), and extravascular extracellular space (Ve) were complementary predictive for locoregional recurrence. • In addition to predictive parameters for locoregional recurrence, also high cellularity (low ADC) and high metabolism (high SUV) were complementary predictive for overall survival. Electronic supplementary material The online version of this article (10.1007/s00330-020-07163-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Zhang H, Wang H, Hao D, Ge Y, Wan G, Zhang J, Liu S, Zhang Y, Xu D. An MRI-Based Radiomic Nomogram for Discrimination Between Malignant and Benign Sinonasal Tumors. J Magn Reson Imaging 2020; 53:141-151. [PMID: 32776393 DOI: 10.1002/jmri.27298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Preoperative discrimination between malignant and benign sinonasal tumors is important for treatment plan selection. PURPOSE To build and validate a radiomic nomogram for preoperative discrimination between malignant and benign sinonasal tumors. STUDY TYPE Retrospective. POPULATION In all, 197 patients with histopathologically confirmed 84 benign and 113 malignant sinonasal tumors. FIELD STRENGTH/SEQUENCES Fast-spin-echo (FSE) T1 -weighted and fat-suppressed FSE T2 -weighted imaging on a 1.5T and 3.0T MRI. ASSESSMENT T1 and fat-suppressed T2 -weighted images were selected for feature extraction. The least absolute shrinkage selection operator (LASSO) algorithm was applied to establish a radiomic score. Multivariate logistic regression analysis was applied to determine independent risk factors, and the radiomic score was combined to build a radiomic nomogram. The nomogram was assessed in a training dataset (n = 138/3.0T MRI) and tested in a validation dataset (n = 59/1.5T MRI). STATISTICAL TESTS Independent t-test or Wilcoxon's test, chi-square-test, or Fisher's-test, univariate analysis, LASSO, multivariate logistic regression analysis, area under the curve (AUC), Hosmer-Lemeshow test, decision curve, and the Delong test. RESULTS In the validation dataset, the radiomic nomogram could differentiate benign from malignant sinonasal tumors with an AUC of 0.91. There was no significant difference in AUC between the combined radiomic score and radiomic nomogram (P > 0.05), and the radiomic nomogram showed a relatively higher AUC than the combined radiomic score. There was a significant difference in AUC between each two of the following models (the radiomic nomogram vs. the clinical model, all P < 0.001; the combined radiomic score vs. the clinical model, P = 0.0252 and 0.0035, respectively, in the training and validation datasets). The radiomic nomogram outperformed the radiomic scores and clinical model. DATA CONCLUSION The radiomic nomogram combining the clinical model and radiomic score is a simple, effective, and reliable method for patient risk stratification. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Han Zhang
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hexiang Wang
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dapeng Hao
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Guangyao Wan
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhang
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shunli Liu
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Zhang
- The Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deguang Xu
- Huangdao Hospital of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
34
|
Zhang J, Winters K, Kiser K, Baboli M, Kim SG. Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI. PLoS One 2020; 15:e0234520. [PMID: 32520950 PMCID: PMC7286489 DOI: 10.1371/journal.pone.0234520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/26/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose To investigate the validity of contrast kinetic parameter estimates from Active Contrast Encoding (ACE)-MRI against those from conventional Dynamic Contrast-Enhanced (DCE)-MRI for evaluation of tumor treatment response in mouse tumor models. Methods The ACE-MRI method that incorporates measurement of T1 and B1 into the enhancement curve washout region, was implemented on a 7T MRI scanner to measure tracer kinetic model parameters of 4T1 and GL261 tumors with treatment using bevacizumab and 5FU. A portion of the same ACE-MRI data was used for conventional DCE-MRI data analysis with a separately measured pre-contrast T1 map. Tracer kinetic model parameters, such as Ktrans (permeability area surface product) and ve (extracellular space volume fraction), estimated from ACE-MRI were compared with those from DCE-MRI, in terms of correlation and Bland-Altman analyses. Results A three-fold increase of the median Ktrans by treatment was observed in the flank 4T1 tumors by both ACE-MRI and DCE-MRI. In contrast, the brain tumors did not show a significant