1
|
Afnan J, Cai Z, Lina JM, Abdallah C, Delaire E, Avigdor T, Ros V, Hedrich T, von Ellenrieder N, Kobayashi E, Frauscher B, Gotman J, Grova C. EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy. Hum Brain Mapp 2024; 45:e26720. [PMID: 38994740 PMCID: PMC11240147 DOI: 10.1002/hbm.26720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| | - Tamir Avigdor
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria Ros
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
| | - Nicolas von Ellenrieder
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Varatharajah Y, Berry B, Cimbalnik J, Kremen V, Van Gompel J, Stead M, Brinkmann B, Iyer R, Worrell G. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. J Neural Eng 2018; 15:046035. [PMID: 29855436 PMCID: PMC6108188 DOI: 10.1088/1741-2552/aac960] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE An ability to map seizure-generating brain tissue, i.e. the seizure onset zone (SOZ), without recording actual seizures could reduce the duration of invasive EEG monitoring for patients with drug-resistant epilepsy. A widely-adopted practice in the literature is to compare the incidence (events/time) of putative pathological electrophysiological biomarkers associated with epileptic brain tissue with the SOZ determined from spontaneous seizures recorded with intracranial EEG, primarily using a single biomarker. Clinical translation of the previous efforts suffers from their inability to generalize across multiple patients because of (a) the inter-patient variability and (b) the temporal variability in the epileptogenic activity. APPROACH Here, we report an artificial intelligence-based approach for combining multiple interictal electrophysiological biomarkers and their temporal characteristics as a way of accounting for the above barriers and show that it can reliably identify seizure onset zones in a study cohort of 82 patients who underwent evaluation for drug-resistant epilepsy. MAIN RESULTS Our investigation provides evidence that utilizing the complementary information provided by multiple electrophysiological biomarkers and their temporal characteristics can significantly improve the localization potential compared to previously published single-biomarker incidence-based approaches, resulting in an average area under ROC curve (AUC) value of 0.73 in a cohort of 82 patients. Our results also suggest that recording durations between 90 min and 2 h are sufficient to localize SOZs with accuracies that may prove clinically relevant. SIGNIFICANCE The successful validation of our approach on a large cohort of 82 patients warrants future investigation on the feasibility of utilizing intra-operative EEG monitoring and artificial intelligence to localize epileptogenic brain tissue. Broadly, our study demonstrates the use of artificial intelligence coupled with careful feature engineering in augmenting clinical decision making.
Collapse
Affiliation(s)
- Yogatheesan Varatharajah
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Song Y, Torres RA, Garcia S, Frometa Y, Bae J, Deshmukh A, Lin WC, Zheng Y, Riera JJ. Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy. IEEE Trans Biomed Eng 2016; 63:97-110. [DOI: 10.1109/tbme.2015.2461496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Tousseyn S, Dupont P, Goffin K, Sunaert S, Van Paesschen W. Correspondence between large-scale ictal and interictal epileptic networks revealed by single photon emission computed tomography (SPECT) and electroencephalography (EEG)-functional magnetic resonance imaging (fMRI). Epilepsia 2015; 56:382-92. [DOI: 10.1111/epi.12910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Tousseyn
- Laboratory for Epilepsy Research; UZ Leuven & KU Leuven; Leuven Belgium
- Medical Imaging Research Center; UZ Leuven & KU Leuven; Leuven Belgium
| | - Patrick Dupont
- Laboratory for Epilepsy Research; UZ Leuven & KU Leuven; Leuven Belgium
- Medical Imaging Research Center; UZ Leuven & KU Leuven; Leuven Belgium
- Laboratory for Cognitive Neurology; UZ Leuven & KU Leuven; Leuven Belgium
| | - Karolien Goffin
- Department of Nuclear Medicine; UZ Leuven & KU Leuven; Leuven Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center; UZ Leuven & KU Leuven; Leuven Belgium
- Department of Radiology; UZ Leuven & KU Leuven; Leuven Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research; UZ Leuven & KU Leuven; Leuven Belgium
- Medical Imaging Research Center; UZ Leuven & KU Leuven; Leuven Belgium
| |
Collapse
|
6
|
Tousseyn S, Dupont P, Goffin K, Sunaert S, Van Paesschen W. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds. Front Neurol 2014; 5:131. [PMID: 25101049 PMCID: PMC4101337 DOI: 10.3389/fneur.2014.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ.
