1
|
Chernysh AA, Loftus DH, Zheng B, Arditi J, Leary OP, Fridley JS. Utility of Diffusion Tensor Imaging for Prognosis and Management of Cervical Spondylotic Myelopathy: A PRISMA Review. World Neurosurg 2024; 190:88-98. [PMID: 38986943 DOI: 10.1016/j.wneu.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE As advances are made in quantitative magnetic resonance imaging, specifically diffusion tensor imaging, researchers have investigated its potential to serve as a biomarker of disease or prognosticator for postoperative recovery in the management of cervical spondylotic myelopathy. Here, we narratively review the current state of the emerging literature, describing areas of consensus and disagreement. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we queried 2 large databases for original manuscripts published in English and systematically produced a narrative review of the use of diffusion tensor imaging in the management of cervical spondylotic myelopathy. RESULTS Of the 437 manuscripts initially returned in our query, 29 met the final inclusion criteria, and data were extracted regarding diffusion tensor imaging indices and their relationships with clinical outcomes following surgery. Preoperative fractional anisotropy was most commonly found to correlate closely with postsurgical clinical outcomes, though results were mixed. CONCLUSIONS Preoperative fractional anisotropy most frequently and best correlates with functional outcomes following surgery for cervical spondylotic myelopathy, according to a review of the current literature. The findings were not universal and at times contradictory, highlighting the need for high-quality future investigations to better define the utility of diffusion tensor imaging in spinal disease.
Collapse
Affiliation(s)
- Alexander A Chernysh
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA.
| | - David H Loftus
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA
| | - Bryan Zheng
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA
| | - Jonathan Arditi
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA
| | - Owen P Leary
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA
| | - Jared S Fridley
- Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Neurosurgery, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Li J, Tian XN, Zhao BG, Wang N, Zhang YJ, Zhang L. Diagnostic value of cervical spine ZOOM-DWI in cervical spondylotic myelopathy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1223-1229. [PMID: 38231389 DOI: 10.1007/s00586-023-08110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE To investigate the clinical application value of the non-shared incentive diffusion imaging technique (ZOOM-DWI) diagnoses of cervical spondylotic myelopathy (CSM). METHODS 49 CSM patients who presented from January 2022 to December 2022 were selected as the patient group, and 50 healthy volunteers are recruited as the control group. All subjects underwent conventional MRI and ZOOM-DWI of the cervical spine and neurologic mJOA scores in patients with CSM. The spinal ADC values of segments C2-3, C4-5, C5-6, and C6-7 are measured and analyzed in all subjects, with C5-6 being the most severe level of spinal canal compression in the patient group. In addition, the study also analyzes and compares the relationship between the C5-6 ADC value and mJOA score in the patient group. RESULTS The mean ADC shows no significantly different levels in the control group. Among the ADC values at each measurement level in the patient group, except for C4-5 and C6-7 segments are not statistically significant, the remaining pair-wise comparisons all show statistically significant differences (F = 24.368, p < 0.001). And these individuals have the highest ADC value at C5-6. The C5-6 ADC value in the patient group is significantly higher compared with the ADC value in the control group (t = 9.414, p < 0.001), with statistical significance. The ADC value at the patient stenosis shows a significant negative correlation with the mJOA score (r = -0.493, p < 0.001). CONCLUSION Cervical ZOOM-DWI can be applied to diagnose CSM, and spinal ADC value can use as reliable imaging data for diagnosing cervical myelopathy.
Collapse
Affiliation(s)
- Jia Li
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Xiao-Nan Tian
- Department of CTMRI, The Third Hospital of HeBei Medical University, Shijiazhuang, 050051, China
| | - Bao-Gen Zhao
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Ning Wang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China
| | - Yu-Jin Zhang
- Department of CTMRI, The Third Hospital of HeBei Medical University, Shijiazhuang, 050051, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang City, 050000, China.