change by the treatment in either ACE-MRI or DCE-MRI. Ktrans and ve values of the tumors from ACE-MRI were strongly correlated with those from DCE-MRI methods with correlation coefficients of 0.92 and 0.78, respectively, for the median values of 17 tumors. The Bland-Altman plot analysis showed a mean difference of -0.01 min-1 for Ktrans with the 95% limits of agreement of -0.12 min-1 to 0.09 min-1, and -0.05 with -0.37 to 0.26 for ve. Conclusion The tracer kinetic model parameters estimated from ACE-MRI and their changes by treatment closely matched those of DCE-MRI, which suggests that ACE-MRI can be used in place of conventional DCE-MRI for tumor progression monitoring and treatment response evaluation with a reduced scan time.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Kerryanne Winters
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Karl Kiser
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Mehran Baboli
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Sungheon Gene Kim
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Combination of diffusion-weighted imaging and arterial spin labeling at 3.0 T for the clinical staging of nasopharyngeal carcinoma. Clin Imaging 2020; 66:127-132. [PMID: 32480267 DOI: 10.1016/j.clinimag.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To probe the utility of diffusion-weighted imaging (DWI) and 3D arterial spin labeling (ASL) in assessing the clinical stage of nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS This prospective study included sixty-five newly diagnosed NPC patients who underwent DWI and 3D ASL scans on a 3.0-T magnetic resonance imaging (MRI) system. The apparent diffusion coefficient (ADC) and the tumor blood flow (TBF) of NPC were measured. Tumors were classified as low or high T, N and American Joint Committee on Cancer (AJCC) stages. Student's t-test was used to evaluate the differences between tumors with low and high clinical stages. Pearson correlation analyses were performed to determine the correlation between MRI parameters and clinical stages. Receiver operating characteristic (ROC) curves were then used to evaluate diagnostic capability. RESULTS High T stage (T3/4) NPC showed significantly lower ADCmin (P = 0.000) and higher TBFmax (P = 0.003) and TBFmean (P = 0.008) values than low T stage (T1/2) NPC. High N stage (N2/3) NPC showed significantly lower ADCmin values (P = 0.023) than low N stage (N0/1) NPC. High AJCC stage (III/IV) NPC showed significantly lower ADCmin (P = 0.000) and higher TBFmax (P = 0.005) and TBFmean (P = 0.011) values than low AJCC stage (I/II) NPC. ADCmin values showed moderate negative correlations with T stage (r = -0.512, P = 0.000), N stage (r = -0.281, P = 0.023), and AJCC stage (r = -0.494, P = 0.000). TBFmax values showed moderate positive correlations with T stage (r = 0.369, P = 0.003) and AJCC stage (r = 0.346, P = 0.005). Compared with ADCmin and TBFmax alone, the combination of ADCmin and TBFmax improved the accuracy from 72.3% and 75.4% to 78.5%, respectively, for T staging, as well as from 72.3% and 69.2% to 83.1% for AJCC staging. CONCLUSIONS ADCmin and TBFmax values in patients with NPC could help evaluate clinical stages. ADCmin and TBFmax values combined could clearly improve the accuracy in the assessment of AJCC stage.
Collapse
|
36
|
Baboli M, Zhang J, Kim SG. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging. CURRENT PATHOBIOLOGY REPORTS 2019; 7:129-141. [PMID: 33344067 PMCID: PMC7747414 DOI: 10.1007/s40139-019-00204-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article is to review recent technical developments and their clinical applications in cancer imaging quantitative measurement of cellular and vascular properties of the tumors. RECENT FINDINGS Rapid development of fast Magnetic Resonance Imaging (MRI) technologies over last decade brought new opportunities in quantitative MRI methods to measure both cellular and vascular properties of tumors simultaneously. SUMMARY Diffusion MRI (dMRI) and dynamic contrast enhanced (DCE)-MRI have become widely used to assess the tissue structural and vascular properties, respectively. However, the ultimate potential of these advanced imaging modalities has not been fully exploited. The dependency of dMRI on the diffusion weighting gradient strength and diffusion time can be utilized to measure tumor perfusion, cellular structure, and cellular membrane permeability. Similarly, DCE-MRI can be used to measure vascular and cellular membrane permeability along with cellular compartment volume fractions. To facilitate the understanding of these potentially important methods for quantitative cancer imaging, we discuss the basic concepts and recent developments, as well as future directions for further development.