Collapse
Affiliation(s)
- Simon Tousseyn
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Patrick Dupont
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Laboratory for Cognitive Neurology, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Karolien Goffin
- Department of Nuclear Medicine, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium ; Radiology Department, UZ Leuven and KU Leuven , Leuven , Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, UZ Leuven and KU Leuven , Leuven , Belgium ; Medical Imaging Research Center, UZ Leuven and KU Leuven , Leuven , Belgium
| |
Collapse
|
7
|
Centeno M, Carmichael DW. Network Connectivity in Epilepsy: Resting State fMRI and EEG-fMRI Contributions. Front Neurol 2014; 5:93. [PMID: 25071695 PMCID: PMC4081640 DOI: 10.3389/fneur.2014.00093] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of evidence pointing toward large-scale networks underlying the core phenomena in epilepsy, from seizure generation to cognitive dysfunction or response to treatment. The investigation of networks in epilepsy has become a key concept to unlock a deeper understanding of the disease. Functional imaging can provide valuable information to characterize network dysfunction; in particular resting state fMRI (RS-fMRI), which is increasingly being applied to study brain networks in a number of diseases. In patients with epilepsy, network connectivity derived from RS-fMRI has found connectivity abnormalities in a number of networks; these include the epileptogenic, cognitive and sensory processing networks. However, in majority of these studies, the effect of epileptic transients in the connectivity of networks has been neglected. EEG–fMRI has frequently shown networks related to epileptic transients that in many cases are concordant with the abnormalities shown in RS studies. This points toward a relevant role of epileptic transients in the network abnormalities detected in RS-fMRI studies. In this review, we summarize the network abnormalities reported by these two techniques side by side, provide evidence of their overlapping findings, and discuss their significance in the context of the methodology of each technique. A number of clinically relevant factors that have been associated with connectivity changes are in turn associated with changes in the frequency of epileptic transients. These factors include different aspects of epilepsy ranging from treatment effects, cognitive processes, or transition between different alertness states (i.e., awake–sleep transition). For RS-fMRI to become a more effective tool to investigate clinically relevant aspects of epilepsy it is necessary to understand connectivity changes associated with epileptic transients, those associated with other clinically relevant factors and the interaction between them, which represents a gap in the current literature. We propose a framework for the investigation of network connectivity in patients with epilepsy that can integrate epileptic processes that occur across different time scales such as epileptic transients and disease duration and the implications of this approach are discussed.
Collapse
Affiliation(s)
- Maria Centeno
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| | - David W Carmichael
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| |
Collapse
|
8
|
Neuroimaging of epilepsy: lesions, networks, oscillations. Clin Neuroradiol 2014; 24:5-15. [PMID: 24424576 DOI: 10.1007/s00062-014-0284-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.
Collapse
|
9
|
Rummel C, Verma RK, Schöpf V, Abela E, Hauf M, Berruecos JFZ, Wiest R. Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci 2013; 7:214. [PMID: 23734119 PMCID: PMC3661994 DOI: 10.3389/fnhum.2013.00214] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/06/2013] [Indexed: 12/04/2022] Open
Abstract
In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.