| |
Collapse
|
3
|
Koch KM, Nencka AS, Klein A, Wang M, Kurpad S, Vedantam A, Budde M. Diffusion-weighted MRI of the spinal cord in cervical spondylotic myelopathy after instrumented fusion. Front Neurol 2023; 14:1172833. [PMID: 37273696 PMCID: PMC10236479 DOI: 10.3389/fneur.2023.1172833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction This study investigated tissue diffusion properties within the spinal cord of individuals treated for cervical spondylotic myelopathy (CSM) using post-decompression stabilization hardware. While previous research has indicated the potential of diffusion-weighted MRI (DW-MRI) markers of CSM, the metallic implants often used to stabilize the decompressed spine hamper conventional DW-MRI. Methods Utilizing recent developments in DW-MRI metal-artifact suppression technologies, imaging data was acquired from 38 CSM study participants who had undergone instrumented fusion, as well as asymptomatic (non-instrumented) control participants. Apparent diffusion coefficients were determined in axial slice sections and split into four categories: a) instrumented levels, b) non-instrumented CSM levels, c) adjacent-segment (to instrumentation) CSM levels, and d) non-instrumented control levels. Multi-linear regression models accounting for age, sex, and body mass index were used to investigate ADC measures within each category. Furthermore, the cord diffusivity within CSM subjects was correlated with symptom scores and the duration since fusion procedures. Results ADC measures of the spinal cord in CSM subjects were globally reduced relative to control subjects (p = 0.005). In addition, instrumented levels within the CSM subjects showed reduced diffusivity relative to controls (p = 0.003), while ADC within non-instrumented CSM levels did not statistically deviate from control levels (p = 0.107). Discussion Multi-spectral DW-MRI technology can be effectively employed to evaluate cord diffusivity near fusion hardware in subjects who have undergone surgery for CSM. Leveraging this advanced technology, this study had identified significant reductions in cord diffusivity, relative to control subjects, in CSM patients treated with conventional metallic fusion instrumentation.
Collapse
Affiliation(s)
- Kevin M. Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew S. Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew Klein
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marjorie Wang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Liu Z, Bian B, Wang G, Tian C, Lv Z, Shao Z, Li D. Evaluation of microstructural changes in spinal cord of patients with degenerative cervical myelopathy by diffusion kurtosis imaging and investigate the correlation with JOA score. BMC Neurol 2020; 20:185. [PMID: 32404188 PMCID: PMC7218841 DOI: 10.1186/s12883-020-01752-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background To explore the feasibility of the metrics of diffusion kurtosis imaging (DKI) for investigations of the microstructural changes of spinal cord injury in patients with degenerative cervical myelopathy (DCM) and the correlation between Japan Orthopaedic Association (JOA) scores and DKI metrics. Methods Fifty-seven patients with DCM and 38 healthy volunteers underwent 3.0 T magnetic resonance (MR) imaging with routine MRI sequences and DKI from echo-planar imaging sequence. Based on the JOA score, DCM patients were divided into four subgroups. DKI metrics of the DCM group and control group were obtained and compared, separately for the white matter (WM) and the gray matter (GM). Results The FA values in WM were significantly lower (P = 0.020) in the DCM group than in the control group. The MK values in GM were lower (P = 0.011) in the DCM group than in the control group. The MD values in WM were significantly higher (P = 0.010) in the DCM group than in the control group. In GM, the JOA score was positively correlated with the MK values (r = 0.768, P < 0.05). In the WM, the JOA score was positively correlated with the FA values (r = 0.612, P < 0.05). Conclusion DKI provides quantitive evaluation to the characters of microstructure of the spinal cord damage in patients with DCM compared to conventional MR. MK values can reflect microstructural abnormalities of gray matter of the cervical spinal cord and provide more information beyond that obtained with routine diffusion metrics. In addition, MK values of GM and FA values of WM may as a be highly sensitive biomarker for the degree of cervical spinal cord damage.