Collapse
Affiliation(s)
- Mehran Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
37
|
Zhang J, Kim SG. Estimation of cellular-interstitial water exchange in dynamic contrast enhanced MRI using two flip angles. NMR IN BIOMEDICINE 2019; 32:e4135. [PMID: 31348580 PMCID: PMC6817382 DOI: 10.1002/nbm.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 05/10/2023]
Abstract
PURPOSE To investigate the feasibility of using multiple flip angles in dynamic contrast enhanced (DCE) MRI to reduce the uncertainty in estimation of intracellular water lifetime (τi ). METHODS Numerical simulation studies were conducted to assess the uncertainty in estimation of τi using dynamic contrast enhanced MRI with one or two flip angles. In vivo experiments with a murine brain tumor model were conducted at 7T using two flip angles. The in vivo data were used to compare τi estimation using the single-flip-angle (SFA) protocol with that using the double-flip-angle (DFA) protocol. Data analysis was conducted using the two-compartment exchange model combined with the three-site-two-exchange model for water exchange. RESULTS In the numerical simulation studies with a range of contrast kinetic parameters and signal-to-noise ratio = 20, the median bias of τi estimation decreased from 72 ms with SFA to 65 ms with DFA, and the corresponding median inter-quartile range reduced from 523 ms to 156 ms. In the in vivo studies, τi estimation with SFA was not successful in most voxels in the tumors, as the estimated τi values reached the upper limit of the parameter range (2 s). In contrast, the estimated τi values with DFA were mostly between 0.2 and 1.5 s and homogeneously distributed spatially across the tumor. The τi estimation with DFA was less sensitive to arterial input function scaling but more sensitive to pre-contrast T1 than the other contrast kinetic parameters. CONCLUSION This study results demonstrate the feasibility of using multiple flip angles to encode the post-contrast time-intensity curve with different weighting of water exchange effect to reduce the uncertainty in τi estimation.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
38
|
Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Liu S. Prognostic Value of the Pretreatment Primary Lesion Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma. Acad Radiol 2019; 26:1473-1482. [PMID: 30772137 DOI: 10.1016/j.acra.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Early identifying the long-term outcome of chemoradiotherapy is helpful for personalized treatment in nasopharyngeal carcinoma (NPC). This study aimed to investigate the prognostic significance of pretreatment quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for NPC. MATERIALS AND METHODS The relationships between the prognosis and pretreatment quantitative DCE-MRI (Ktrans, Kep, Ve, and fpv) values of the primary tumors were analyzed in 134 NPC patients who received chemoradiotherapy. Kaplan-Meier analysis was performed to calculate the local-regional relapse-free survival (LRRFS), local relapse-free survival (LRFS), regional relapse-free survival, distant metastasis-free survival (DMFS), progression-free survival, and overall survival rates. Cox proportional hazards model was used to explore the independent predictors for prognosis. RESULTS The local-failure group had significantly higher Ve (p = 0.033) and fpv values (p = 0.005) than the non-local-failure group. The Ve-high group showed significantly lower LRRFS (p = 0.015) , LRFS (p = 0.013) , DMFS (p = 0.027) and progression-free survival (p = 0.035) rates than the Ve-low group. The fpv-high group exhibited significantly lower LRRFS (p = 0.004) and LRFS (p = 0.005) rates than the fpv-low group. Ve was the independent predictor for LRRFS (p = 0.008), LRFS (p = 0.007), DMFS (p = 0.041), and overall survival (p = 0.022). fpv was the independent indicator for LRRFS (p = 0.003) and LRFS (p = 0.001). CONCLUSION Baseline quantitative DCE-MRI may be valuable in predicting the prognosis for NPC.
Collapse
Affiliation(s)
- Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China.