Collapse
Affiliation(s)
- Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital – Bern University Hospital, University of BernSwitzerland
| | - Rajeev Kumar Verma
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital – Bern University Hospital, University of BernSwitzerland
| | - Veronika Schöpf
- Division of Neuro- and Musculoskeletal Radiology, Department of Radiology, Medical University of ViennaVienna, Austria
| | - Eugenio Abela
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital – Bern University Hospital, University of BernSwitzerland
- Department of Neurology, Inselspital – Bern University Hospital, University of BernSwitzerland
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital – Bern University Hospital, University of BernSwitzerland
- Klinik Bethesda TschuggBern, Switzerland
| | | | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital – Bern University Hospital, University of BernSwitzerland
| |
Collapse
|
10
|
van Houdt PJ, de Munck JC, Leijten FSS, Huiskamp GJM, Colon AJ, Boon PAJM, Ossenblok PPW. EEG-fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. Neuroimage 2013; 75:238-248. [PMID: 23454472 DOI: 10.1016/j.neuroimage.2013.02.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 02/09/2013] [Indexed: 11/19/2022] Open
Abstract
EEG-correlated functional MRI (EEG-fMRI) visualizes brain regions associated with interictal epileptiform discharges (IEDs). This technique images the epileptiform network, including multifocal, superficial and deeply situated cortical areas. To understand the role of EEG-fMRI in presurgical evaluation, its results should be validated relative to a gold standard. For that purpose, EEG-fMRI data were acquired for a heterogeneous group of surgical candidates (n=16) who were later implanted with subdural grids and strips (ECoG). The EEG-fMRI correlation patterns were systematically compared with brain areas involved in IEDs ECoG, using a semi-automatic analysis method, as well as to the seizure onset zone, resected area, and degree of seizure freedom. In each patient at least one of the EEG-fMRI areas was concordant with an interictally active ECoG area, always including the early onset area of IEDs in the ECoG data. This confirms that EEG-fMRI reflects a pattern of onset and propagation of epileptic activity. At group level, 76% of the BOLD regions that were covered with subdural grids, were concordant with interictally active ECoG electrodes. Due to limited spatial sampling, 51% of the BOLD regions were not covered with electrodes and could, therefore, not be validated. From an ECoG perspective it appeared that 29% of the interictally active ECoG regions were missed by EEG-fMRI and that 68% of the brain regions were correctly identified as inactive with EEG-fMRI. Furthermore, EEG-fMRI areas included the complete seizure onset zone in 83% and resected area in 93% of the data sets. No clear distinction was found between patients with a good or poor surgical outcome: in both patient groups, EEG-fMRI correlation patterns were found that were either focal or widespread. In conclusion, by comparison of EEG-fMRI with interictal invasive EEG over a relatively large patient population we were able to show that the EEG-fMRI correlation patterns are spatially accurate at the level of neurosurgical units (i.e. anatomical brain regions) and reflect the underlying network of IEDs. Therefore, we expect that EEG-fMRI can play an important role for the determination of the implantation strategy.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Research and Development, Kempenhaeghe, Sterkselseweg 65, 5591 VE Heeze, The Netherlands; Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1118,1081 HZ Amsterdam, The Netherlands
| | - Jan C de Munck
- Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1118,1081 HZ Amsterdam, The Netherlands
| | - Frans S S Leijten
- Department of Clinical Neurophysiology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Geertjan J M Huiskamp
- Department of Clinical Neurophysiology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Albert J Colon
- Department of Neurology, Kempenhaeghe, Sterkselseweg 65, 5591 VE Heeze, The Netherlands
| | - Paul A J M Boon
- Department of Research and Development, Kempenhaeghe, Sterkselseweg 65, 5591 VE Heeze, The Netherlands
| | - Pauly P W Ossenblok
- Department of Clinical Physics, Kempenhaeghe, Sterkselseweg 65, 5591 VE , The Netherlands.
| |
Collapse
|
11
|
Wiest R, Estermann L, Scheidegger O, Rummel C, Jann K, Seeck M, Schindler K, Hauf M. Widespread grey matter changes and hemodynamic correlates to interictal epileptiform discharges in pharmacoresistant mesial temporal epilepsy. J Neurol 2013; 260:1601-10. [PMID: 23355177 DOI: 10.1007/s00415-013-6841-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/28/2022]
Abstract
Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.
Collapse
Affiliation(s)
- Roland Wiest
- Support Center of Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselpital, University of Bern, 3010, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|