Collapse
Affiliation(s)
- Zhuohang Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Bingyang Bian
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Gang Wang
- Department of Orthopedics, The Third Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Cheukying Tian
- Icahn School of Medicine at Mount Sinai, New York, 10001, USA
| | - Zhenshan Lv
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhiqing Shao
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
5
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Ganau M, Holly LT, Mizuno J, Fehlings MG. Future Directions and New Technologies for the Management of Degenerative Cervical Myelopathy. Neurosurg Clin N Am 2018; 29:185-193. [DOI: 10.1016/j.nec.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Guan L, Chen X, Hai Y, Ma X, He L, Wang G, Yuan C, Guo H. High-resolution diffusion tensor imaging in cervical spondylotic myelopathy: a preliminary follow-up study. NMR IN BIOMEDICINE 2017; 30:e3769. [PMID: 28703331 DOI: 10.1002/nbm.3769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging is a promising technique as it can provide microstructural tissue information and thus potentially show viable changes in spinal cord. However, the traditional single-shot imaging method is limited as a result of various image artifacts. In order to improve measurement accuracy, we used a newly developed, multi-shot, high-resolution, diffusion tensor imaging (DTI) method to investigate diffusion metric changes and compare them with T2 -weighted (T2W) images before and after decompressive surgery for cervical spondylotic myelopathy (CSM). T2W imaging, single-shot DTI and multi-shot DTI were employed to scan seven patients with CSM before and 3 months after decompressive surgery. High signal intensities were scored using the T2 W images. DTI metrics, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were quantified and compared pre- and post-surgery. In addition, the relationship between imaging metrics and neurological assessments was examined. The reproducibility of multi-shot DTI was also assessed in 10 healthy volunteers. Post-surgery, the mean grade of cervical canal stenosis was reduced from grade 3 to normal after 3 months. Compared with single-shot DTI, multi-shot DTI provided better images with lower artifact levels, especially following surgery, as a result of reduced artifacts from metal implants. The new method also showed acceptable reproducibility. Both FA and RD values from the new acquisition showed significant differences post-surgery (FA, p = 0.026; RD, p = 0.048). These changes were consistent with neurological assessments. In contrast, T2W images did not show significant changes before and after surgery. Multi-shot diffusion imaging showed improved image quality over single-shot DWI, and presented superior performance in diagnosis and recovery monitoring for patients with CSM compared with T2W imaging. DTI metrics can reflect the pathological conditions of spondylotic spinal cord quantitatively and may serve as a sensitive biomarker for potential CSM management.
Collapse
Affiliation(s)
- Li Guan
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guangzhi Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Roth CJ, Angevine PD, Aulino JM, Berger KL, Choudhri AF, Fries IB, Holly LT, Kendi ATK, Kessler MM, Kirsch CF, Luttrull MD, Mechtler LL, O'Toole JE, Sharma A, Shetty VS, West OC, Cornelius RS, Bykowski J. ACR Appropriateness Criteria Myelopathy. J Am Coll Radiol 2015; 13:38-44. [PMID: 26653797 DOI: 10.1016/j.jacr.2015.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Patients presenting with myelopathic symptoms may have a number of causative intradural and extradural etiologies, including disc degenerative diseases, spinal masses, infectious or inflammatory processes, vascular compromise, and vertebral fracture. Patients may present acutely or insidiously and may progress toward long-term paralysis if not treated promptly and effectively. Noncontrast CT is the most appropriate first examination in acute trauma cases to diagnose vertebral fracture as the cause of acute myelopathy. In most nontraumatic cases, MRI is the modality of choice to evaluate the location, severity, and causative etiology of spinal cord myelopathy, and predicts which patients may benefit from surgery. Myelopathy from spinal stenosis and spinal osteoarthritis is best confirmed without MRI intravenous contrast. Many other myelopathic conditions are more easily visualized after contrast administration. Imaging performed should be limited to the appropriate spinal levels, based on history, physical examination, and clinical judgment. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals, and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Peter D Angevine
- Columbia University Medical Center, New York, New York, American Association of Neurological Surgeons/Congress of Neurological Surgeons
| | | | | | - Asim F Choudhri
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ian Blair Fries
- Bone, Spine and Hand Surgery, Chartered, Brick, New Jersey, American Academy of Orthopaedic Surgeons
| | - Langston T Holly
- University of California Los Angeles, Los Angeles, California, American Association of Neurological Surgeons/Congress of Neurological Surgeons
| | | | - Marcus M Kessler
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | - Laszlo L Mechtler
- Dent Neurologic Institute, Amherst, New York, American Academy of Neurology
| | - John E O'Toole