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Ying Hu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Feiping Li
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| |
Collapse
|
39
|
Stieb S, Kiser K, van Dijk L, Livingstone NR, Elhalawani H, Elgohari B, McDonald B, Ventura J, Mohamed ASR, Fuller CD. Imaging for Response Assessment in Radiation Oncology: Current and Emerging Techniques. Hematol Oncol Clin North Am 2019; 34:293-306. [PMID: 31739950 DOI: 10.1016/j.hoc.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging in radiation oncology is essential for the evaluation of treatment response in tumors and organs at risk. This influences further treatment decisions and could possibly be used to adapt therapy. This review article focuses on the currently used imaging modalities for response assessment in radiation oncology and gives an overview of new and promising techniques within this field.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Kendall Kiser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lisanne van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nadia Roxanne Livingstone
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brigid McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Juan Ventura
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Abdallah Sherif Radwan Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Dong Ji X, Yan S, Xia S, Guo Y, Shen W. Quantitative parameters correlated well with differentiation of squamous cell carcinoma at head and neck: a study of dynamic contrast-enhanced MRI. Acta Radiol 2019; 60:962-968. [PMID: 30458629 DOI: 10.1177/0284185118809543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used for the diagnosis and prognostic assessment of head and neck squamous cell carcinoma (HNSCC). However, no research on grading HNSCC using DCE-MRI has been found. We hypothesize that DCE-MRI can grade the HNSCC non-invasively. Purpose To verify the hypothesis that DCE-MRI can grade the HNSCC non-invasively. Material and Methods Forty-two patients with histopathologically proved HNSCC from September 2013 to February 2016 were retrospectively analyzed. Chi-square test was used to compare patterns of time intensity curves (TICs) between well and poorly differentiated HNSCC. Two-sample t-test was performed to calculate the difference of volume transfer constant (Ktrans), extravascular extracellular volume fraction (Ve), and initial area under the curve (iAUC) between groups. The diagnostic ability and cut-off value were assessed by receiver operator characteristic analysis. Results Most TICs of HNSCC are type III; no difference between well and poorly differentiated HNSCC has been found ( P > 0.05). The value of Ktrans, Ve, and iAUC for well and poorly differentiated HNSCC are (0.218 ± 0.048; 0.383 ± 0.074) min−1, (0.605 ± 0.108; 0.712 ± 0.150), and (27.552 ± 6.238; 43.157 ± 9.148), respectively. Ktrans, Ve, and iAUC are higher in poorly differentiated HNSCC, compared with well differentiated HNSCC ( P < 0.001, 0.013, and < 0.001, respectively). Ktrans has the greatest diagnostic significance with Youden’s index being 0.859 by cut-off value 0.270 min−1. The diagnostic sensitivity and specificity were 95.0% and 90.9%, respectively. Conclusion The Ktrans, Ve, and iAUC of HNSCC can be reliable quantitative parameters for evaluating well and poorly differentiated HNSCC where Ktrans has the highest value.
Collapse
Affiliation(s)
- Xiao Dong Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
- *Equal contributors
| | - Shuo Yan
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
- *Equal contributors
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
| | - Yu Guo
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
| |
Collapse
|
41
|
Wong CK, Chan SC, Ng SH, Hsieh CH, Cheng NM, Yen TC, Liao CT. Textural features on 18F-FDG PET/CT and dynamic contrast-enhanced MR imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma. Medicine (Baltimore) 2019; 98:e16608. [PMID: 31415354 PMCID: PMC6831375 DOI: 10.1097/md.0000000000016608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The utility of multimodality molecular imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma remains unclear. Here, we sought to investigate whether the combination of different molecular imaging parameters may improve outcome prediction in this patient group.Patients with pathologically proven hypopharyngeal carcinoma scheduled to undergo chemoradiotherapy (CRT) were deemed eligible. Besides clinical data, parameters obtained from pretreatment 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed tomography (F-FDG PET/CT), dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), and diffusion-weighted MRI were analyzed in relation to treatment response, recurrence-free survival (RFS), and overall survival (OS).A total of 61 patients with advanced-stage disease were examined. After CRT, 36% of the patients did not achieve a complete response. Total lesion glycolysis (TLG) and texture feature entropy were found to predict treatment response. The transfer constant (K), TLG, and entropy were associated with RFS, whereas K, blood plasma volume (Vp), standardized uptake value (SUV), and entropy were predictors of OS. Different scoring systems based on the sum of PET- or MRI-derived prognosticators enabled patient stratification into distinct prognostic groups (P <.0001). The complete response rate of patients with a score of 2 was significantly lower than those of patients with a score 1 or 0 (14.7% vs 58.9% vs 75.7%, respectively, P = .007, respectively). The combination of PET- and DCE-MRI-derived independent risk factors allowed a better survival stratification than the TNM staging system (P <.0001 vs .691, respectively).Texture features on F-FDG PET/CT and DCE-MRI are clinically useful to predict treatment response and survival in patients with hypopharyngeal carcinoma. Their combined use in prognostic scoring systems may help these patients benefit from tailored treatment and obtain better oncological results.
Collapse
Affiliation(s)
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | | | - Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Nai-Ming Cheng
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung
| | | | - Chun-Ta Liao
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
42
|
Abstract
Advanced neuroimaging techniques are increasingly being implemented in clinical practice as complementary tools to conventional imaging because they can provide crucial functional information about the pathophysiology of a variety of disorders. Therefore, it is important to understand the basic principles underlying them and their role in diagnosis and management. In this review, we will primarily focus on the basic principles and clinical applications of perfusion imaging, diffusion imaging, magnetic resonance spectroscopy, functional MRI, and dual-energy computerized tomography. Our goal is to provide the reader with a basic understanding of these imaging techniques and when they should be used in clinical practice.
Collapse
|
43
|
Elkin R, Nadeem S, LoCastro E, Paudyal R, Hatzoglou V, Lee NY, Shukla-Dave A, Deasy JO, Tannenbaum A. Optimal mass transport kinetic modeling for head and neck DCE-MRI: Initial analysis. Magn Reson Med 2019; 82:2314-2325. [PMID: 31273818 DOI: 10.1002/mrm.27897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Current state-of-the-art models for estimating the pharmacokinetic parameters do not account for intervoxel movement of the contrast agent (CA). We introduce an optimal mass transport (OMT) formulation that naturally handles intervoxel CA movement and distinguishes between advective and diffusive flows. METHOD Ten patients with head and neck squamous cell carcinoma (HNSCC) were enrolled in the study between June 2014 and October 2015 and underwent DCE MRI imaging prior to beginning treatment. The CA tissue concentration information was taken as the input in the data-driven OMT model. The OMT approach was tested on HNSCC DCE data that provides quantitative information for forward flux ( Φ F ) and backward flux ( Φ B ). OMT-derived Φ F was compared with the volume transfer constant for CA, K trans , derived from the Extended Tofts Model (ETM). RESULTS The OMT-derived flows showed a consistent jump in the CA diffusive behavior across the images in accordance with the known CA dynamics. The mean forward flux was 0.0082 ± 0.0091 ( min - 1 ) whereas the mean advective component was 0.0052 ± 0.0086 ( min - 1 ) in the HNSCC patients. The diffusive percentages in forward and backward flux ranged from 8.67% to 18.76% and 12.76% to 30.36%, respectively. The OMT model accounts for intervoxel CA movement and results show that the forward flux ( Φ F ) is comparable with the ETM-derived K trans . CONCLUSIONS This is a novel data-driven study based on optimal mass transport principles applied to patient DCE imaging to analyze CA flow in HNSCC.
Collapse
Affiliation(s)
- Rena Elkin
- Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve LoCastro
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allen Tannenbaum
- Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
44
|
Zhang BT, Zheng Q, Liu L, Zeng YN, Dai YM, Jiang JL, Xue KM. Response Monitoring to Neoadjuvant Chemotherapy in Osteosarcoma Using Dynamic Contrast-Enhanced MR Imaging. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42399-019-00059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Garbajs M, Strojan P, Surlan-Popovic K. Prognostic role of diffusion weighted and dynamic contrast-enhanced MRI in loco-regionally advanced head and neck cancer treated with concomitant chemoradiotherapy. Radiol Oncol 2019; 53:39-48. [PMID: 30840595 PMCID: PMC6411028 DOI: 10.2478/raon-2019-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background In the study, the value of pre-treatment dynamic contrast-enhanced (DCE) and diffusion weighted (DW) MRI-derived parameters as well as their changes early during treatment was evaluated for predicting disease-free survival (DFS) and overall survival (OS) in patients with locoregionally advanced head and neck squamous carcinoma (HNSCC) treated with concomitant chemoradiotherapy (cCRT) with cisplatin. Patients and methods MRI scans were performed in 20 patients with locoregionally advanced HNSCC at baseline and after 10 Grays (Gy) of cCRT. Tumour apparent diffusion coefficient (ADC) and DCE parameters (volume transfer constant [Ktrans], extracellular extravascular volume fraction [ve], and plasma volume fraction [Vp]) were measured. Relative changes in parameters from baseline to 10 Gy were calculated. Univariate and multivariate Cox regression analysis were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify parameters with the best diagnostic performance. Results None of the parameters was identified to predict for DFS. On univariate analysis of OS, lower pre-treatment ADC (p = 0.012), higher pre-treatment Ktrans (p = 0.026), and higher reduction in Ktrans (p = 0.014) from baseline to 10 Gy were identified as significant predictors. Multivariate analysis identified only higher pre-treatment Ktrans (p = 0.026; 95% CI: 0.000-0.132) as an independent predictor of OS. At ROC curve analysis, pre-treatment Ktrans yielded an excellent diagnostic accuracy (area under curve [AUC] = 0.95, sensitivity 93.3%; specificity 80 %). Conclusions In our group of HNSCC patients treated with cisplatin-based cCRT, pre-treatment Ktrans was found to be a good predictor of OS.