- Rush University, Chicago, Illinois, American Association of Neurological Surgeons/Congress of Neurological Surgeons
| | - Aseem Sharma
- Mallinckrodt Institute of Radiology, Saint Louis, Missouri
| | | | | | | | - Julie Bykowski
- University of California San Diego Health Center, San Diego, California
| |
Collapse
|
9
|
Ellingson BM, Salamon N, Woodworth DC, Holly LT. Correlation between degree of subvoxel spinal cord compression measured with super-resolution tract density imaging and neurological impairment in cervical spondylotic myelopathy. J Neurosurg Spine 2015; 22:631-8. [PMID: 25746116 DOI: 10.3171/2014.10.spine14222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to explore the use of super-resolution tract density images derived from probabilistic diffusion tensor imaging (DTI) tractography of the spinal cord as an imaging surrogate for microstructural integrity and functional impairment in patients with cervical spondylosis. METHODS Structural MRI and DTI images were collected for 27 patients with cervical spondylosis with (n= 21) and without (n= 6) functional impairment as defined by the modified Japanese Orthopaedic Association Scale (mJOA). DTI was performed axially through the site of compression in a total of 20 directions with 10 averages. Probabilistic tractography was performed at 0.5-mm isotropic spatial resolution using the streamline technique combined with constrained spherical deconvolution. The following measurements were calculated for each patient: maximum tract density at the site of compression, average tract density in rostral normal-appearing spinal cord, and the ratio of maximum density to normal density. RESULTS Compared with normal tissue, the site of compression exhibited elevated fiber tract density in all patients, and a higher fiber tract density was also noted in focal areas at the site of compression in patients with functional impairment. There was a strong negative correlation between maximum tract density and mJOA score (R(2)= 0.6324, p < 0.0001) and the ratio of maximum tract density to normal tract density (R(2)= 0.6647, p < 0.0001). When grouped according to severity of neurological impairment (asymptomatic, mJOA score of 18; mild, mJOA score of 15-17; moderate, mJOA score of 11-14; and severe, mJOA score < 11), the results showed a significant difference in the ratio between severe and both no impairment (p= 0.0009) and any impairment (p= 0.036). A ratio of maximum fiber tract density at the site of compression to fiber tract density at C-2 greater than 1.45 had 82% sensitivity and 70% specificity for identifying patients with moderate to severe impairment (ROC AUC= 0.8882, p= 0.0009). CONCLUSIONS These results support the use of DTI as a surrogate for determining spinal cord integrity in patients with cervical spondylosis. Probabilistic tractography provides spinal cord microstructural information that can help discern clinical status in cervical spondylosis patients with varying degrees of neurological impairment.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Departments of 1 Radiological Sciences.,2Biomedical Physics.,3Bioengineering, and
| | | | | | - Langston T Holly
- 4Neurosurgery and Orthopaedics, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
10
|
Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2014; 39:E615-22. [PMID: 24583723 DOI: 10.1097/brs.0000000000000288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study on a series of consecutive patients. OBJECTIVE To investigate the use of diffusion tensor imaging (DTI) and orientation entropy in level localization in patients diagnosed with multilevel cervical spondylotic myelopathy (CSM). SUMMARY OF BACKGROUND DATA Multilevel CSM presents complex neurological signs that make level localization difficult. DTI is recently found to be able to assess the microstructural changes of the white matter caused by cord compression. METHODS Sixteen patients with CSM with multilevel compression were recruited. The level(s) responsible for the clinical symptoms were determined by detailed neurological examination, T2-weighted (T2W) magnetic resonance imaging (MRI), and DTI. On T2W MRI, anterior-posterior compression ratio and increased signal intensities were used to determine the affected level(s). The level diagnosis results from T2W MRI, increased signal intensities, DTI, and combination method were correlated to that of neurological examination on a level-to-level basis, respectively. The accuracy, sensitivity, and specificity were calculated. RESULTS When correlated with the clinical level determination, the weighted orientation entropy-based DTI analysis was found to have higher accuracy (82.76% vs. 75.86%) and sensitivity (84.62% vs. 76.92%) than those of the anterior-posterior compression ratio. The increased signal intensities have the highest specificity (100.00%) but the lowest accuracy (58.62%) and sensitivity (53.85%). When combined with the level diagnosis result of wOE with that of anterior-posterior compression ratio, it demonstrated the highest accuracy and sensitivity that were 93.10% and 96.15%, respectively, and equal specificity (66.67%) with using them individually. CONCLUSION DTI can be a useful tool to determine the pathological spinal cord levels in multilevel CSM. This information from orientation entropy-based DTI analysis, in addition to conventional MRI and clinical neurological assessment, should help spine surgeons in deciding the optimal surgical strategy.