Collapse
Affiliation(s)
- Manca Garbajs
- Institute of Clinical Radiology, University Medical CentreLjubljana, Slovenia
- Manca Garbajs, M.D., Institute of Clinical Radiology, University Medical Centre, Zaloška c. 7, SI-1000 Ljubljana, Slovenia.
Phone: + 386 40 212 226
| | - Primoz Strojan
- Division of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | | |
Collapse
|
46
|
Martens RM, Noij DP, Koopman T, Zwezerijnen B, Heymans M, de Jong MC, Hoekstra OS, Vergeer MR, de Bree R, Leemans CR, de Graaf P, Boellaard R, Castelijns JA. Predictive value of quantitative diffusion-weighted imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma treated by (chemo)radiotherapy. Eur J Radiol 2019; 113:39-50. [PMID: 30927958 DOI: 10.1016/j.ejrad.2019.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE In head and neck squamous cell carcinoma (HNSCC) (chemo)radiotherapy is increasingly used to preserve organ functionality. The purpose of this study was to identify predictive pretreatment DWI- and 18F-FDG-PET/CT-parameters for treatment failure (TF), locoregional recurrence (LR) and death in HNSCC patients treated by (chemo)radiotherapy. MATERIALS AND METHODS We retrospectively included 134 histologically proven HNSCC patients treated with (chemo)radiotherapy between 2012-2017. In 58 patients pre-treatment DWI and 18F-FDG-PET/CT were performed, in 31 patients DWI only and in 45 patients 18F-FDG-PET/CT only. Primary tumor (PT) and largest lymph node (LN) metastasis were quantitatively assessed for TF, LR and death. Multivariate analysis was performed for 18F-FDG-PET/CT and DWI separately and thereafter combined. In patients with both imaging modalities, positive and negative predictive value in TF and differences in LR and death, were assessed. RESULTS Mean follow-up was 25.6 months (interquartile-range; 14.0-37.1 months). Predictors of treatment failure, corrected for TNM-stage and HPV-status, were SUVmax-PT, ADCmax-PT, total lesion glycolysis (TLG-LN), ADCp20-LN (P = 0.049, P = 0.024, P = 0.031, P = 0.047, respectively). TLG-PT was predictive for LR (P = 0.003). Metabolic active tumor volume (MATV-PT) (P = 0.003), ADCGTV-PT (P < 0.001), ADCSD (P = 0.048) were significant predictors for death. In patients with both imaging modalities SUVmax-PT remained predictive for treatment failure (P = 0.049), TLG-LN for LR (P = 0.003) and ADCGTV-PT for death (P < 0.001). Higher predictive value for treatment failure was found for the combination of SUVmax-PT and ADCmax-PT, compared to either one separately. CONCLUSION Both DWI- and 18F-FDG-PET/CT-parameters appear to have predictive value for treatment failure, locoregional recurrence and death. Combining SUVmax-PT and ADCmax-PT resulted in better prediction of treatment failure compared to single parameter assessment.
Collapse
Affiliation(s)
- Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| | - Daniel P Noij
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Koopman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ben Zwezerijnen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Martijn Heymans
- Department of Epidemiology and Biostatistics, the Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marije R Vergeer
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Remco de Bree
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands; Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C René Leemans
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Horger M, Fallier-Becker P, Thaiss WM, Sauter A, Bösmüller H, Martella M, Preibsch H, Fritz J, Nikolaou K, Kloth C. Is There a Direct Correlation Between Microvascular Wall Structure and k-Trans Values Obtained From Perfusion CT Measurements in Lymphomas? Acad Radiol 2019; 26:247-256. [PMID: 29731419 DOI: 10.1016/j.acra.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. MATERIALS AND METHODS Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m2), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. RESULTS Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BFdeconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BVdeconvolution (P < .005). Mean k-transPatlak correlated strongly with mean k-transdeconvolution (r = 0.939, P = .001), and both correlated with mean BFdeconvolution (P = .001, r = 0.748), max BFdeconvolution (P = .028, r = 0.564), mean BVdeconvolution (P = .001, r = 0.752), and max BVdeconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-transdeconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-transPatlak (P = .041, r = 0.686) and mean BFdeconvolution (P = .038, r = 0.695). CONCLUSION k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs.
Collapse
Affiliation(s)
- Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | | | - Wolfgang M Thaiss
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Alexander Sauter
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Hans Bösmüller
- Institute of Pathology, University Hospital Tuebingen, Tübingen, Germany
| | - Manuela Martella
- Institute of Pathology, University Hospital Tuebingen, Tübingen, Germany
| | - Heike Preibsch
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Jan Fritz
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
48
|
Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med 2019; 81:140-152. [PMID: 30058079 PMCID: PMC6258350 DOI: 10.1002/mrm.27357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Li Feng
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Ricardo Otazo
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
49
|
Ghany HSA, Samra MFA, El-Saieed M, Gerges AS, Hasan EI, Rahman AA, Toni ND. Role of DW-MRI and ADC value in monitoring therapy of head and neck squamous cell carcinoma. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2018. [DOI: 10.1016/j.ejrnm.2018.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Press RH, Shu HKG, Shim H, Mountz JM, Kurland BF, Wahl RL, Jones EF, Hylton NM, Gerstner ER, Nordstrom RJ, Henderson L, Kurdziel KA, Vikram B, Jacobs MA, Holdhoff M, Taylor E, Jaffray DA, Schwartz LH, Mankoff DA, Kinahan PE, Linden HM, Lambin P, Dilling TJ, Rubin DL, Hadjiiski L, Buatti JM. The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. Int J Radiat Oncol Biol Phys 2018; 102:1219-1235. [PMID: 29966725 PMCID: PMC6348006 DOI: 10.1016/j.ijrobp.2018.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Modern radiation therapy is delivered with great precision, in part by relying on high-resolution multidimensional anatomic imaging to define targets in space and time. The development of quantitative imaging (QI) modalities capable of monitoring biologic parameters could provide deeper insight into tumor biology and facilitate more personalized clinical decision-making. The Quantitative Imaging Network (QIN) was established by the National Cancer Institute to advance and validate these QI modalities in the context of oncology clinical trials. In particular, the QIN has significant interest in the application of QI to widen the therapeutic window of radiation therapy. QI modalities have great promise in radiation oncology and will help address significant clinical needs, including finer prognostication, more specific target delineation, reduction of normal tissue toxicity, identification of radioresistant disease, and clearer interpretation of treatment response. Patient-specific QI is being incorporated into radiation treatment design in ways such as dose escalation and adaptive replanning, with the intent of improving outcomes while lessening treatment morbidities. This review discusses the current vision of the QIN, current areas of investigation, and how the QIN hopes to enhance the integration of QI into the practice of radiation oncology.
Collapse
Affiliation(s)
- Robert H. Press
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hui-Kuo G. Shu
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Hyunsuk Shim
- Dept. of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - James M. Mountz
- Dept. of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Ella F. Jones
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Nola M. Hylton
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA
| | - Elizabeth R. Gerstner
- Dept. of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Lori Henderson
- Cancer Imaging Program, National Cancer Institute, Bethesda, MD
| | | | - Bhadrasain Vikram
- Radiation Research Program/Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD
| | - Michael A. Jacobs
- Dept. of Radiology and Radiological Science, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore MD
| | - Edward Taylor
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A. Jaffray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - David A. Mankoff
- Dept. of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Philippe Lambin
- Dept. of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas J. Dilling
- Dept. of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - John M. Buatti
- Dept. of Radiation Oncology, University of Iowa, Iowa City, IA
| |
Collapse
|