Collapse
|
11
|
Hori M, Tsutsumi S, Yasumoto Y, Ito M, Suzuki M, Tanaka FS, Kyogoku S, Nakamura M, Tabuchi T, Fukunaga I, Suzuki Y, Kamagata K, Masutani Y, Aoki S. Cervical spondylosis: Evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. Magn Reson Imaging 2014; 32:428-32. [PMID: 24602824 DOI: 10.1016/j.mri.2014.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI). METHODS We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter. RESULTS Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60±0.18 vs. 0.73±0.13, P=0.0005, Wilcoxon's signed rank test). CONCLUSIONS MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yukimasa Yasumoto
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Masanori Ito
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumine S Tanaka
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinsuke Kyogoku
- Department of Radiology, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | | | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan; Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuriko Suzuki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan; Philips Electronics Japan, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Faro SH, Mohamed FB, Helpern JA, Jensen JH, Thulborn KR, Atkinson IC, Sair HI, Mikulis DJ. Hot topics in functional neuroradiology. AJNR Am J Neuroradiol 2013; 34:2241-9. [PMID: 24136644 DOI: 10.3174/ajnr.a3721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Functional neuroradiology represents a relatively new and ever-growing subspecialty in the field of neuroradiology. Neuroradiology has evolved beyond anatomy and basic tissue signal characteristics and strives to understand the underlying physiologic processes of central nervous system disease. The American Society of Functional Neuroradiology sponsors a yearly educational and scientific meeting, and the educational committee was asked to suggest a few cutting-edge functional neuroradiology techniques (hot topics). The following is a review of several of these topics and includes "Diffusion Tensor Imaging of the Pediatric Spinal Cord"; "Diffusional Kurtosis Imaging"; "From Standardization to Quantification: Beyond Biomarkers toward Bioscales as Neuro MR Imaging Surrogates of Clinical End Points"; Resting-State Functional MR Imaging"; and "Current Use of Cerebrovascular Reserve Imaging."
Collapse
|
13
|
Ellingson BM, Salamon N, Holly LT. Advances in MR imaging for cervical spondylotic myelopathy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 24 Suppl 2:197-208. [PMID: 23917647 DOI: 10.1007/s00586-013-2915-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE To outline the pathogenesis of cervical spondylotic myelopathy (CSM), the correlative abnormalities observed on standard magnetic resonance imaging (MRI), the biological implications and current status of diffusion tensor imaging (DTI), and MR spectroscopy (MRS) as clinical tools, and future directions of MR technology in the management of CSM patients. METHODS A systematic review of the pathogenesis and current state-of-the-art in MR imaging technology for CSM was performed. RESULTS CSM is caused by progressive, degenerative, vertebral column abnormalities that result in spinal cord damage related to both primary mechanical and secondary biological injuries. The T2 signal change on conventional MRI is most commonly associated with neurological deficits, but tends not to be a sensitive predictor of recovery of function. DTI and MRS show altered microstructure and biochemistry that reflect patient-specific pathogenesis. CONCLUSION Advanced imaging techniques, including DTI and MRS, show higher sensitivity to microstructural and biochemical changes within the cord, and may aid in management of CSM patients.
Collapse
|
14
|
Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I. The current state-of-the-art of spinal cord imaging: applications. Neuroimage 2013; 84:1082-93. [PMID: 23859923 DOI: 10.1016/j.neuroimage.2013.07.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022] Open
Abstract
A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small crosssectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.
Collapse
Affiliation(s)
- C A Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, London, England, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|